US5117034A - Phosphatidylserine derivatives - Google Patents

Phosphatidylserine derivatives Download PDF

Info

Publication number
US5117034A
US5117034A US07/602,557 US60255790A US5117034A US 5117034 A US5117034 A US 5117034A US 60255790 A US60255790 A US 60255790A US 5117034 A US5117034 A US 5117034A
Authority
US
United States
Prior art keywords
group
acyclic hydrocarbon
hydrocarbon group
phosphatidylserine
phosphatidylserine derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/602,557
Inventor
Mitsunori Ono
Hideto Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EASTERN FLEXIBLE FILMS Inc
Fujifilm Holdings Corp
Fujifilm Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2137887A external-priority patent/JPH03204889A/en
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Assigned to FUJI PHOTO FILM CO., LTD. reassignment FUJI PHOTO FILM CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: MORI, HIDETO, ONO, MITSUNORI
Assigned to EASTERN FLEXIBLE FILMS, INC. reassignment EASTERN FLEXIBLE FILMS, INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SULLIVAN, MICHAEL, DOUGLASS, PHILIP A.
Application granted granted Critical
Publication of US5117034A publication Critical patent/US5117034A/en
Assigned to FUJIFILM CORPORATION reassignment FUJIFILM CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUJIFILM HOLDINGS CORPORATION (FORMERLY FUJI PHOTO FILM CO., LTD.)
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/12Esters of phosphoric acids with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/091Esters of phosphoric acids with hydroxyalkyl compounds with further substituents on alkyl
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • This invention relates to a phosphatidylserine derivative useful as a precursor for a lipid membrane structural material for modifying the surface of a lipid bimolecular membrane such as a liposome.
  • lipid bimolecular membrane such as a liposome
  • surface reformation modification
  • Known methods of introducing a functional compound like a protein to a lipid bimolecular membrane such as a liposome involve using a non-covalent bond or using a covalent bond. Considering the strength of the bond and the stability of the membrane, among other things, the covalent bond method is more useful.
  • the method of using a covalent bond involves combining the surface of a lipid bimolecular membrane with a chosen molecule for forming a covalent bond using a divalent crosslinking agent and practically, an amino group or an SH group on a protein, or a sugar chain is utilized as a functional group for the bonding.
  • a method of using an SH group involves a method of bonding using a maleinimido group as a crosslinking agent via a Michael addition reaction for the maleinimido group (Biochimica et Biophysica Acta, 943, 53 (1988)), a method of bonding an antibody activated by N-succinimidyl-3-(2-pyridyldithio)propionyl phosphatidylethanolamine and N-succinimidyl-3-(2-pyridyldithio) propionate (Nature, 288, 602 (1980)), and a method of bonding using an ⁇ -haloketone group as the crosslinking agent via a nucleophilic displacement reaction for the group (European Patent 0,312,212).
  • a method of utilizing sugar chains involves a method of incorporating a glycolipid into the membrane side of the lipid bimolecular membrane, cutting the glycolipid with periodic acid, and reacting the aldehyde formed with an amino group (Science, 210, 539 (1980)).
  • JP-A lipid bimolecular membrane
  • JP-A means an "unexamined published Japanese patent application”
  • a single-strand lipid membrane structural material is a reverse corn type molecule wherein the hydrophilic portion is more bulky than the hydrophobic portion, it has a disadvantage of being easily released from the membrane component in which case it would become a membrane poison.
  • lipid membrane structural material that can be easily used to modify the surface of a lipid bimolecular membrane, has a variety of applications, and is safe for living organisms.
  • An object of this invention is to provide a phosphatidylserine derivative which can easily modify a surface of a lipid bimolecular membrane and is safe for living organisms.
  • a phosphatidylserine derivative represented by formulae (I), (II), or (III): ##STR2## wherein R represents a protective group capable of being removed by an acid, (preferably a tertiary butoxycarbonyl group); R' represents a straight chain or branched acyclic hydrocarbon group having from 8 to 24 carbon atoms, (preferably having 14, 16 or 18 carbon atoms), and this group may have a substituent group or may be unsaturated. Examples of substituents are an alkylcarbonyl group, an alkoxycarbonyl group, a halogen atom, and an aryl group. If unsaturated, there may be a double bond or a triple bond, and there may be two or more such bonds in the same chain. If there is an asymmetric carbon in the molecule the derivative may be a racemic mixture or an optically active isomer thereof.
  • FIG. 1 is a graph of the infrared absorption spectrum, using a nujol paste method, of an optically active substance of a compound corresponding to formula (I) wherein R is a tertiary butoxycarbonyl group and R' is n--C 16 H 33 .
  • FIG. 2 is a graph of the 200 MHz proton nuclear magnetic resonance spectrum (solvent: CDCl 3 , standard material: tetramethylsilane) of the compound analyzed in FIG. 1.
  • FIG. 3 is a graph of the infrared absorption spectrum, using a nujol paste method, of an optically active substance of a compound corresponding to formula (II) wherein R is a tertiary butoxycarbonyl group and R' is n--C 16 H 33 .
  • FIG. 4 is a graph of the 200 MHz proton nuclear magnetic resonance spectrum (solvent: CDCl 3 , standard material: tetramethylsilane) of the compound analyzed in FIG. 3.
  • FIG. 5 is a graph of the infrared absorption spectrum of the trifluoroacetate of an optically active substance corresponding to formula (III) wherein R' is n--C 16 H 33 .
  • FIG. 6 is a graph of the 200 MHz proton nuclear magnetic resonance spectrum (solvent: CDCl 3 , standard material: tetramethylsilane) of the compound analyzed in FIG. 5.
  • amino group, the carboxy group, and the phosphoric acid group of the serine moiety of the compounds of the invention corresponding to formula (I) can be separately protected and also can be selectively deprotected without adversely affecting other functional groups.
  • lipid bimolecular membrane such as a liposome by themselves or by mixing them with other lipid membrane structural materials.
  • Such compounds can have a positive, negative, or amphoteric charge.
  • serine which is one of the constitutional components of the compound, is a naturally existing amino acid, these compounds are safe for living organisms.
  • lipid membrane structural material having functional properties can be obtained.
  • the lipid membrane structure material of the invention can form a liquid bimolecular membrane such as a liposome by itself or when mixed with other types of lipid membrane structural material. Additionally, a surface modification or strengthening of the structure can be achieved in such a lipid bimolecular membrane.
  • saccharide existing at the surface of a cell membrane functions in intercellular information transfer, for example, and there is a possibility that a liposome can be targeted to a specific cell by the surface modification with saccharide.
  • the compounds of this invention are important as precursors for functional lipid membrane structural materials.
  • this ester was obtained at a yield of 80% from (s)-N-t-butyoxycarbonylserine and benzyl bromide.
  • the product was dissolved in 250 ml of ethyl acetate and after adding 1.5 g of 10% palladium-carbon, the mixture was reacted for 8 hours in a hydrogen atmosphere.
  • the reaction mixture obtained was poured into 100 ml of water and extracted 4 times with 100 ml of chloroform.
  • the organic layers (the extracts) were combined with each other, washed once with 150 ml of water, and dried with anhydrous sodium sulfate.
  • the sodium sulfate was then removed by filtration and the filtrate was concentrated under reduced pressure to provide a colorless oily product.
  • IR ⁇ max (Nujol): 3260(m), 2930(s), 2860(s), 1745(s), 1705(s), 1600(m), 1495(m), 1270(s), 1210(s), 1165(s), 1065(s), and 1030(s) cm -1 .
  • IR ⁇ max (Nujol): 3600-3000(br m), 1725(s), 1600(m), 1500(s), 1255(s), 1210(s), 1170(s), 1060(s), 1030(s), and 960(s) cm -1 .
  • reaction mixture was concentrated under reduced pressure to provide an oily product which was dried under reduced pressure to provide 1.05 g (quantitative) of the desired compound as a colorless waxy material.
  • IR ⁇ max (Nujol): 3600-3000(br), 2740-2200(br), 1765(s), 1675(s), 1600(m), 1500(m), 1215(s) , 1170(s), and 1.040 cm -1 .

Abstract

A phosphatidylserine derivative represented by formulae (I), (II), and (III): ##STR1## wherein R represents a protective group which can be removed by an acid; and R' represents a straight chain or branched alkyl group having from 8 to 24 carbon atoms and may contain a substituent group, or may be unsaturated, provided that if an asymmetric carbon is present, the phosphatidylserine derivative is a racemic mixture or an optically active isomer thereof. Preferably, R represents a tertiary butoxycarbonyl group; R' represents a straight chain or branched alkyl group having 14, 16, or 18 carbon atoms; and the substituent is an alkylcarbonyl group, an alkoxycarbonyl group, a halogen atom, or an aryl group.

Description

FIELD OF THE INVENTION
This invention relates to a phosphatidylserine derivative useful as a precursor for a lipid membrane structural material for modifying the surface of a lipid bimolecular membrane such as a liposome.
BACKGROUND OF THE INVENTION
In order to strengthen the structure and modify the function of a lipid bimolecular membrane such as a liposome, surface reformation (modification) is an important consideration. Known methods of introducing a functional compound like a protein to a lipid bimolecular membrane such as a liposome involve using a non-covalent bond or using a covalent bond. Considering the strength of the bond and the stability of the membrane, among other things, the covalent bond method is more useful.
Generally, the method of using a covalent bond involves combining the surface of a lipid bimolecular membrane with a chosen molecule for forming a covalent bond using a divalent crosslinking agent and practically, an amino group or an SH group on a protein, or a sugar chain is utilized as a functional group for the bonding.
More specifically, a method of using an SH group involves a method of bonding using a maleinimido group as a crosslinking agent via a Michael addition reaction for the maleinimido group (Biochimica et Biophysica Acta, 943, 53 (1988)), a method of bonding an antibody activated by N-succinimidyl-3-(2-pyridyldithio)propionyl phosphatidylethanolamine and N-succinimidyl-3-(2-pyridyldithio) propionate (Nature, 288, 602 (1980)), and a method of bonding using an α-haloketone group as the crosslinking agent via a nucleophilic displacement reaction for the group (European Patent 0,312,212). A method of utilizing sugar chains involves a method of incorporating a glycolipid into the membrane side of the lipid bimolecular membrane, cutting the glycolipid with periodic acid, and reacting the aldehyde formed with an amino group (Science, 210, 539 (1980)).
However, these methods all require a considerable number of steps and they can only be used for specific reactions.
It is also known to add a functional group to a lipid bimolecular membrane such as a liposome using a single-strand lipid membrane structural material which can be easily synthesized, as disclosed in JP-A-61-112021, JP-A-62-201864, JP-A-62-209092, and JP-A-1-27637 (the term "JP-A" as used herein means an "unexamined published Japanese patent application"). However, since a single-strand lipid membrane structural material is a reverse corn type molecule wherein the hydrophilic portion is more bulky than the hydrophobic portion, it has a disadvantage of being easily released from the membrane component in which case it would become a membrane poison.
Thus, there is great demand for a lipid membrane structural material that can be easily used to modify the surface of a lipid bimolecular membrane, has a variety of applications, and is safe for living organisms.
SUMMARY OF THE INVENTION
An object of this invention is to provide a phosphatidylserine derivative which can easily modify a surface of a lipid bimolecular membrane and is safe for living organisms.
It has been discovered that this and other objects can be attained by a phosphatidylserine derivative represented by formulae (I), (II), or (III): ##STR2## wherein R represents a protective group capable of being removed by an acid, (preferably a tertiary butoxycarbonyl group); R' represents a straight chain or branched acyclic hydrocarbon group having from 8 to 24 carbon atoms, (preferably having 14, 16 or 18 carbon atoms), and this group may have a substituent group or may be unsaturated. Examples of substituents are an alkylcarbonyl group, an alkoxycarbonyl group, a halogen atom, and an aryl group. If unsaturated, there may be a double bond or a triple bond, and there may be two or more such bonds in the same chain. If there is an asymmetric carbon in the molecule the derivative may be a racemic mixture or an optically active isomer thereof.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a graph of the infrared absorption spectrum, using a nujol paste method, of an optically active substance of a compound corresponding to formula (I) wherein R is a tertiary butoxycarbonyl group and R' is n--C16 H33.
FIG. 2 is a graph of the 200 MHz proton nuclear magnetic resonance spectrum (solvent: CDCl3, standard material: tetramethylsilane) of the compound analyzed in FIG. 1.
FIG. 3 is a graph of the infrared absorption spectrum, using a nujol paste method, of an optically active substance of a compound corresponding to formula (II) wherein R is a tertiary butoxycarbonyl group and R' is n--C16 H33.
FIG. 4 is a graph of the 200 MHz proton nuclear magnetic resonance spectrum (solvent: CDCl3, standard material: tetramethylsilane) of the compound analyzed in FIG. 3.
FIG. 5 is a graph of the infrared absorption spectrum of the trifluoroacetate of an optically active substance corresponding to formula (III) wherein R' is n--C16 H33.
FIG. 6 is a graph of the 200 MHz proton nuclear magnetic resonance spectrum (solvent: CDCl3, standard material: tetramethylsilane) of the compound analyzed in FIG. 5.
DETAILED DESCRIPTION OF THE INVENTION
Examples of the syntheses of optically active compounds according to the invention are illustrated below, but these syntheses are not limiting. ##STR3##
The amino group, the carboxy group, and the phosphoric acid group of the serine moiety of the compounds of the invention corresponding to formula (I) can be separately protected and also can be selectively deprotected without adversely affecting other functional groups.
When the carboxy group of the serine moiety of the compounds of the invention corresponding to formula (II) is in a free state, the amino and phosphoric acid groups thereof can be separately protected and also selectively deprotected without adversely affecting other functional groups.
When the amino group of the serine moiety of the compounds of this invention corresponding to formula (III) is in a state of high reactivity, the carboxy and phosphoric acid groups thereof can be separately protected and also selectively deprotected without adversely affecting other functional groups.
Compounds obtained by deprotecting a compound corresponding to formulae (I), (II), or (III) can form a lipid bimolecular membrane such as a liposome by themselves or by mixing them with other lipid membrane structural materials. Such compounds can have a positive, negative, or amphoteric charge. In addition, since serine, which is one of the constitutional components of the compound, is a naturally existing amino acid, these compounds are safe for living organisms.
Also, by bonding a functional compound such as an amino acid, peptide, protein, saccharide, polymerizable group, or spacer having a reactivity to one or both of the hydrophilic amino group or the carboxy group as a foothold, a lipid membrane structural material having functional properties can be obtained. The lipid membrane structure material of the invention can form a liquid bimolecular membrane such as a liposome by itself or when mixed with other types of lipid membrane structural material. Additionally, a surface modification or strengthening of the structure can be achieved in such a lipid bimolecular membrane.
It has recently been clarified that the saccharide existing at the surface of a cell membrane functions in intercellular information transfer, for example, and there is a possibility that a liposome can be targeted to a specific cell by the surface modification with saccharide.
Thus, the compounds of this invention are important as precursors for functional lipid membrane structural materials.
The invention is illustrated further with the non-limiting examples below. Unless otherwise indicated, all ratios and percentages are by weight.
EXAMPLE 1
Synthesis of an optically active compound of formula (I) when R is a tertiary butoxycarbonyl group and R' is n--C16 H33 :
A) Synthesis of (s)-N-t-Butoxycarbonylserine benzyl ester: ##STR4##
According to the method described in Synthesis, 961 (1979), this ester was obtained at a yield of 80% from (s)-N-t-butyoxycarbonylserine and benzyl bromide.
B) Synthesis of (s)-2,3-di-o-hexadecyl-1-glycerol: ##STR5##
In 300 ml of toluene was dissolved 12.0 g of glycerol monobenzyl ether prepared by the method described in Synthesis, 503 (1985). After adding 16.0 g of powdery potassium hydroxide and 84.0 g of hexadecyl bromide to the solution, the reaction mixture was refluxed under heating for 8 hours. The reaction mixture was allowed to cool to room temperature and diluted with 400 ml of hexane. The reaction mixture was then washed twice with 200 ml of water and dried with anhydrous sodium sulfate. After removing the sodium sulfate by filtration, the filtrate was concentrated under reduced pressure to provide a colorless oily product.
The reaction mixture was purified by silica gel chromatography (eluent: hexane/ethyl acetate=40/1) to provide 41.2 g (yield 95.5%) of a dialkylglycerol monobenzyl ether compound.
The properties of the product coincided with described in Biochemistry, 2, 394 (1963).
The product was dissolved in 250 ml of ethyl acetate and after adding 1.5 g of 10% palladium-carbon, the mixture was reacted for 8 hours in a hydrogen atmosphere.
Insoluble matter was removed using sellite filtration and the sellite layer was washed with ethyl acetate. The filtrate was combined with the washed solution and the mixture was concentrated under reduced pressure. The residue thus formed was recrystallized from ethyl acetate to provide the desired compound as colorless crystals.
The properties of the product coincided with those described in Biochemistry, 2, 394 (1963).
C) Synthesis of an optically active compound of formula (I) when R is a tertiary butoxycarbonyl group and R' is n--C16 H33 : ##STR6##
To a dry tetrahydrofuran solution of phenylphosphoro dichloridate (PhOPOCl2, 2.75 g, commercially available product) was added 20 ml of a dry tetrahydrofuran solution of 2.95 g of (s)-N-t-butoxycarbonylserine benzyl ester and 1.07 g of N-methylimidazole over a period of 20 minutes. After stirring the reaction mixture for 10 minutes at room temperature, 20 ml of a dry tetrahydrofuran solution of 5.4 g of (s)-2,3-di-o-hexadecyl-1-glycerol and 1.07 g of N-methylimidazole was added thereto over a period of 10 minutes and the mixture was allowed to stand for 14 hours at room temperature.
The reaction mixture obtained was poured into 100 ml of water and extracted 4 times with 100 ml of chloroform. The organic layers (the extracts) were combined with each other, washed once with 150 ml of water, and dried with anhydrous sodium sulfate. The sodium sulfate was then removed by filtration and the filtrate was concentrated under reduced pressure to provide a colorless oily product.
The reaction mixture obtained was purified by silica gel chromatography (eluent: hexane/ethyl acetate =20/1 to 8/1) to provide 5.48 g (yield 56.3%) of the desired compound as a colorless waxy material.
The properties of the product are shown below.
IR νmax (Nujol): 3260(m), 2930(s), 2860(s), 1745(s), 1705(s), 1600(m), 1495(m), 1270(s), 1210(s), 1165(s), 1065(s), and 1030(s) cm-1.
1 H NMR δ(200 MHz, solvent CDCl3, standard substance TMS):
0.87(6H, deformed t, J=6 Hz), 1.25(54H, br s), 1.45(9H, s), 1.43-1.60(4H, br), 3.36-3.66(7H, m), 4.05-4.30(2H, m), 4.33-4.65(3H, m), 5.08-5.24(2H, m), 5.48-5.68(1H, m), 7.11-7.40(10H, m), and FAB-MS 974[(M+H)+ ].
EXAMPLE 2
Following the method described in Example 1, except for the starting materials used, an optically active compound of formula (I) wherein R was a tertiary butoxycarbonyl group and R' was n--C14 H29 or n--C18 H37 was synthesized.
The properties of this compound are shown below.
A compound of formula (I) wherein R' was n--C14 H29 :
Elemental Analysis:
______________________________________                                    
         C          H       N                                             
______________________________________                                    
Found:     68.31%       9.61%   1.50%                                     
Calculated:                                                               
           68.05%       9.60%   1.53%                                     
______________________________________                                    
A compound of formula (I) wherein R' was n--C18 H37 :
______________________________________                                    
         C          H       N                                             
______________________________________                                    
Found:     69.86%       10.06%  1.41%                                     
Calculated:                                                               
           69.97%       10.11%  1.36%                                     
______________________________________                                    
EXAMPLE 3
Synthesis of an optically active compound of formula (II) wherein R is a tertiary butoxycarbonyl group and R' is n--C16 H33 :
In 10 ml of a mixed solvent of ethyl acetate and methanol (1:1) was dissolved 200 mg of compound obtained in C) of Example 1 and after adding thereto 10 mg of 5% palladium-carbon, the mixture was reacted for 7 hours at normal pressure in a hydrogen atmosphere.
Insoluble matter was removed by sellite filtration and the sellite layer was washed with ethyl acetate. The filtrate was combined with the washed solution and the mixture was concentrated under reduced pressure to provide 190 mg (quantitative) of the desired compound as a colorless waxy material.
The properties of the compound are shown below.
IR νmax (Nujol): 3600-3000(br m), 1725(s), 1600(m), 1500(s), 1255(s), 1210(s), 1170(s), 1060(s), 1030(s), and 960(s) cm-1.
1 H NMR δ(200 MHz, solvent CDCl3, standard material TMS):
0.88(6H, deformed t, J=6 Hz), 1.25(54H, br s), 1.43 and 1.66(9H, each s), 1.40-1.60(4H, m), 3.38-3.66(7H, m), 4.07-4.65(5H, m), 5.60-5.70(1H, m), 6.58-7.00(1H, br, COOH), 7.10-7.40(5H, m), and FAB-MS 906 [(M+Na)+ ].
EXAMPLE 4
Following the method described in Example 3, except for the starting materials used, an optically active compound of formula (II) wherein R was a tertiary butoxycarbonyl group and R' was n--C14 H29 or n--C18 H37 was synthesized.
The properties of this compound are shown below.
A compound of formula (II) wherein R' was n--C14 H29 :
Elemental Analysis:
______________________________________                                    
         C          H       N                                             
______________________________________                                    
Found:     65.26%       9.94%   1.63%                                     
Calculated:                                                               
           65.30%       9.92%   1.69%                                     
______________________________________                                    
A compound of formula (II) wherein R' was n--C18 H37 :
Elemental Analysis:
______________________________________                                    
         C          H       N                                             
______________________________________                                    
Found:     69.56%       10.41%  1.37%                                     
Calculated:                                                               
           67.73%       10.44%  1.49%                                     
______________________________________                                    
EXAMPLE 5
Synthesis of the trifluoroacetate of an optically active compound of formula (III) wherein R' is n--C16 H33 :
After adding 10 ml of trifluoroacetic acid (commercially available product) to 10 ml of a methylene chloride solution of 1.0 g of compound obtained in C) of Example 1, the mixture was stirred for 20 minutes at room temperature.
The reaction mixture was concentrated under reduced pressure to provide an oily product which was dried under reduced pressure to provide 1.05 g (quantitative) of the desired compound as a colorless waxy material.
The properties thereof are shown below.
IR νmax (Nujol): 3600-3000(br), 2740-2200(br), 1765(s), 1675(s), 1600(m), 1500(m), 1215(s) , 1170(s), and 1.040 cm-1.
1 H NMR δ(200 MHz, solvent CDCl3, standard material TMS):
0.87(6H, deformed t, J=6 Hz), 1.25(54H, br s), 1.40-1.60(4H, m), 3.35-3.63(7H, m), 4.00-4.30(2H, m), 4.40-4.50(1H, m), 4.59-4.64(2H, m), 5.13-5.21(2H, m), 7.07-7.43(10H, m), and 7.80-8.20(3H, amino group exchanging proton).
Elemental Analysis:
______________________________________                                    
         C          H       N                                             
______________________________________                                    
Found:     64.21%       9.18%   1.41%                                     
Calculated:                                                               
           64.43%       9.02%   1.42%                                     
______________________________________                                    
EXAMPLE 6
Following the method described in Example 5, except for the starting materials used, a trifluoroacetate of an optically active compound of formula (III) wherein R' was n--C14 H29 or n--C18 H37 was synthesized.
The properties thereof are shown below.
Compound of formula (III) wherein R' was n--C14 H29 :
Elemental Analysis:
______________________________________                                    
         C          H       N                                             
______________________________________                                    
Found:     62.99%       8.61%   1.43%                                     
Calculated:                                                               
           63.16%       8.70%   1.50%                                     
______________________________________                                    
Compound of formula (III) wherein R' was n--C18 H37 :
Elemental Analysis:
______________________________________                                    
         C          H       N                                             
______________________________________                                    
Found:     65.53%       9.15%   1.42%                                     
Calculated:                                                               
           65.58%       9.30%   1.34%                                     
______________________________________                                    
While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof.

Claims (15)

What is claimed is:
1. A phosphatidylserine derivative represented by formula (I): ##STR7## wherein R represents a tertiary butoxycarbonyl group which can be removed with an acid; and R' represents a straight chain or branched acyclic hydrocarbon group having from 8 to 24 carbon atoms, and may have a substituent group, wherein said substituent group is an alkylcarbonyl group or alkoxycarbonyl group, or may be unsaturated, provided that if an asymmetric carbon is present, said phosphatidylserine derivative is a racemic mixture or an optically active isomer thereof.
2. A phosphatidylserine derivative represented by formula (II): ##STR8## wherein R represents a tertiary butoxycarbonyl group which can be removed with an acid; and R' represents a straight chain or branched acyclic hydrocarbon group having from 8 to 24 carbon atoms, and may have a substituent group, wherein said substituent group is an alkylcarbonyl group or alkoxycarbonyl group, or may be unsaturated, provided that if an asymmetric carbon is present, said phosphatidylserine derivative is a racemic mixture or an optically active isomer thereof.
3. A phosphatidylserine derivative represented by formula (III): ##STR9## wherein R' represents a straight chain or branched acyclic hydrocarbon group having from 8 to 24 carbon atoms, and may have a substituent group, wherein said substituent group is an alkylcarbonyl group or alkoxycarbonyl group, or may be unsaturated, provided that if an asymmetric carbon is present, said phosphatidylserine derivative is a racemic mixture or an optically active isomer thereof.
4. A phosphatidylserine derivative as claimed in claim 1, wherein R' represents a straight chain or branched alkyl group having 14, 16, or 18 carbon atoms.
5. A phosphatidylserine derivative as claimed in claim 1, wherein said acyclic hydrocarbon group contains at least one double bond.
6. A phosphatidylserine derivative as claimed in claim 1, wherein said acyclic hydrocarbon group contains at least one triple bond.
7. A phosphatidylserine derivative as claimed in claim 1, wherein said acyclic hydrocarbon group contains a combination of double and triple bonds.
8. A phosphatidylserine derivative as claimed in claim 2, wherein R' represents a straight chain or branched acyclic hydrocarbon group having 14, 16, or 18 carbon atoms.
9. A phosphatidylserine derivative as claimed in claim 2, wherein said acyclic hydrocarbon group contains at least one double bond.
10. A phosphatidylserine derivative as claimed in claim 2, wherein said acyclic hydrocarbon group contains at least one triple bond.
11. A phosphatidylserine derivative as claimed in claim 2, wherein said acyclic hydrocarbon group contains a combination of double and triple bonds.
12. A phosphatidylserine derivative as claimed in claim 3, wherein R' represents a straight chain or branched acyclic hydrocarbon group having 14, 16, or 18 carbon atoms.
13. A phosphatidylserine derivative as claimed in claim 3, wherein said acyclic hydrocarbon group contains at least one double bond.
14. A phosphatidylserine derivative as claimed in claim 3, wherein said acyclic hydrocarbon group contains at least one triple bond.
15. A phosphatidylserine derivative as claimed in claim 3, wherein said acyclic hydrocarbon group contains a combination of double and triple bonds.
US07/602,557 1989-10-24 1990-10-24 Phosphatidylserine derivatives Expired - Lifetime US5117034A (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP1-276525 1989-10-24
JP27652589 1989-10-24
JP1-278014 1989-10-25
JP1-278013 1989-10-25
JP27801389 1989-10-25
JP27801489 1989-10-25
JP2137887A JPH03204889A (en) 1989-10-24 1990-05-28 Phosphatidylserine derivative
JP2-137887 1990-05-28

Publications (1)

Publication Number Publication Date
US5117034A true US5117034A (en) 1992-05-26

Family

ID=27472101

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/602,557 Expired - Lifetime US5117034A (en) 1989-10-24 1990-10-24 Phosphatidylserine derivatives

Country Status (1)

Country Link
US (1) US5117034A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965413A (en) * 1995-11-08 1999-10-12 Kabushiki Kaisha Yakult Honsha Process for producing phosphatidylserines having long chain unsaturated fatty acid as side chain
US20030147944A1 (en) * 1999-12-10 2003-08-07 Mayer Lawrence D Lipid carrier compositions with protected surface reactive functions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989010370A1 (en) * 1988-04-19 1989-11-02 Cl-Pharma Aktiengesellschaft New alkylphosphono- and phosphoserines, method for preparing them, and pharmaceutical substances containing them

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989010370A1 (en) * 1988-04-19 1989-11-02 Cl-Pharma Aktiengesellschaft New alkylphosphono- and phosphoserines, method for preparing them, and pharmaceutical substances containing them

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965413A (en) * 1995-11-08 1999-10-12 Kabushiki Kaisha Yakult Honsha Process for producing phosphatidylserines having long chain unsaturated fatty acid as side chain
US20030147944A1 (en) * 1999-12-10 2003-08-07 Mayer Lawrence D Lipid carrier compositions with protected surface reactive functions

Similar Documents

Publication Publication Date Title
Lindh et al. A general method for the synthesis of glycerophospholipids and their analogs via H-phosphonate intermediates
US4914210A (en) Oligonucleotide functionalizing reagents
US4329302A (en) Synthetic phosphoglycerides possessing platelet activating properties
LU87290A1 (en) 4'-PHOSPHATE DERIVATIVES OF EPIPODOPHYLLOTOXIN GLUCOSIDES
US5430169A (en) Method for preparation of sphingoid bases
EP0228612A2 (en) A derivative of alpha, alpha-trehalose and a process for preparing the same
US4594193A (en) Thiol based lipids and membranes made therefrom
JP3102798B2 (en) Inositol derivatives, formulations containing them and their use
DE69616240T4 (en) 1,2-dioxetane derivatives as active substances in chemiluminescence
US5117034A (en) Phosphatidylserine derivatives
US4163748A (en) Propane-1,3-diol phosphatides and method of preparing the same
US5155099A (en) Alkylphosphonoserines and pharmaceutical compositions useful as cytostatic agents
Giannis et al. Fragmentation and wittig olefination of glucosamine derivatives-a simple route to open chain amino sugars and chiral glycerols
EP0257762B1 (en) Novel glycerol derivative and anti-hypertensive agent
EP0072531A1 (en) Derivatives of cyclophosphamide, process for their preparation and their use
JPS61129190A (en) Polymerizable glycerophospholipid
Barbaud et al. Synthesis of the first pseudosugar-C-disaccharide. A potential antigen for eliciting glycoside-bond forming antibodies with catalytic groups
EP0043472B1 (en) 3-hydrocarbylthio-2-acyloxypropyl 2-trimethylammonioethyl phosphates, process for producing the same and pharmaceutical preparations containing the same
US5091549A (en) Synthesis of d-myoinositol-1-phosphate
CA1234834A (en) Phospholipids
US4211706A (en) 9-Deoxy-9α,6-nitrilo or 6,9α-imino-17,18-didehydro-PGF compounds
CA1320720C (en) Sialosyl glyceride and process for producing the same
Yoshifuji et al. Preparation of Some Multifunctionalized Methylenephosphines by Reactions of Chloro-((2, 4, 6-tri-t-butylphenyl) phosphinidene) methyllithiums with Carbonyl Compounds.
JPS62249995A (en) Phosphoric acid ester and production thereof
JPS63316743A (en) Deacylation process

Legal Events

Date Code Title Description
AS Assignment

Owner name: FUJI PHOTO FILM CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:MORI, HIDETO;ONO, MITSUNORI;REEL/FRAME:005490/0321

Effective date: 19901003

AS Assignment

Owner name: EASTERN FLEXIBLE FILMS, INC., CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:DOUGLASS, PHILIP A.;SULLIVAN, MICHAEL;REEL/FRAME:005853/0324;SIGNING DATES FROM 19910913 TO 19910916

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: FUJIFILM CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FUJIFILM HOLDINGS CORPORATION (FORMERLY FUJI PHOTO FILM CO., LTD.);REEL/FRAME:018904/0001

Effective date: 20070130

Owner name: FUJIFILM CORPORATION,JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FUJIFILM HOLDINGS CORPORATION (FORMERLY FUJI PHOTO FILM CO., LTD.);REEL/FRAME:018904/0001

Effective date: 20070130