US5098986A - Paired alkyl phenol Mannich condensates - Google Patents

Paired alkyl phenol Mannich condensates Download PDF

Info

Publication number
US5098986A
US5098986A US07/615,103 US61510390A US5098986A US 5098986 A US5098986 A US 5098986A US 61510390 A US61510390 A US 61510390A US 5098986 A US5098986 A US 5098986A
Authority
US
United States
Prior art keywords
formula
mannich
represents hydrogen
formaldehyde
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/615,103
Inventor
George P. Speranza
Jiang-Jen Lin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huntsman Corp
Original Assignee
Texaco Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texaco Chemical Co filed Critical Texaco Chemical Co
Assigned to TEXACO CHEMICAL COMPANY, A CORP. OF DE reassignment TEXACO CHEMICAL COMPANY, A CORP. OF DE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: LIN, JIANG-JEN, SPERANZA, GEORGE P.
Priority to US07/615,103 priority Critical patent/US5098986A/en
Priority to EP91307391A priority patent/EP0487188A1/en
Priority to CA002054573A priority patent/CA2054573A1/en
Priority to JP32665591A priority patent/JPH0543521A/en
Publication of US5098986A publication Critical patent/US5098986A/en
Application granted granted Critical
Assigned to UNITED STATES TRUST COMPANY OF NEW YORK (AS COLLATERAL AGENT) reassignment UNITED STATES TRUST COMPANY OF NEW YORK (AS COLLATERAL AGENT) SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUNTSMAN CORPORATION (FORMERLY TEXACO CHEMICAL COMPANY)
Assigned to TEXACO INC. reassignment TEXACO INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUNTSMAN CORPORATION ( FORMERLY TEXACO CHEMICAL COMPANY )
Assigned to HUNTSMAN CORPORATION reassignment HUNTSMAN CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TEXACO CHEMICAL COMPANY
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • This invention relates to Mannich condensates prepared from an alkyl phenol, formaldehyde and polyoxyalkylene diamines, as hereinafter defined.
  • this invention relates to initial Mannich condensates prepared by reacting an alkyl phenol with formaldehyde and a first primary polyoxyalkylene diamine to provide intermediate paired alkyl phenol Mannich condensates which are further reacted with formaldehyde and a second polyoxyalkylene diamine, as hereafter defined, in order to provide the final Mannich condensates.
  • the intermediate Mannich condensates and the final Mannich condensates are useful as epoxy resin curing agents.
  • the Mannich reaction is a well-known reaction which has been extensively reviewed in the literature. See, for example, “The Mannich Reaction”, Org. Reactions 1, 303 (1942) and “Advances in the Chemistry of Mannich Bases", “Methods in Synthetic Organic Chemistry-Synthesis", Academic Press, pp. 703-775, 1973.
  • U.S. Pat. No. 4,736,011 discloses Mannich condensates prepared by the reaction of an imidazole with formaldehyde and a polyoxyalkylene polyamine which are useful as curing agents for epoxy resins.
  • Becker U.S. Pat. No. 3,734,965 discloses phenolic resins prepared by condensing a polyoxypropylenepolyamine with phenol and an aldehyde.
  • initial Mannich condensates can be prepared by reacting an alkyl phenol with formaldehyde and a first polyoxyalkylene diamine, such initial condensates having the formula: ##STR4## wherein:
  • R" represents a straight chain or branched alkyl group containing from 1 to about 15 carbon atoms
  • X represents a polyoxyalkylene diamine group having the formula: ##STR5## wherein:
  • n a positive number having a value of 1 to about 6
  • R' independently represents hydrogen or a methyl group.
  • polyfunctional final Mannich condensates can be prepared by reacting the initial Mannich condensate with formaldehyde and a second polyoxyalkylene diamine to provide final Mannich condensates having the formula: ##STR6## wherein Y represents a group having the formula: ##STR7## wherein:
  • n' represents a positive integer having a value of 1 to 6
  • R' represents hydrogen or a methyl group
  • R"' represents hydrogen or an alkyl group containing from 1 to 3 carbon atoms or a cyanoethyl group
  • X represents a polyoxyalkylene diamine group having formula (II) given above.
  • the starting materials for the present invention are formaldehyde, a phenol having a C 1 -C 15 alkyl group in the para position, a defined first class of polyoxyalkylene diamines and a defined second class of polyoxyalkylene diamines.
  • the first class of polyoxyalkylene diamine starting materials for the present invention are diamines having the formula: ##STR8## wherein:
  • n a positive number having a value of 1 to about 6
  • R' independently represents hydrogen or a methyl group.
  • polyoxyethylene diamine starting materials having this formula include a product made by Texaco Chemical Company under the tradename "Jeffamine EDR-148" wherein n has a value of about 2 and a polyoxyethylene diamine made by Texaco Chemical Company under the tradename "Jeffamine EDR-192" wherein n has a value of 3.
  • polyoxyalkylene diamine starting materials are polyoxypropylene diamines having the formula: ##STR9## wherein n represents a positive number having a value of 1 to about 6.
  • Examples of products of this formula include products sold by the Texaco Chemical Company under the tradename "Jeffamine D” including, for example, a product with the trade name “Jeffamine D-230" wherein the value of n has a value of about 2 to about 3 and a product sold by the tradename "Jeffamine D-400" wherein n has a value of from about 5 to about 6.
  • Formaldehyde may be employed in any of its conventional forms. Thus, it may be, and preferably is, used in the form of an aqueous solution of formaldehyde such as “formalin” and may also be used in "inhibited” methanol solution as paraformaldehyde or as trioxane.
  • the phenol starting material is a phenol having a C 1 -C 15 alkyl group in the para position to the hydroxyl group of the phenol.
  • Suitable phenols include compounds such as p-methyl phenol, p-ethyl phenol, p-propyl phenol, p-isopropyl phenol, the p-substituted n-butyl-, isobutyl- and tertiary butyl phenols, p-amyl phenol, p-decyl phenol, p-nonyl phenol, p-dodecyl phenol, p-pentadecyl phenol, etc.
  • the phenols containing the larger alkyl groups are frequently prepared by reacting phenol with a dimer, trimer, tetramer or pentamer of propylene.
  • the second class of polyoxyalkylene diamine starting materials to be used in accordance with the present invention are the polyoxyalkylene diamines of the formula: ##STR10## wherein:
  • n' represents a positive number having a value of 1 to about 6,
  • R' independently represents hydrogen or a methyl group
  • R"' represents hydrogen or an alkyl group containing 1 to 4 carbon atoms or a cyanoethyl group.
  • polyoxyalkylene diamine starting materials are polyoxyethylene diamines having the formula:
  • n represents a positive number having a value of 1 to 6.
  • polyoxyethylene diamines having this formula examples include a commercial product made by Texaco Chemical Company under the tradename “Jeffamine EDR-148” wherein n has a value of about 2 and a polyoxyethylene diamine made by Texaco Chemical Company under the tradename "Jeffamine EDR-192" wherein n has a value of 3.
  • polyoxyalkylene diamine starting materials are polyoxypropylene diamines having the formula: ##STR11## wherein n represents a positive number having a value of 1 to about 6.
  • Examples of products of this formula include products sold by the Texaco Chemical Company under the tradename "Jeffamine D” including, for example, a product with the tradename “Jeffamine D-230" wherein the value of n has a value of about 2 to about 3 and a product sold by the tradename "Jeffamine D-400" wherein n has a value of from about 5 to about 6.
  • a further example of a group of polyoxyalkylene diamine starting materials are polyoxypropylene diamines having the formula: ##STR12## wherein:
  • n' represents a positive number having a value of 1 to about 6,
  • R' independently represents hydrogen or a methyl group
  • R" represents hydrogen, an alkyl group containing 1 to 4 carbon atoms or a cyanoethyl group.
  • the isopropyl derivatives of polyoxyalkylene diamines having formula VII may be prepared, for example, by the method disclosed and claimed in Speranza et al. U.S. Pat. No. 4,927,912, which issued May 22, 1990, and is entitled "Secondary Isopropyl Amines Derived from Oxyalkylene Diamines and Triamines".
  • Another example of a useful polyoxypropylene diamine is a compound having the formula: ##STR13##
  • the initial Mannich condensate is prepared by reacting a para alkyl phenol with formaldehyde and a first polyoxyethylene diamine in the mole ratio of about 2:2:1 under Mannich reaction conditions including a temperature within the range of about 80° to about 150° C. for a period of time within the range of about 2 to about 8 hours.
  • Pressure is not critical.
  • the reaction is suitably conducted at atmospheric pressure, although lower or higher pressures such as subatmospheric pressures or superatmospheric pressures of several atmospheres may be used. However, no particular advantage is obtained by using a reduced or an elevational pressure.
  • the resultant reaction product will contain, as a principal component, an initial Mannich condensate having the formula: ##STR14## wherein:
  • R" represents a straight chain or branched alkyl group containing from 1 to about 15 carbon atoms
  • X represents a polyoxyalkylene group having the formula: ##STR15## wherein:
  • n a positive number having a value of 1 to about 6
  • R' independently represents hydrogen or a methyl group.
  • a final Mannich condensate is prepared by reacting the initial Mannich condensate with formaldehyde and a second polyoxyalkylene diamine in the mole ratio of about 2:2:1 under Mannich condensation reaction conditions such as those recited above including a temperature within the range of about 80° to about 150° C. and a reaction time within the range of about 2 to about 8 hours.
  • Pressure is not critical.
  • the reaction is suitably conducted at atmospheric pressure, although lower or higher pressures such as subatmospheric pressures or superatmospheric pressures of several atmospheres may be used. However, no particular advantage is obtained by using a reduced or an elevated pressure.
  • the resultant reaction product will contain, as a principal component, a final Mannich condensate having the formula: ##STR16## wherein:
  • Y represents a polyoxyalkylene group having the formula: ##STR17## wherein:
  • n' represents a positive integer having a value of 1 to 6
  • R' represents hydrogen or a methyl group
  • R'" represents hydrogen, an alkyl group containing from 1 to 4 carbon atoms or a cyanoethyl group.
  • the second step is very critical and that unexpected and unwanted results are obtained unless the diamine is a polyoxyethylene diamine of formula VIII.
  • the Mannich condensates of the present invention are well suited for use as curing agents for 1,2-epoxy resints.
  • the vicinal epoxide compositions that can be cured using the curing agents of this invention are organic materials having an average of more than one reactive 1,2-epoxide group.
  • These polyepoxide materials can be monomeric or polymeric, saturated or unsaturated, aliphatic, cycloaliphatic, aromatic or heterocyclic, and may be substituted if desired with other substituents besides the epoxy groups, e.g., hydroxyl groups, ether radicals, halogenated phenyl groups and the like.
  • epoxy resins diglycidyl ethers of bisphenol A: ##STR22## where n equals an integer of up to about 10 to 20.
  • a widely used class of polyepoxides that can be cured according to the practice of the present invention includes the resinous epoxy polyethers obtained by reacting an epihalohydrin, such as epichlorohydrin, and the like, with either a polyhydric phenol or a polyhydric alcohol.
  • an epihalohydrin such as epichlorohydrin, and the like
  • dihydric phenols include 4,4'-isopropylidene bisphenol, 2,4'-dihydroxydiphenylethylmethane, 3,3'-dihydroxydiphenyldiethylmethane, 3,4'-dihydroxydiphenylmethylpropylmethane, 2,3'-dihydroxydiphenylethylphenylmethane, 4,4'-dihydroxydiphenylmethane, 4,4'-dihydroxydiphenylbutylphenylmethane, 2,2'-dihydroxydiphenylditolylmethane, 4,4'-dihydroxydiphenyltolylmethyl-methane and the like.
  • polyhydric phenols which may also be co-reacted with an epihalohydrin to provide these epoxy polyethers are such compounds as resorcinol, hydroquinone, substituted hydroquinones, e.g., tertbutylhydroquinone, and the like.
  • Another class of polymeric polyepoxides that can be cured by means of the above-described curing agents includes the epoxy novolac resins obtained by reacting, preferably in the presence of a basic catalyst, e.g., sodium or potassium hydroxide, an epihalohydrin, such as epichlorohydrin, with the resinous condensate of an aldehyde, e.g., formaldehyde, and either a monohydric phenol, e.g., phenol itself, or a polyhydric phenol.
  • a basic catalyst e.g., sodium or potassium hydroxide
  • an epihalohydrin such as epichlorohydrin
  • polyepoxide compositions that can be cured according to the practice of the present invention are not limited to the above described polyepoxides, but that these polyepoxides are to be considered merely as being representative of the class of polyepoxides as a whole.
  • the amount of curing agent that is employed in curing polyepoxide compositions will depend on the amine equivalent weight of the curing agent employed.
  • the total number of equivalents of amine group is preferably from about 0.8 to about 1.2 times the number of epoxide equivalents present in the curable epoxy resin composition with a stoichiometric amount being most preferred.
  • additives can be admixed with these polyepoxide-containing compositions prior to final cure.
  • additives can be admixed with these polyepoxide-containing compositions prior to final cure.
  • Conventional pigments, dyes, fillers, flame retarding agents and other compatible natural and synthetic resins can also be added.
  • solvents for the polyepoxide materials such as acetone, methyl ethyl ketone, toluene, benzene, xylene, dioxane, methyl isobutyl ketone, dimethylformamide, ethylene glycol monoethyl ether acetate, and the like, can be used if desired, or where necessary.
  • Example 1 The examples of preparing (A) are cited in Example 1 and Table 1 and of preparing (B) in Example 2 and Table 2.
  • the sample of 6310-33 (11.5g) was mixed with EPON® 828 (18.7 g) and poured into a mold and cured at 100° C. for overnight to give a rigid, hard material.
  • Example 1 Following the procedure of Example 1 (6310-17), a series of intermediate Mannich reaction products were prepared. The products prepared and the properties thereof are shown in Table 1.
  • Example 1 When the product of Example 1 (6310-17) was allowed to react with two moles of formalin and two moles of diethylenetriamine for about 5 hours at 85°-130° C., about 80 to 85% of the ortho positions had reacted. There was about a 50% replacement of the --NH--CH 2 CH 2 O by diethylenetriamine in the ortho position.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Epoxy Resins (AREA)

Abstract

Normally liquid polyfunctional final Mannich condensates that are useful as curing agents for epoxy resins are prepared by reacting a para C1-C15 alkyl phenol with formaldehyde and a first polyoxyalkylene diamine to form an intermediate Mannich condensate that is reacted, in turn, with formaldehyde and a second polyoxyalkylene diamine to form the final Mannich condensate, the first polyoxyalkylene diamine having the formula: <IMAGE> (V) wherein: n represents a positive number having a value of 1 to about 6, and R' independently represents hydrogen or a methyl group, the second polyoxyalkylene diamine having the formula: <IMAGE> (VII) wherein n and n' represent positive numbers having a value of 1 to about 6, R' independently represents hydrogen or a methyl group, and R''' represents an alkyl group containing 1 to 4 carbon atoms or a cyanoethyl group.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to Mannich condensates prepared from an alkyl phenol, formaldehyde and polyoxyalkylene diamines, as hereinafter defined.
More particularly, this invention relates to initial Mannich condensates prepared by reacting an alkyl phenol with formaldehyde and a first primary polyoxyalkylene diamine to provide intermediate paired alkyl phenol Mannich condensates which are further reacted with formaldehyde and a second polyoxyalkylene diamine, as hereafter defined, in order to provide the final Mannich condensates.
The intermediate Mannich condensates and the final Mannich condensates are useful as epoxy resin curing agents.
Prior Art
The Mannich reaction is a well-known reaction which has been extensively reviewed in the literature. See, for example, "The Mannich Reaction", Org. Reactions 1, 303 (1942) and "Advances in the Chemistry of Mannich Bases", "Methods in Synthetic Organic Chemistry-Synthesis", Academic Press, pp. 703-775, 1973.
Brennan et al. U.S. Pat. No. 4,485,195 discloses Mannich condensates prepared by reacting an alkyl phenol with formaldehyde, diethanolamine and a minor amount of melamine to provide products which can be alkoxylated for use in the preparation of fire retardant, rigid polyurethane foams.
Other Mannich condensates prepared by reacting alkyl phenols with formaldehyde and alkanolamines and melamine are disclosed in Brennan et al. U.S. Pat. No. 4,487,852, Brennan U.S. Pat. No. 4,489,178 and Brennan U.S. Pat. No. 4,500,655.
Waddill et al. U.S. Pat. No. 4,736,011 discloses Mannich condensates prepared by the reaction of an imidazole with formaldehyde and a polyoxyalkylene polyamine which are useful as curing agents for epoxy resins.
Becker U.S. Pat. No. 3,734,965 discloses phenolic resins prepared by condensing a polyoxypropylenepolyamine with phenol and an aldehyde.
Grigsby et al., in U.S. Pat. No. 4,714,750, describe the Mannich condensates prepared from 2,6-di-t-butylphenol, formaldehyde and a polyoxyalkyleneamine, i.e.: ##STR3## where: R=H or CH3, and n=1 to 20.
SUMMARY OF THE INVENTION
It has been discovered in accordance with the present invention that initial Mannich condensates can be prepared by reacting an alkyl phenol with formaldehyde and a first polyoxyalkylene diamine, such initial condensates having the formula: ##STR4## wherein:
R" represents a straight chain or branched alkyl group containing from 1 to about 15 carbon atoms, and
wherein X represents a polyoxyalkylene diamine group having the formula: ##STR5## wherein:
n represents a positive number having a value of 1 to about 6, and
R' independently represents hydrogen or a methyl group.
It has been further discovered that "paired" initial alkyl Mannich condensates of the type illustrated above are liquid at ambient temperatures.
It has also been discovered in accordance with the present invention that polyfunctional final Mannich condensates can be prepared by reacting the initial Mannich condensate with formaldehyde and a second polyoxyalkylene diamine to provide final Mannich condensates having the formula: ##STR6## wherein Y represents a group having the formula: ##STR7## wherein:
n' represents a positive integer having a value of 1 to 6,
R' represents hydrogen or a methyl group,
R"' represents hydrogen or an alkyl group containing from 1 to 3 carbon atoms or a cyanoethyl group, and
wherein X represents a polyoxyalkylene diamine group having formula (II) given above.
DESCRIPTION OF THE INVENTION
The starting materials for the present invention are formaldehyde, a phenol having a C1 -C15 alkyl group in the para position, a defined first class of polyoxyalkylene diamines and a defined second class of polyoxyalkylene diamines.
The First Class of Polyoxyalkylene Diamine Starting Materials
The first class of polyoxyalkylene diamine starting materials for the present invention are diamines having the formula: ##STR8## wherein:
n represents a positive number having a value of 1 to about 6, and
R' independently represents hydrogen or a methyl group.
Examples of polyoxyethylene diamine starting materials having this formula include a product made by Texaco Chemical Company under the tradename "Jeffamine EDR-148" wherein n has a value of about 2 and a polyoxyethylene diamine made by Texaco Chemical Company under the tradename "Jeffamine EDR-192" wherein n has a value of 3.
Another example of a group of polyoxyalkylene diamine starting materials are polyoxypropylene diamines having the formula: ##STR9## wherein n represents a positive number having a value of 1 to about 6.
Examples of products of this formula include products sold by the Texaco Chemical Company under the tradename "Jeffamine D" including, for example, a product with the trade name "Jeffamine D-230" wherein the value of n has a value of about 2 to about 3 and a product sold by the tradename "Jeffamine D-400" wherein n has a value of from about 5 to about 6.
The Formaldehyde
Formaldehyde may be employed in any of its conventional forms. Thus, it may be, and preferably is, used in the form of an aqueous solution of formaldehyde such as "formalin" and may also be used in "inhibited" methanol solution as paraformaldehyde or as trioxane.
The Phenol Starting Material
The phenol starting material is a phenol having a C1 -C15 alkyl group in the para position to the hydroxyl group of the phenol.
Representative examples of suitable phenols include compounds such as p-methyl phenol, p-ethyl phenol, p-propyl phenol, p-isopropyl phenol, the p-substituted n-butyl-, isobutyl- and tertiary butyl phenols, p-amyl phenol, p-decyl phenol, p-nonyl phenol, p-dodecyl phenol, p-pentadecyl phenol, etc. The phenols containing the larger alkyl groups are frequently prepared by reacting phenol with a dimer, trimer, tetramer or pentamer of propylene.
The Second Class of Polyoxyalkylene Diamine Starting Materials
The second class of polyoxyalkylene diamine starting materials to be used in accordance with the present invention are the polyoxyalkylene diamines of the formula: ##STR10## wherein:
n' represents a positive number having a value of 1 to about 6,
R' independently represents hydrogen or a methyl group, and
R"' represents hydrogen or an alkyl group containing 1 to 4 carbon atoms or a cyanoethyl group.
An example of a group of polyoxyalkylene diamine starting materials are polyoxyethylene diamines having the formula:
H.sub.2 N--(CH.sub.2 CH.sub.2 O).sub.n --CH.sub.2 CH.sub.2 --NH.sub.2(VIII)
wherein n represents a positive number having a value of 1 to 6.
Examples of polyoxyethylene diamines having this formula include a commercial product made by Texaco Chemical Company under the tradename "Jeffamine EDR-148" wherein n has a value of about 2 and a polyoxyethylene diamine made by Texaco Chemical Company under the tradename "Jeffamine EDR-192" wherein n has a value of 3.
Another example of a group of polyoxyalkylene diamine starting materials are polyoxypropylene diamines having the formula: ##STR11## wherein n represents a positive number having a value of 1 to about 6.
Examples of products of this formula include products sold by the Texaco Chemical Company under the tradename "Jeffamine D" including, for example, a product with the tradename "Jeffamine D-230" wherein the value of n has a value of about 2 to about 3 and a product sold by the tradename "Jeffamine D-400" wherein n has a value of from about 5 to about 6.
A further example of a group of polyoxyalkylene diamine starting materials are polyoxypropylene diamines having the formula: ##STR12## wherein:
n' represents a positive number having a value of 1 to about 6,
R' independently represents hydrogen or a methyl group, and
R"" represents hydrogen, an alkyl group containing 1 to 4 carbon atoms or a cyanoethyl group.
The isopropyl derivatives of polyoxyalkylene diamines having formula VII may be prepared, for example, by the method disclosed and claimed in Speranza et al. U.S. Pat. No. 4,927,912, which issued May 22, 1990, and is entitled "Secondary Isopropyl Amines Derived from Oxyalkylene Diamines and Triamines".
Another example of a useful polyoxypropylene diamine is a compound having the formula: ##STR13##
Preparation of the Initial Mannich Condensates
In accordance with the present invention, the initial Mannich condensate is prepared by reacting a para alkyl phenol with formaldehyde and a first polyoxyethylene diamine in the mole ratio of about 2:2:1 under Mannich reaction conditions including a temperature within the range of about 80° to about 150° C. for a period of time within the range of about 2 to about 8 hours.
Pressure is not critical. The reaction is suitably conducted at atmospheric pressure, although lower or higher pressures such as subatmospheric pressures or superatmospheric pressures of several atmospheres may be used. However, no particular advantage is obtained by using a reduced or an elevational pressure.
The resultant reaction product will contain, as a principal component, an initial Mannich condensate having the formula: ##STR14## wherein:
R" represents a straight chain or branched alkyl group containing from 1 to about 15 carbon atoms, and
X represents a polyoxyalkylene group having the formula: ##STR15## wherein:
n represents a positive number having a value of 1 to about 6, and
R' independently represents hydrogen or a methyl group.
Preparation of the Final Mannich Condensate
In accordance with the present invention, a final Mannich condensate is prepared by reacting the initial Mannich condensate with formaldehyde and a second polyoxyalkylene diamine in the mole ratio of about 2:2:1 under Mannich condensation reaction conditions such as those recited above including a temperature within the range of about 80° to about 150° C. and a reaction time within the range of about 2 to about 8 hours.
Pressure is not critical. The reaction is suitably conducted at atmospheric pressure, although lower or higher pressures such as subatmospheric pressures or superatmospheric pressures of several atmospheres may be used. However, no particular advantage is obtained by using a reduced or an elevated pressure.
The resultant reaction product will contain, as a principal component, a final Mannich condensate having the formula: ##STR16## wherein:
Y represents a polyoxyalkylene group having the formula: ##STR17## wherein:
n' represents a positive integer having a value of 1 to 6,
R' represents hydrogen or a methyl group, and
R'" represents hydrogen, an alkyl group containing from 1 to 4 carbon atoms or a cyanoethyl group.
We have found limitations to the method of synthesis of paired alkyl phenol Mannich condensates as disclosed herein and that the order of the addition of the reactants is very important.
For example, although the preparation goes well for bis-phenols: ##STR18##
We have surprisingly discovered that the second step is very critical and that unexpected and unwanted results are obtained unless the diamine is a polyoxyethylene diamine of formula VIII.
For example, when R and R' equal hydrogen in formula (XI) above, the synthesis of the unique compounds of the present invention is performed with comparative ease. Thus, in Experiment 6641-45, the reaction proceeded as follows: ##STR19##
However, if the reactant of formula (II), above, is reacted with a much stronger amine such as diethylenetriamine, a significant "scrambling" takes place so that the amine of formula (II) is replaced to give products such as: ##STR20##
In a similar manner, if the bis-phenol is made from a dialkylpolyoxyalkylene diamine, the dialkylpolyoxyalkylene diamines are replaced with the unalkylated amine reactant. For example: ##STR21##
Utility of Mannich Condensates as Epoxy Curing Agents
The Mannich condensates of the present invention are well suited for use as curing agents for 1,2-epoxy resints.
It is known to use amines such as aliphatic or aromatic amines for curing 1,2-epoxy resins as shown, for example, by Waddill U.S. Pat. No. 4,139,524 and Marquis et al. U.S Pat. No. 4,162,358. See also, the textbook "Handbook of Epoxy Resins" by H. Lee and K. Neville, McGraw-Hill Book Company, 1967.
Generally the vicinal epoxide compositions that can be cured using the curing agents of this invention are organic materials having an average of more than one reactive 1,2-epoxide group. These polyepoxide materials can be monomeric or polymeric, saturated or unsaturated, aliphatic, cycloaliphatic, aromatic or heterocyclic, and may be substituted if desired with other substituents besides the epoxy groups, e.g., hydroxyl groups, ether radicals, halogenated phenyl groups and the like.
The most widely used epoxy resins are diglycidyl ethers of bisphenol A: ##STR22## where n equals an integer of up to about 10 to 20.
However, these epoxides are representative of the broader class of epoxide compounds that are useful in making epoxy resins.
A widely used class of polyepoxides that can be cured according to the practice of the present invention includes the resinous epoxy polyethers obtained by reacting an epihalohydrin, such as epichlorohydrin, and the like, with either a polyhydric phenol or a polyhydric alcohol. An illustrative, but by no means exhaustive, listing of suitable dihydric phenols includes 4,4'-isopropylidene bisphenol, 2,4'-dihydroxydiphenylethylmethane, 3,3'-dihydroxydiphenyldiethylmethane, 3,4'-dihydroxydiphenylmethylpropylmethane, 2,3'-dihydroxydiphenylethylphenylmethane, 4,4'-dihydroxydiphenylmethane, 4,4'-dihydroxydiphenylbutylphenylmethane, 2,2'-dihydroxydiphenylditolylmethane, 4,4'-dihydroxydiphenyltolylmethyl-methane and the like. Other polyhydric phenols which may also be co-reacted with an epihalohydrin to provide these epoxy polyethers are such compounds as resorcinol, hydroquinone, substituted hydroquinones, e.g., tertbutylhydroquinone, and the like.
Among the polyhydric alcohols that can be coreacted with an epihalohydrin to provide the resinous epoxy polyethers are such compounds as ethylene glycol, propylene glycol, butylene glycols, pentane diols, bis(4-hydroxycyclohexyl)dimethylmethane, 1,4-dimethylolbenzene, glycerol, 1,2,6-hexanetriol, trimethylolpropane, mannitol, sorbitol, erythritol, pentaerythritol, their dimers, trimers and higher polymers, e.g., polyethylene glycols, polypropylene glycols, triglycerol, dipentaerythritol and the like, polyallyl alcohol, polyhydric thioethers, such as 2,2'-, 3,3'-tetrahydroxydipropylsulfide and the like, mercapto alcohols such as α-monothioglycerol, α,α'-dithioglycerol, and the like, polyhydric alcohol partial esters, such as monostearin, pentaerythritol monoacetate, and the like, and halogenated polyhydric alcohols such as the monochlorohydrins of glycerol, sorbitol, pentaerythritol and the like.
Another class of polymeric polyepoxides that can be cured by means of the above-described curing agents includes the epoxy novolac resins obtained by reacting, preferably in the presence of a basic catalyst, e.g., sodium or potassium hydroxide, an epihalohydrin, such as epichlorohydrin, with the resinous condensate of an aldehyde, e.g., formaldehyde, and either a monohydric phenol, e.g., phenol itself, or a polyhydric phenol. Further details concerning the nature and preparation of these epoxy novolac resins can be obtained in H. Lee and K. Neville, "Handbook of Epoxy Resins".
It will be appreciated by those skilled in the art that the polyepoxide compositions that can be cured according to the practice of the present invention are not limited to the above described polyepoxides, but that these polyepoxides are to be considered merely as being representative of the class of polyepoxides as a whole.
The amount of curing agent that is employed in curing polyepoxide compositions will depend on the amine equivalent weight of the curing agent employed. The total number of equivalents of amine group is preferably from about 0.8 to about 1.2 times the number of epoxide equivalents present in the curable epoxy resin composition with a stoichiometric amount being most preferred.
Various conventionally employed additives can be admixed with these polyepoxide-containing compositions prior to final cure. For example, in certain instances it may be desired to add minor amounts of other co-catalysts, or hardeners, along with the curing agent system herein described. Conventional pigments, dyes, fillers, flame retarding agents and other compatible natural and synthetic resins can also be added. Furthermore, known solvents for the polyepoxide materials such as acetone, methyl ethyl ketone, toluene, benzene, xylene, dioxane, methyl isobutyl ketone, dimethylformamide, ethylene glycol monoethyl ether acetate, and the like, can be used if desired, or where necessary.
SPECIFIC EXAMPLES
The invention will be further illustrated by the following specific examples which are given by way of illustration and not as limitations on the scope of this invention.
Initial Mannich Condensate and the Preparation Thereof
A two-step synthesis involving different ratio of starting materials is used to make intermediate (A) and the final product (B), as illustrated by the general sturctures (A) and (B): ##STR23##
The examples of preparing (A) are cited in Example 1 and Table 1 and of preparing (B) in Example 2 and Table 2.
EXAMPLE 1 (6310-17) Mannich Adduct of p-Nonylphenol, Formaldehyde and JEFFAMINE® EDR-148
To a 1-liter, three-necked flask equipped with a thermometer, a dropping funnel, a stirrer and nitrogen-inlet line was charged p-nonylphenol (330g, 1.5M) and JEFFAMINE EDR-148 (111 g, 0.75M). Then, formalin (37%, 122 g, 1.5M) was added dropwise at ca. 50° C. over 1.5 hours period. During the addition, a slurry of a white solid was observed. The mixture was slowly heated to 100°-130° C. for 4.5 hours. During the process the generated water was removed through a Dean-Stark trap. The product was removed (439g) as a transparent, light-colored liquid. The analyses of total amine 3.4 meq/g (theoretical 3.3 meq/g). The viscosity was 4,000 cs/66° C. NMR spectra indicates the main product to be ##STR24##
EXAMPLE 2 (6310-33) The Second Step of Mannich Adduct of Intermediate A from (6310-17) and JEFFAMINE® EDR-148
In a 500 ml, three-necked flask equipped with a thermometer, a Dean-Stark trap, a stirrer and nitrogen-inlet line was charged the adduct (A) (from Example 1, 123 g, ca. 0.2M) EDR-148 (59.2 g, 0.4M). Then, formalin (37%, 32.4 g, 0.4M) was added dropwise under 80° C. The mixture was heated to 90°-110° C. for over 4 hours to remove water. The resulting product was analyzed to have 6.5 meq/g total amine (6.4 meq/g calcd) and viscosity of 12,000 cs/37.8° C. The product was a light-colored liquid.
In Table 1 the various intermediates (A) were prepared according to Example 1. The structures contain a secondary amine and two nonylphenol functionalities.
In Table 2, the intermediate A was used and the active amine terminated Mannich products were prepared according to Example 2. These compounds contain both primary and secondary amine groups.
EXAMPLE 3 (6310-33) Usage of Product
The sample of 6310-33 (11.5g) was mixed with EPON® 828 (18.7 g) and poured into a mold and cured at 100° C. for overnight to give a rigid, hard material.
Following the procedure of Example 1 (6310-17), a series of intermediate Mannich reaction products were prepared. The products prepared and the properties thereof are shown in Table 1.
              TABLE 1                                                     
______________________________________                                    
SYNTHESIS OF INTERMEDIATE (A)                                             
Moles                                                                     
Note-         For-           Product (A)                                  
book  Nonyl-  mal-           Amine                                        
No.   phenol  dehyde  Amine  meq/g (calc)                                 
                                         Description                      
______________________________________                                    
6310-17                                                                   
      2       2       EDR-148                                             
                             3.4   (3.3) Light                            
                      1                  colored liq.                     
                                         4,000 cs/                        
                                         60° C.                    
6310-18                                                                   
      2       2       EDR-192                                             
                             3.0   (3.0) Light                            
                      1                  colored liq.                     
                                         2,000 cs/                        
                                         66° C.                    
6310-11                                                                   
      2       2       D-230  2.7   (2.9) Brown                            
                      1                  liquid                           
                                         22,000 cs/                       
                                         50° C.                    
6310-12                                                                   
      2       2       D-400  2.1   (2.3) Brown                            
                      1                  liquid                           
                                         4,000 cs/                        
                                         50° C.                    
______________________________________                                    
In like manner, a series of final Mannich condensates were prepared following the procedure of Example 2 (6310-33).
The starting materials used and the products obtained are set forth in Table 2.
                                  TABLE 2                                 
__________________________________________________________________________
SYNTHESIS OF PRODUCT (B)                                                  
Moles                 Product (B)                                         
Notebook   Formal-    Amine                                               
No.   (A)  dehyde                                                         
                Amine meq/g                                               
                          (calc)                                          
                              Description                                 
__________________________________________________________________________
6310-33                                                                   
      (6310-17)                                                           
           2    (EDR-148)                                                 
                      6.5 (6.4)                                           
                              Light colored liq.                          
      1         2             12,000 cs/37.8° C.                   
6310-34                                                                   
      1    2    (EDR-192)                                                 
                      5.8 (5.8)                                           
                              Light colored liq.                          
                2             7,000 cs/37.8° C.                    
6310-29                                                                   
      (6310-18)                                                           
           2    (EDR-148)                                                 
                      6.0 (6.1)                                           
                              Light yellow liq.                           
      1         2             3,000 cs/50° C.                      
6310-30                                                                   
      1    2    (EDR-192)                                                 
                      5.5 (5.6)                                           
                              Light yellow liq.                           
                2             2,000 cs/50° C.                      
6310-25                                                                   
      (6310-11)                                                           
           2    (EDR-148)                                                 
                      5.7 (5.9)                                           
                              Light brown liq.                            
      1         2             5,000 cs/50° C.                      
6310-26                                                                   
      1    2    (EDR-192)                                                 
                      5.3 (5.4)                                           
                              Brown liquid                                
                2             3,000 cs/50° C.                      
6310-22                                                                   
      (6310-12)                                                           
           2    (EDR-148)                                                 
                      4.9 (5.0)                                           
                              Brown liquid                                
      1         2             2,000 cs/50° C.                      
6310-23                                                                   
      1    2    (EDR-192)                                                 
                      4.6 (4.7)                                           
                              Brown liquid                                
                2             1,500 cs/50° C.                      
__________________________________________________________________________
EXAMPLE 4 (6310-47) Comparative Second Step, Mannich Adduct of Intermediate A from (6310-17) and Diethylenetriamine
When the product of Example 1 (6310-17) was allowed to react with two moles of formalin and two moles of diethylenetriamine for about 5 hours at 85°-130° C., about 80 to 85% of the ortho positions had reacted. There was about a 50% replacement of the --NH--CH2 CH2 O by diethylenetriamine in the ortho position.
The foregoing examples are given by way of explanation and are not intended as limitations on the scope of the invention disclosed herein, as described in the appended claims.

Claims (7)

We claim:
1. A normally liquid polyfunctional final Mannich condensate of a second polyoxyalkylene diamine, formaldehyde and an intermediate Mannich condensate, said final Mannich condensate having the formula: ##STR25## said second polyoxyalkylene diamine having the formula: ##STR26## said intermediate Mannich condensate having the formula: ##STR27## wherein X represents a polyoxyalkylene group having the formula: ##STR28## wherein Y represents a group having the formula: ##STR29## wherein: n and n' are positive numbers having a value of 1 to about 6,
R' independently represents hydrogen or a methyl group,
R" represents a straight chain or branched alkyl group containing from 1 to about 15 carbon atoms, and
R"' represents hydrogen, as alkyl group containing 1 to 4 carbon atoms or a cyanoethyl group.
2. A normally liquid polyfunctional derivative as in claim 1 wherein R' represents hydrogen and R"' represents hydrogen.
3. A normally liquid polyfunctional derivative as in claim 1 wherein R' represents hydrogen and R"' represents an alkyl group containing 1 to 4 carbon atoms.
4. A normally liquid polyfunctional derivative as in claim 1 wherein R' represents hydrogen and R"' represents a cyanoethyl group.
5. A normally liquid polyfunctional derivative as in claim 1 wherein R' represents methyl and R"' represents an alkyl group containing 1 to 4 carbon atoms.
6. A normally liquid polyfunctional derivative as in claim 1 wherein R' represents methyl and R"' represents an alkyl group containing 1 to 4 carbon atoms.
7. A normally liquid polyfunctional derivative as in claim 1 wherein R' represents methyl and R"' represents a cyanoethyl group.
US07/615,103 1990-11-19 1990-11-19 Paired alkyl phenol Mannich condensates Expired - Fee Related US5098986A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US07/615,103 US5098986A (en) 1990-11-19 1990-11-19 Paired alkyl phenol Mannich condensates
EP91307391A EP0487188A1 (en) 1990-11-19 1991-08-12 Alkyl phenol Mannich condensates
CA002054573A CA2054573A1 (en) 1990-11-19 1991-10-30 Paired alkyl phenol mannich condensates
JP32665591A JPH0543521A (en) 1990-11-19 1991-11-15 Condensation product of alkylphenol by mannich reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/615,103 US5098986A (en) 1990-11-19 1990-11-19 Paired alkyl phenol Mannich condensates

Publications (1)

Publication Number Publication Date
US5098986A true US5098986A (en) 1992-03-24

Family

ID=24463993

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/615,103 Expired - Fee Related US5098986A (en) 1990-11-19 1990-11-19 Paired alkyl phenol Mannich condensates

Country Status (2)

Country Link
US (1) US5098986A (en)
CA (1) CA2054573A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5387266A (en) * 1993-06-11 1995-02-07 Ethyl Corporation Mannich base derivatives, and the production and uses thereof
EP0645408A1 (en) * 1993-09-13 1995-03-29 Hoechst Aktiengesellschaft Curing agent for epoxy resins
US5512067A (en) * 1995-05-22 1996-04-30 Ethyl Corporation Asymmetrical mannich base derivatives and the production and uses thereof
US5558683A (en) * 1995-03-20 1996-09-24 Ethyl Corporation Mannich base derivatives, and the production and uses thereof
WO2000008082A1 (en) * 1998-08-03 2000-02-17 Cognis Corporation Epoxy curing agent of phenol-aldehyde reacted with polyamine
US20040176502A1 (en) * 2003-03-04 2004-09-09 Raymond William R. Mannich based adducts as water based epoxy curing agents with fast cure capabilities for green concrete application
CN103201306A (en) * 2010-11-11 2013-07-10 Sika技术股份公司 Condensation products of aminofunctional polymers
GB2601363A (en) * 2020-11-27 2022-06-01 Jones Paul Polymeric Mannich base, preparation methods and use as an epoxy resin curative

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2802820A (en) * 1953-02-18 1957-08-13 Atlas Powder Co Condensation products of secondary hexityl amines, formaldehyde and phenols
US3374965A (en) * 1967-01-31 1968-03-26 Alexander T. Deutsch Escape capsule
US4485195A (en) * 1983-10-25 1984-11-27 Texaco Inc. Alkoxylated Mannich condensates having fire retardancy properties and manufacture of rigid polyurethane foam therewith
US4487852A (en) * 1983-10-25 1984-12-11 Texaco Inc. Modified Mannich condensates and manufacture of rigid polyurethane foam with alkoxylation products thereof
US4489178A (en) * 1983-10-25 1984-12-18 Texaco Inc. Mannich condensates having fire retardancy properties and manufacture of rigid polyurethane foam therewith
US4500655A (en) * 1983-12-29 1985-02-19 Texaco Inc. Alkoxylated modified Mannich condensates and manufacture of rigid polyurethane foams therewith
US4714750A (en) * 1986-06-25 1987-12-22 Texaco Inc. Synthesis of products from polyoxyalkylene amines and 2,6-di-t-butylphenol for use as epoxy accelerators and curing agents
US4736011A (en) * 1985-05-06 1988-04-05 Texaco Inc. Mannich condensates as epoxy curing agents

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2802820A (en) * 1953-02-18 1957-08-13 Atlas Powder Co Condensation products of secondary hexityl amines, formaldehyde and phenols
US3374965A (en) * 1967-01-31 1968-03-26 Alexander T. Deutsch Escape capsule
US4485195A (en) * 1983-10-25 1984-11-27 Texaco Inc. Alkoxylated Mannich condensates having fire retardancy properties and manufacture of rigid polyurethane foam therewith
US4487852A (en) * 1983-10-25 1984-12-11 Texaco Inc. Modified Mannich condensates and manufacture of rigid polyurethane foam with alkoxylation products thereof
US4489178A (en) * 1983-10-25 1984-12-18 Texaco Inc. Mannich condensates having fire retardancy properties and manufacture of rigid polyurethane foam therewith
US4500655A (en) * 1983-12-29 1985-02-19 Texaco Inc. Alkoxylated modified Mannich condensates and manufacture of rigid polyurethane foams therewith
US4736011A (en) * 1985-05-06 1988-04-05 Texaco Inc. Mannich condensates as epoxy curing agents
US4714750A (en) * 1986-06-25 1987-12-22 Texaco Inc. Synthesis of products from polyoxyalkylene amines and 2,6-di-t-butylphenol for use as epoxy accelerators and curing agents

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
The Mannich Reaction, Org. Reactions, I 303 (1942). *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5387266A (en) * 1993-06-11 1995-02-07 Ethyl Corporation Mannich base derivatives, and the production and uses thereof
EP0645408A1 (en) * 1993-09-13 1995-03-29 Hoechst Aktiengesellschaft Curing agent for epoxy resins
US5576108A (en) * 1993-09-13 1996-11-19 Hoechst Aktiengesellschaft Curing component for epoxy resins
US5578685A (en) * 1993-09-13 1996-11-26 Hoechst Aktiengesellschaft Curing component for epoxy resins comprising Mannich base from alkylated polyhydroxy aromatic
US5558683A (en) * 1995-03-20 1996-09-24 Ethyl Corporation Mannich base derivatives, and the production and uses thereof
US5512067A (en) * 1995-05-22 1996-04-30 Ethyl Corporation Asymmetrical mannich base derivatives and the production and uses thereof
EP0744458A2 (en) * 1995-05-22 1996-11-27 Ethyl Corporation Asymmetrical Mannich base derivatives, and the production and uses thereof
EP0744458A3 (en) * 1995-05-22 1996-12-18 Ethyl Corporation Asymmetrical Mannich base derivatives, and the production and uses thereof
WO2000008082A1 (en) * 1998-08-03 2000-02-17 Cognis Corporation Epoxy curing agent of phenol-aldehyde reacted with polyamine
US6420496B1 (en) 1998-08-03 2002-07-16 Cognis Corporation Reaction product of phenol-aldehyde with polyamine(-epoxy adduct) and proton donor
US20040176502A1 (en) * 2003-03-04 2004-09-09 Raymond William R. Mannich based adducts as water based epoxy curing agents with fast cure capabilities for green concrete application
US6916505B2 (en) 2003-03-04 2005-07-12 Air Products And Chemicals, Inc. Mannich based adducts as water based epoxy curing agents with fast cure capabilities for green concrete application
CN103201306A (en) * 2010-11-11 2013-07-10 Sika技术股份公司 Condensation products of aminofunctional polymers
US20130225723A1 (en) * 2010-11-11 2013-08-29 Sika Technology Ag Condensation products of amino-functional polymers
US9157015B2 (en) * 2010-11-11 2015-10-13 Sika Technology Ag Condensation products of amino-functional polymers
US20160016888A1 (en) * 2010-11-11 2016-01-21 Sika Technology Ag Condensation products of amino-functional polymers
CN103201306B (en) * 2010-11-11 2016-11-02 Sika技术股份公司 The condensation product that amino functional polymers is constituted
US9586889B2 (en) * 2010-11-11 2017-03-07 Sika Technology Ag Condensation products of amino-functional polymers
GB2601363A (en) * 2020-11-27 2022-06-01 Jones Paul Polymeric Mannich base, preparation methods and use as an epoxy resin curative
GB2601363B (en) * 2020-11-27 2023-05-31 Jones Paul Polymeric Mannich base, preparation methods and use as an epoxy resin curative

Also Published As

Publication number Publication date
CA2054573A1 (en) 1992-05-20

Similar Documents

Publication Publication Date Title
JP6795604B2 (en) Hardener for low emission epoxy resin compositions
CA1111070A (en) N-alkyl polyamines and curing of epoxy resins therewith
US4115361A (en) Polyether urea epoxy additives
US4115360A (en) Polyether urea epoxy additives
US4766186A (en) Epoxy adhesive
US4581422A (en) Epoxy resin composition containing a curing agent which is a reaction product of cyanoguanidine, formaldehyde and an amine
CA1161588A (en) Solvent resistant epoxy coatings
US5098986A (en) Paired alkyl phenol Mannich condensates
US4178426A (en) Epoxy resin compositions
US4436891A (en) Modified polyoxyalkylenepolyamine curing agents for epoxy resins
US5025100A (en) Liquid amine terminated derivatives of diglycidyl ethers
AU2022320855A1 (en) Amine hardener with high content in renewable carbon
US4146700A (en) Diamides of polyoxyalkylenepolyamine-urea condensates as epoxy resin additives
US4195152A (en) N-Alkyl polyamines and curing of epoxy resins therewith
US4147857A (en) Epoxy cure with polyamine-polyether succinimide systems
US5120817A (en) Epoxy resin compositions
US5681907A (en) Fast cure amines for ambient and subambient cure of epoxy resins comprising methylamine adducts
US4011281A (en) Polyether thiourea epoxy curing agents
US4714750A (en) Synthesis of products from polyoxyalkylene amines and 2,6-di-t-butylphenol for use as epoxy accelerators and curing agents
US4264758A (en) Novel epoxy curing system
US5101060A (en) Paired Mannich condensates of alkyl phenols
US4187367A (en) Epoxy resins with improved adhesion and peel strength
US4116938A (en) Polyether diureide epoxy additives
US4581423A (en) Epoxy resin composition containing a curing agent which is a reaction product of hydantoins, formaldehyde and an amine
EP0487188A1 (en) Alkyl phenol Mannich condensates

Legal Events

Date Code Title Description
AS Assignment

Owner name: TEXACO CHEMICAL COMPANY, 2000 WESTCHESTER AVE., WH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:SPERANZA, GEORGE P.;LIN, JIANG-JEN;REEL/FRAME:005526/0278;SIGNING DATES FROM 19901030 TO 19901101

AS Assignment

Owner name: UNITED STATES TRUST COMPANY OF NEW YORK (AS COLL

Free format text: SECURITY INTEREST;ASSIGNOR:HUNTSMAN CORPORATION (FORMERLY TEXACO CHEMICAL COMPANY);REEL/FRAME:006994/0001

Effective date: 19940421

AS Assignment

Owner name: TEXACO INC., NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:HUNTSMAN CORPORATION ( FORMERLY TEXACO CHEMICAL COMPANY );REEL/FRAME:006993/0014

Effective date: 19940421

AS Assignment

Owner name: HUNTSMAN CORPORATION, UTAH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TEXACO CHEMICAL COMPANY;REEL/FRAME:007064/0807

Effective date: 19940421

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 19960327

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362