US5078978A - Pyridine-containing alkoxysilanes bonded to inorganic supports and processes of using the same for removing and concentrating desired ions from solutions - Google Patents

Pyridine-containing alkoxysilanes bonded to inorganic supports and processes of using the same for removing and concentrating desired ions from solutions Download PDF

Info

Publication number
US5078978A
US5078978A US07/432,199 US43219989A US5078978A US 5078978 A US5078978 A US 5078978A US 43219989 A US43219989 A US 43219989A US 5078978 A US5078978 A US 5078978A
Authority
US
United States
Prior art keywords
metal ions
pyridine
compound
solution
heavy metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/432,199
Inventor
Bryon J. Tarbet
Jerald S. Bradshaw
Krzysztof E. Krakowiak
Reed M. Izatt
Ronald L. Bruening
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brigham Young University
Original Assignee
Brigham Young University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brigham Young University filed Critical Brigham Young University
Assigned to BRIGHAM YOUNG UNIVERSITY reassignment BRIGHAM YOUNG UNIVERSITY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: BRADSHAW, JERALD S., BRUENING, RONALD L., IZATT, REED M., KRAKOWIAK, KRZYSZTOF E., TARBET, BRYON J.
Priority to US07/432,199 priority Critical patent/US5078978A/en
Priority to CA002029021A priority patent/CA2029021C/en
Priority to AU65718/90A priority patent/AU640961B2/en
Priority to DE69006464T priority patent/DE69006464T2/en
Priority to JP2297377A priority patent/JP2977264B2/en
Priority to EP90121152A priority patent/EP0431324B1/en
Priority to ES90121152T priority patent/ES2062260T3/en
Priority to ZA908885A priority patent/ZA908885B/en
Publication of US5078978A publication Critical patent/US5078978A/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J45/00Ion-exchange in which a complex or a chelate is formed; Use of material as complex or chelate forming ion-exchangers; Treatment of material for improving the complex or chelate forming ion-exchange properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3092Packing of a container, e.g. packing a cartridge or column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3217Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3217Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
    • B01J20/3219Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond involving a particular spacer or linking group, e.g. for attaching an active group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3257Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3257Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such
    • B01J20/3259Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such comprising at least two different types of heteroatoms selected from nitrogen, oxygen or sulfur with at least one silicon atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3257Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such
    • B01J20/3263Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such comprising a cyclic structure containing at least one of the heteroatoms nitrogen, oxygen or sulfur, e.g. an heterocyclic or heteroaromatic structure
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/12Organo silicon halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/58Use in a single column
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/902Materials removed
    • Y10S210/911Cumulative poison
    • Y10S210/912Heavy metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/902Materials removed
    • Y10S210/911Cumulative poison
    • Y10S210/912Heavy metal
    • Y10S210/913Chromium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/902Materials removed
    • Y10S210/911Cumulative poison
    • Y10S210/912Heavy metal
    • Y10S210/914Mercury

Definitions

  • This invention relates to intermediate pyridine containing hydrocarbons covalently bonded to alkoxysilanes, the covalent bonding of such intermediates to inorganic solid supports and to a process for removing and concentrating certain desired ions, from solutions wherein such ions may be admixed with other ions which may be present in much higher concentrations by the use of such pyridine-alkoxysilane-solid supported materials.
  • this invention relates to a process for removing such ions from an admixture with others in solution by forming a complex of the desired ions with compounds composed of a pyridine-alkoxysilane moiety covalently bonded to an inorganic matrix by flowing such solutions through a column packed with such pyridine-alkoxysilane-solid supported compounds and then breaking the complex of the desired ion from the compounds to which such ion has become attached by flowing a receiving liquid in much smaller volume than the volume of solution passed through the column to remove and concentrate the desired ions in solution in the receiving liquid.
  • the concentrated ions thus removed may then be recovered by known methods.
  • pyridine containing hydrocarbon ligands present as solutes in a solvent such as water are characterized by their ability to selectivity form strong bonds with many transition metal cations such as Mn 2+ , Ni 2+ , Cu 2+ , Cd 2+ , and others or groups of these ions present as solutes in the same solvent, even in the presence of relatively large amounts of H + , and other common cations such as Na + , K + , Mg 2+ , Ca 2+ , and Fe 3+ , as described by Smith et al., CRITICAL STABILITY CONSTANTS, Volumes 2, 5, 6, Plenum Press, New York, 1975, 1982, 1989.
  • the intermediate compounds of the present invention comprise suitable pyridine containing ligands which are covalently bonded through a spacer grouping to a silicon atom and are represented by the following Formula 1: ##STR1##
  • Spacer is a grouping having from 1 to 10 carbon atoms and which is of a functional nature that it is sufficiently hydrophilic to function in an aqueous environment and will separate the pyridine ligand from the solid support surface to maximize the interaction between the ligand and desired ion being separated and is preferably a member selected from the group consisting of lower alkyl, aryl, glycidyl and alkylamino.
  • A is a member selected from the group consisting of N, NH, S and O.
  • B, D, G, and L are each members selected from the group consisting of NR x , 2-pyridyl or 2-substituted pyridyl with x being an integer of 1 or 2 depending upon whether NR x is in intermediate part of a chain with x being 1 or forms an end grouping with x being 2.
  • the letters a, c, g and h represent integers ranging from 1 to 5; e and j are each integers ranging from 0 to 5; and k is an integer of 0 or 1 with the proviso that k must be 0 when A is NH, S or 0 and k must be 1 when A is N.
  • R is a member selected from the group consisting of H, lower alkyl, substituted lower alkyl, pyridyl or substituted pyridyl.
  • substituted alkyl or substituted pyridyl is meant alkyl or pyridyl groups containing substituents such as halogen, amino, alkyl amino and the like which do not interfere with the ability of the compound to function according to the invention.
  • At least one of B or D and at least one of G or L must be a 2-pyridyl or substituted 2 -pyridyl group.
  • pyridyl or pyridine is meant a six membered heterocyclic ring containing one nitrogen atom.
  • fused ring structures such as, quinolines, pyridopyridines, phenanthrolines (diazaphenanthrenes) such as 1,10-phenanthroline (4,5-diazaphenanthrene) and joined ring structures such as bipyridines, terpyridines, etc. are within the scope of this definition as pyridine analogs.
  • X, Y and Z are each a member selected from the group consisting of Cl, Br, I, alkyl, alkoxy, substituted alkyl or substituted alkoxy.
  • X, Y and Z are functionally classified as leaving groups, i.e. groups attached to the silicon atom which, when reacted with an O-solid hydrophilic support material, may leave or be replaced by the O-solid support.
  • Solid support is a member selected from the group consisting of silica, zirconia, titania, alumina, nickel oxide or other hydrophilic inorganic supports and mixtures thereof.
  • Alkyl or alkoxy means a 1-6 carbon member alkyl or alkoxy group which may be substituted or unsubstituted, straight or branched chain. By substituted is meant substituted by groups such as Cl, Br, I, NO 2 and the like.
  • the pyridine ligand covalently bonded to solid supports as shown in Formula 2 are characterized by high selectivity for and removal of desired metal ions or groups of desired metal ions, such as transition metal ions, present at low concentrations from source solutions containing a mixture of these desired metal ions with the ions one does not desire to remove which may be present in much greater concentrations in the source solution including hydrogen ions.
  • the separation is effected in a separation device such as a column through which the source solution is flowed.
  • the process of selectively removing and concentrating the desired metal ions is characterized by the ability to selectively and quantitatively complex the desired metal ions to the pyridine ligand portion of the pyridine containing solid support system, from a large volume of solution, even though the desired metal ions may be present at low concentrations.
  • the desired ions thus separated are subsequently recovered from the separation column by flowing through it a small volume of a receiving phase which contains a solubilized reagent which need not be selective, but which will quantitatively strip the desired ions from the pyridine ligand containing solid support matrix.
  • the recovery of the desired metal ions from the receiving phase is easily accomplished by known procedures.
  • the invention also includes a process for covalently binding the pyridine ligand moiety to a silicon containing spacer moiety to form the intermediate compounds of Formula 1. Additionally, the invention includes a process for further reacting the compounds cf Formula 1 with an inorganic solid support to form the compounds of Formula 2.
  • present invention is drawn to novel pyridine-containing hydrocarbon ligands covalently bound through a spacer to a silicon moiety to form novel intermediate compounds of Formula 1.
  • the invention further is drawn to the covalent bonding of these novel intermediates to solid support materials to form the compounds of Formula 2.
  • the invention is also drawn to the concentration and removal of certain desired metal ions, such as transition metal ions, from other metal ions in water supplies and waste solutions such as from emulsions on photographic and x-ray films.
  • the process of the invention is particularly adaptable to recovery of metal ions from solutions containing large amounts of hydrogen ions. Such solutions from which such ions are to be concentrated and/or recovered are referred to herein as "source solutions". In many instances the concentration of desired ions in the source solutions will be much less than the concentration of other metal ions from which they are to be separated.
  • the concentration of desired ions is accomplished by forming a complex of the desired ions with a pyridine ligand solid support compound shown in Formula 2 and flowing a source solution containing the desired ions through a column packed with a pyridine ligand-solid support compound to attract and bind the desired metal ions to the pyridine ligand portion of such compound and subsequently breaking desired cation bound-pyridine ligand compound-complex by flowing a receiving liquid in much smaller volume than the volume of source solution passed through the column to remove and concentrate the desired ions in the receiving liquid solution.
  • the intermediate pyridine-containing ligands bound to a silicon through a spacer grouping as represented by Formula 1 may be prepared by reacting a silane-spacer compound with a pyridine ligand compound as follows: ##STR3## wherein Q and A are reactive groups such as epoxy and amino respectively which will react with each other allowing the formation of the compound of Formula 1 and wherein all other symbols have the meanings given above.
  • Q is epoxy
  • the epoxy group reacts with A in such a manner that Q becomes part of the spacer to form a linkage --CH(OH)CH 2 --A ⁇ .
  • the compounds prepared in Examples 1-3 above can be further reacted with a solid support material to provide compounds of Formula 2 by replacing one or more of X, Y and Z with an O-solid support.
  • a solid support material to provide compounds of Formula 2 by replacing one or more of X, Y and Z with an O-solid support.
  • This is accomplished by placing a compound represented by Formula 1 dissolved in a suitable solvent such as toluene in a suitable vessel and adding an appropriate amount of O-solid support material. This mixture is stirred and heated at a temperature of up to 100 degrees C. for a time sufficient to allow covalent bonding between the O-solid support and the silicon atom to take place. Usually from about one to 24 hours is sufficient.
  • suitable O-solid support materials include silica, zirconia, titania, alumina, nickel oxide or other hydrophilic inorganic supports and mixtures thereof.
  • X' and Y' are O-silica; Z is methoxy; Spacer is glycidoxypropyl; A is N; a, f and k are each 1; B and G are each 2-pyridyl; and e and j are 0.
  • the product may therefore be represented by the formula: ##STR7##
  • X' and Y' are O-silica; Z is methoxy; Spacer is glycidoxypropyl; A is N; a, c, f and k are each 1; e is 2; B is 2,6-pyridyl; D is NH (first occurrence) and 2-pyridyl (second occurrence); G is 2-pyridyl; and j is 0.
  • the product may therefore be represented by the formula: ##STR8##
  • X' and Y' are O-silica; Z is methoxy; Spacer is glycidoxypropyl; A is N; e is 2; h, j and k are each 1; B and G are each NH; a, f, are each 2; c is 2 (first occurrence) and 1 (second occurrence); D is NH (first occurrence and 2-pyridyl (second occurrence); and L is 2-pyridyl.
  • the product may therefore be represented by the formula: ##STR9##
  • the process of selectivity and quantitatively concentrating and removing a desired ion or group of desired ions present at low concentrations from a plurality of other undesired ions in a multiple ion source solution in which the undesired ions may be present at much higher concentrations comprises bringing the multiple ion containing source solution into contact with a pyridine-ligand solid support compound shown in Formula 2 which causes the desired metal ion(s) to complex with the pyridine ligand portion of the compound and subsequently breaking or stripping the desired ion from the complex with a receiving solution which forms a stronger complex with the desired ions than does the pyridine ligand.
  • the receiving or recovery solution contains only the desired metal ions in a concentrated form.
  • the pyridine-ligand solid support compound will be contained in a column wherein the source and receiving solutions can flow through by gravity. If desired, the flow rate of these solutions can be increased by applying pressure (with a pump) on the top of the column or applying a vacuum in the receiving vessel.
  • the pyridine-ligand solid support functions to attract the desired metal cations according to Formula 3:
  • Formula 3 is an abbreviated form of Formula 2 wherein SS stands for solid support, n is an integer of 1-3 and L stands for a pyridine containing ligand. DI stands for desired ion being removed.
  • the preferred embodiment disclosed herein involves carrying out the process by bringing a large volume of the source multiple ion solution into contact with a pyridine ligand-solid support compound of Formula 2 in a separation column through which the mixture is first flowed to complex the desired metal ions (DI) with the pyridine ligand-solid support compound as indicated by Formula 3 above, followed by the flow through the column of a smaller volume of a receiving liquid, such as aqueous solutions of Na 2 S 2 O 3 , NH 3 , NaI, EDTA and others which form a stronger complex with the desired metal ion than does the pyridine containing ligand bound to the solid support.
  • a receiving liquid such as aqueous solutions of Na 2 S 2 O 3 , NH 3 , NaI, EDTA and others which form a stronger complex with the desired metal ion than does the pyridine containing ligand bound to the solid support.
  • the desired metal ions are carried out of the column in a concentrated form in the receiving solution.
  • the degree or amount of concentration will obviously depend upon the concentration of desired metal ions in the source solution and the volume of source solution to be treated.
  • the specific receiving liquid being utilized will also be a factor. Generally speaking the concentration of desired transition metal ions in the receiving liquid will be from 20 to 1,000,000 times greater than in the source solution.
  • Other equivalent apparatus may be used instead of a column, e.g., a slurry which is filtered, washed with a receiving liquid to break the complex and recover the desire metal ion(s). The concentrated desired metal ions are then recovered from the receiving phase by known procedures.
  • Illustrative of desired transition metal ions which have strong affinities for pyridine containing ligands bound to solid supports are Cu 2+ , Ni 2+ , Zn 2+ , Mn 2+ , Co 2+ , Cd 2+ , Hg 2+ , Pd 2+ , Rh 3+ , Co 3+ , Fe 2+ , Ir 3+ , Pt 2+ , Pt 4+ and Ru 3+ .
  • This listing of preferred cations is not comprehensive and is intended only to show the types of preferred metal ions which may be bound to pyridine containing ligands attached to solid supports in the manner described above.
  • the following Examples demonstrate how the pyridine containing ligand bound to a solid support compound of Formula 2 may be used to concentrate and remove desired ions.
  • the pyridine ligand containing solid support compound is placed in a column.
  • An aqueous source solution containing the desired metal ion or ions, in a mixture of other metal ions which may be in a much greater concentration, is passed through the column.
  • the flow rate for the solution may be increased by applying pressure with a pump on the top of the column or applying a vacuum in the receiving vessel.
  • a much smaller volume of a recovery solution i.e. an aqueous solution, which has a stronger affinity for the desired metal ions than does the pyridine containing ligand, is passed through the column.
  • This receiving solution contains only the desired metal ions in a concentrate form for subsequent recovery.
  • Suitable receiving solutions can be selected from the group consisting of Na 2 S 2 O 3 , thiourea, HI, HCl, NaI, Na 4 EDTA, Na 3 NTA, NH 3 , NH 4 OH, ethylenediamine and mixtures thereof.
  • the preceding listing is exemplary and other receiving solutions may also be utilized, the only limitation being their ability to function to remove the desired metal ions from the pyridine ligands.
  • Example 7 2 grams of the silica gel-bound tripyridyldiamine of Example 5 were placed in a column as described in Example 7. A 250 ml solution of 40 ppm Mn 2+ present as the Cl - salt in 0.1M Na-acetate was passed through the column using a vacuum pump at 100 torr to increase the flow rate. After washing the column with distilled water, a 10 ml aqueous recovery solution of 3M HCl was passed through the column. Atomic absorption analysis of the original solution after passing through the column and the recovery solution indicated that the Mn +2 was removed to a 1.6 ppm level and all of the Mn +2 removed was recovered in the recovery solution within experimental error. Furthermore, the Na + in the recovery solution was below detection.
  • Example 7 2 grams of the silica gel-bound dipyridyltetraamine of Example 6 were placed in a column as described in Example 7.
  • Atomic absorption spectroscopic analysis of the solution after passing through the column revealed that the Pd 2+ level was below detection and the Ir 3+ and Rh 3+ levels were at 0.5 ppm each.
  • the inorganic solid support bound pyridine-containing hydrocarbon ligands of Formula 2 of the present invention provide a material useful for the separation and concentration of the transition metal cations from mixtures of those cations with other metal cations and H + .
  • the transition metals can then be recovered from the concentrated recovery solution by standard techniques known in the art. Similar examples have also been successfully established for many other transition metal ions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Removal Of Specific Substances (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

A method is disclosed for the quantitative removal and concentration of desired transition metal ions from a source solution which may contain larger concentrations of other metal and H+ ions. The method comprises bringing the source solution into contact with a compound comprising a pyridine containing ligand covalently bonded through an organic spacer silicon grouping to a solid inorganic support. The pyridine portion(s) of the compound has an affinity for the desired metal ions to form a complex thereby removing the desired metal ions from the source solution. The desired metal ions are removed from the compound by contacting the compound with a much smaller volume of a receiving solution having a greater affinity for the desired metal ions than does the pyridine ligand portion of the compound. The concentrated metal ions thus removed may be recovered by known methods. The process is useful in removing unwanted metal ions from water streams and in the treatment of waste streams such as those containing metal ions from emulsions found in the treatment of photographic and x-ray films. The invention is also drawn to novel intermediates comprising pyridine containing ligands covalently bonded through a spacer grouping to a silane and to the final compounds formed by reacting the intermediates with a hydrophilic inorganic solid support material.

Description

FIELD OF THE INVENTION
This invention relates to intermediate pyridine containing hydrocarbons covalently bonded to alkoxysilanes, the covalent bonding of such intermediates to inorganic solid supports and to a process for removing and concentrating certain desired ions, from solutions wherein such ions may be admixed with other ions which may be present in much higher concentrations by the use of such pyridine-alkoxysilane-solid supported materials. More particularly, this invention relates to a process for removing such ions from an admixture with others in solution by forming a complex of the desired ions with compounds composed of a pyridine-alkoxysilane moiety covalently bonded to an inorganic matrix by flowing such solutions through a column packed with such pyridine-alkoxysilane-solid supported compounds and then breaking the complex of the desired ion from the compounds to which such ion has become attached by flowing a receiving liquid in much smaller volume than the volume of solution passed through the column to remove and concentrate the desired ions in solution in the receiving liquid. The concentrated ions thus removed may then be recovered by known methods.
BACKGROUND OF THE INVENTION
Effective methods for the recovery and/or separation of particular ions such as certain transition metal ions, of which MN2+, Ni2+, Cu2+ and Cd2+ are illustrative, from other ions such as H+, Na+, K+, Mg2+, Ca2+, and Fe3+, and, the recovery and/or separation of metal ions, such as the transition metal ions, from other metal ions in water supplies, waste solutions, e.g., from emulsions on photographic and X-ray film, particularly those which contain large amounts of H+, represent a real need in modern technology. These ions are often present at low concentrations in solutions containing other ions at much greater concentrations. Hence, there is a real need for a process to selectively concentrate and recover these ions.
It is known that pyridine containing hydrocarbon ligands present as solutes in a solvent such as water, are characterized by their ability to selectivity form strong bonds with many transition metal cations such as Mn2+, Ni2+, Cu2+, Cd2+, and others or groups of these ions present as solutes in the same solvent, even in the presence of relatively large amounts of H+, and other common cations such as Na+, K+, Mg2+, Ca2+, and Fe3+, as described by Smith et al., CRITICAL STABILITY CONSTANTS, Volumes 2, 5, 6, Plenum Press, New York, 1975, 1982, 1989. However, researchers have not previously been able to incorporate pyridine-containing hydrocarbon ligands into separation systems where the behavior of the pyridine-containing ligands in the separation systems, in comparison to that of the pyridine-containing ligand as a solute, is unchanged and the pyridine-containing ligand will remain in the separation system covalently bonded to an inorganic solid support such as silica gel. Articles such as those entitled SILANE COMPOUNDS FOR SILYLATING SURFACES by E. P. Plueddemann, in "Silanes, Surfaces and Interfaces Symposium, Snowmass, 1985," Ed. by D. E. Leyden, Gordon and Breach, Publishers, 1986, pp. 1-25 and SILANE COUPLING AGENTS by E. P. Plueddemann, Plenum Press, 1982, pp. 1-235 list many different types of organic materials which have been attached to silane compounds and discusses some of their properties. The preparation and uses of pyridine-containing hydrocarbons attached to silane or silica have not been disclosed in the above mentioned articles or in any existing patents. Representative of patents describing the attachment of pyridine-containing hydrocarbons to hydrophobic polymers are Hancock et al., UK Patent 2,071,120, issued Sept. 16 1981; Jones et al., U.S. Pat. No. 3,998,924, issued Dec. 21, 1976; Grinstead, U.S. Pat. No. 4,451,375, issued May 29, 1984; Grinstead et al., U.S. Pat. 4,031,038, issued June 21, 1977; and Belgian Patent 887,872, published July 1, 1981. However, the materials described in these patents have ion exchange properties which alter selectivity as well as reduced and altered pyridine complexing properties due to the hydrophobic support. Thus, the unique complexing properties of certain pyridine containing hydrocarbons and the ability to attach these pyridine-containing complexing agents to inorganic solid supports such as sand or silica gel without reducing their ability to complex certain metal ions has heretofore been unknown but has been found to be of utmost importance in the industrial use of the pyridine-containing hydrocarbon ligands. That is the subject matter of the present invention.
SUMMARY OF THE INVENTION
The intermediate compounds of the present invention comprise suitable pyridine containing ligands which are covalently bonded through a spacer grouping to a silicon atom and are represented by the following Formula 1: ##STR1##
wherein Spacer is a grouping having from 1 to 10 carbon atoms and which is of a functional nature that it is sufficiently hydrophilic to function in an aqueous environment and will separate the pyridine ligand from the solid support surface to maximize the interaction between the ligand and desired ion being separated and is preferably a member selected from the group consisting of lower alkyl, aryl, glycidyl and alkylamino. A is a member selected from the group consisting of N, NH, S and O. B, D, G, and L are each members selected from the group consisting of NRx, 2-pyridyl or 2-substituted pyridyl with x being an integer of 1 or 2 depending upon whether NRx is in intermediate part of a chain with x being 1 or forms an end grouping with x being 2. The letters a, c, g and h represent integers ranging from 1 to 5; e and j are each integers ranging from 0 to 5; and k is an integer of 0 or 1 with the proviso that k must be 0 when A is NH, S or 0 and k must be 1 when A is N. R is a member selected from the group consisting of H, lower alkyl, substituted lower alkyl, pyridyl or substituted pyridyl. By substituted alkyl or substituted pyridyl is meant alkyl or pyridyl groups containing substituents such as halogen, amino, alkyl amino and the like which do not interfere with the ability of the compound to function according to the invention. At least one of B or D and at least one of G or L must be a 2-pyridyl or substituted 2 -pyridyl group. By pyridyl or pyridine is meant a six membered heterocyclic ring containing one nitrogen atom. However, fused ring structures such as, quinolines, pyridopyridines, phenanthrolines (diazaphenanthrenes) such as 1,10-phenanthroline (4,5-diazaphenanthrene) and joined ring structures such as bipyridines, terpyridines, etc. are within the scope of this definition as pyridine analogs. X, Y and Z are each a member selected from the group consisting of Cl, Br, I, alkyl, alkoxy, substituted alkyl or substituted alkoxy. X, Y and Z are functionally classified as leaving groups, i.e. groups attached to the silicon atom which, when reacted with an O-solid hydrophilic support material, may leave or be replaced by the O-solid support.
The above pyridine and silicon containing intermediates are covalently bonded to an inorganic matrix to produce a compound of Formula 2: ##STR2## wherein all symbols have the meanings given above except X', Y' and Z' which are each members selected from the group consisting of Cl, Br, I, alkyl, alkoxy, substituted alkyl or substituted alkoxy and O-solid support with the provisio that at least one of X', Y' and Z' must be O-solid support. When X', Y' and Z' are other than O-solid support they are functionally classified as leaving groups, as above defined, which have not been reacted with the O-solid hydrophilic support material. Hence, they are functional groups left over after reacting a silicon containing spacer group with the solid hydrophilic support and have no direct function in the interaction between the cation-ligand-matrix and the desired ion and the pyridine ligand-attached to the solid support. Solid support is a member selected from the group consisting of silica, zirconia, titania, alumina, nickel oxide or other hydrophilic inorganic supports and mixtures thereof. Alkyl or alkoxy means a 1-6 carbon member alkyl or alkoxy group which may be substituted or unsubstituted, straight or branched chain. By substituted is meant substituted by groups such as Cl, Br, I, NO2 and the like.
Typical silicon containing spacer groups for reacting with a pyridine ligand material to form the intermediate compounds of Formula 1 are as follows: dimethyl(triethoxysilylpropyl)malonate; 3-mercaptopropyltrimethoxysilane; 3-aminopropyltrimethoxysilane; N-[(3-trimethoxysilyl)propyl]ethylenediaminetriacetic acid p-(chloromethyl)phenyltrimethoxysilane; vinyltriethoxysilane; 3-bromopropyltriethoxysilane; 3-glycidoxypropyltrimethoxysilane and the like.
The pyridine ligand covalently bonded to solid supports as shown in Formula 2 are characterized by high selectivity for and removal of desired metal ions or groups of desired metal ions, such as transition metal ions, present at low concentrations from source solutions containing a mixture of these desired metal ions with the ions one does not desire to remove which may be present in much greater concentrations in the source solution including hydrogen ions. The separation is effected in a separation device such as a column through which the source solution is flowed. The process of selectively removing and concentrating the desired metal ions is characterized by the ability to selectively and quantitatively complex the desired metal ions to the pyridine ligand portion of the pyridine containing solid support system, from a large volume of solution, even though the desired metal ions may be present at low concentrations. The desired ions thus separated are subsequently recovered from the separation column by flowing through it a small volume of a receiving phase which contains a solubilized reagent which need not be selective, but which will quantitatively strip the desired ions from the pyridine ligand containing solid support matrix. The recovery of the desired metal ions from the receiving phase is easily accomplished by known procedures.
The invention also includes a process for covalently binding the pyridine ligand moiety to a silicon containing spacer moiety to form the intermediate compounds of Formula 1. Additionally, the invention includes a process for further reacting the compounds cf Formula 1 with an inorganic solid support to form the compounds of Formula 2.
DETAILED DESCRIPTION OF THE INVENTION
As summarized above, present invention is drawn to novel pyridine-containing hydrocarbon ligands covalently bound through a spacer to a silicon moiety to form novel intermediate compounds of Formula 1. The invention further is drawn to the covalent bonding of these novel intermediates to solid support materials to form the compounds of Formula 2. The invention is also drawn to the concentration and removal of certain desired metal ions, such as transition metal ions, from other metal ions in water supplies and waste solutions such as from emulsions on photographic and x-ray films. The process of the invention is particularly adaptable to recovery of metal ions from solutions containing large amounts of hydrogen ions. Such solutions from which such ions are to be concentrated and/or recovered are referred to herein as "source solutions". In many instances the concentration of desired ions in the source solutions will be much less than the concentration of other metal ions from which they are to be separated.
The concentration of desired ions is accomplished by forming a complex of the desired ions with a pyridine ligand solid support compound shown in Formula 2 and flowing a source solution containing the desired ions through a column packed with a pyridine ligand-solid support compound to attract and bind the desired metal ions to the pyridine ligand portion of such compound and subsequently breaking desired cation bound-pyridine ligand compound-complex by flowing a receiving liquid in much smaller volume than the volume of source solution passed through the column to remove and concentrate the desired ions in the receiving liquid solution. The receiving liquid or recovery solution forms a stronger complex with the desired transition metal ions than does the pryidine ligand and thus the desired metal ions are quantitatively stripped from the pyridine ligand containing solid support compound in concentrated form in the receiving solution. The recovery of desired metal ions from the receiving liquid are accomplished by known methods.
The intermediate pyridine-containing ligands bound to a silicon through a spacer grouping as represented by Formula 1 may be prepared by reacting a silane-spacer compound with a pyridine ligand compound as follows: ##STR3## wherein Q and A are reactive groups such as epoxy and amino respectively which will react with each other allowing the formation of the compound of Formula 1 and wherein all other symbols have the meanings given above. When Q is epoxy, the epoxy group reacts with A in such a manner that Q becomes part of the spacer to form a linkage --CH(OH)CH2 --A═.
EXAMPLE 1
A pryidine containing ligand was prepared by mixing pyridine-2-carboxaldehyde (0.5 g, 5 mmol) with 2-(aminomethyl)pyridine at 0° C. The mixture was stirred for onehalf hour. Then a mixture of sodium borohydride and methanol (1 eq) was added and the mixture was refluxed for 24 hours. The complex was decomposed with dilute HCl, the solvents were removed and the product was extracted using sodium carbonate-water and chloroform. The chloroform was evaporated and the resulting product was reacted with 3-glycidoxypropyltrimethoxysilane (1 eq) in toluene at 50° C. for 24 hours, thereby producing a ligand of the formula: ##STR4## which corresponds to Formula 1 wherein X, Y and Z are each methoxy; Spacer is glycidoxypropyl; A is N; a, f and k are each 1; B and G are each 2-pyridyl; and e and j are 0.
EXAMPLE 2
In this example the process was repeated except the starting materials we re 2,6-pyridinedicarboxaldehyde and 2-(aminomethyl)pyridine in a 1:2 molar ratio. The reduced product was again allowed to react with 3-glycidoxypropyltrimethoxysilane in toluene to produce a compound of the formula: ##STR5## which corresponds to Formula 1 wherein X, Y and Z are each methoxy; Spacer is glycidoxypropyl; A is N; a, c, f and k are each 1; e is 2; B is 2,6-pyridyl, D is NH (first occurance) and 2-pyridyl (second occurrance); G is 2-pyridyl; and j is 0.
EXAMPLE 3
In this example the process was repeated except the starting materials were pyridine-2-carboxaldehyde and triethylenetetramine in a 2:1 molar ratio at 0° C. After reduction as above, the product is reacted with 3-glycidoxypropyltrimethoxysilane in toluene to produce a compound of the formula: ##STR6## which corresponds to Formula 1 wherein X, Y and Z are each methoxy; Spacer is glycidoxypropyl; A is N; e is 2; h, j and k are each 1; B and G are each NH; a, f are each 2; c is 2 (first occurrence) and 1 (second occurrence); D is NH (first occurrence) and 2-pyridyl (second occurrence); and L is 2-pyridyl.
The compounds prepared in Examples 1-3 above can be further reacted with a solid support material to provide compounds of Formula 2 by replacing one or more of X, Y and Z with an O-solid support. This is accomplished by placing a compound represented by Formula 1 dissolved in a suitable solvent such as toluene in a suitable vessel and adding an appropriate amount of O-solid support material. This mixture is stirred and heated at a temperature of up to 100 degrees C. for a time sufficient to allow covalent bonding between the O-solid support and the silicon atom to take place. Usually from about one to 24 hours is sufficient. As previously stated suitable O-solid support materials include silica, zirconia, titania, alumina, nickel oxide or other hydrophilic inorganic supports and mixtures thereof.
EXAMPLE 4
To a flask outfitted with a mechanical stirrer and containing 1.75 grams of the pyridine-ligand silane of Example 1 contained in 25 mls of toluene was added 10 grams of silica gel. The flask was heated to a temperature of between about 55° and 95° C. and stirred overnight. The final product was collected by filtration and dried. This product corresponds to Formula 2 wherein X', Y' and Z' are either methoxy or O-silica with at least one, and on the average two, of the three being O-silica. Hence, on the average, X' and Y' are O-silica; Z is methoxy; Spacer is glycidoxypropyl; A is N; a, f and k are each 1; B and G are each 2-pyridyl; and e and j are 0. The product may therefore be represented by the formula: ##STR7##
EXAMPLE 5
To a flask outfitted with a mechanical stirrer and containing 2.25 grams of the pyridine-ligand silane of Example 2 contained in 25 mls of toluene was added 10 grams of silica gel. The flask was heated to a temperature of between about 55° and 95° C. and stirred overnight. The final product was collected by filtration and dried. This product corresponds to Formula 2 wherein X', Y' and Z' are either methoxy or O-silica with at least one, and on the average two, of the three being O-silica. Hence, on the average, X' and Y' are O-silica; Z is methoxy; Spacer is glycidoxypropyl; A is N; a, c, f and k are each 1; e is 2; B is 2,6-pyridyl; D is NH (first occurrence) and 2-pyridyl (second occurrence); G is 2-pyridyl; and j is 0. The product may therefore be represented by the formula: ##STR8##
EXAMPLE 6
To a flask outfitted with a mechanical stirrer and containing 1.25 grams of the pyridine-ligand silane of Example 3 contained in 25 mls of toluene was added 10 grams of silica gel. The flask was heated to a temperature of between about 55° and 95° C. and stirred overnight. The final product was collected by filtration and dried. This product corresponds to Formula 2 wherein X', Y' and Z' are either methoxy or O-silica with at least one, and on the average two, of the three being O-silica. Hence, on the average, X' and Y' are O-silica; Z is methoxy; Spacer is glycidoxypropyl; A is N; e is 2; h, j and k are each 1; B and G are each NH; a, f, are each 2; c is 2 (first occurrence) and 1 (second occurrence); D is NH (first occurrence and 2-pyridyl (second occurrence); and L is 2-pyridyl. The product may therefore be represented by the formula: ##STR9##
The process of selectivity and quantitatively concentrating and removing a desired ion or group of desired ions present at low concentrations from a plurality of other undesired ions in a multiple ion source solution in which the undesired ions may be present at much higher concentrations comprises bringing the multiple ion containing source solution into contact with a pyridine-ligand solid support compound shown in Formula 2 which causes the desired metal ion(s) to complex with the pyridine ligand portion of the compound and subsequently breaking or stripping the desired ion from the complex with a receiving solution which forms a stronger complex with the desired ions than does the pyridine ligand. The receiving or recovery solution contains only the desired metal ions in a concentrated form. Preferably the pyridine-ligand solid support compound will be contained in a column wherein the source and receiving solutions can flow through by gravity. If desired, the flow rate of these solutions can be increased by applying pressure (with a pump) on the top of the column or applying a vacuum in the receiving vessel.
The pyridine-ligand solid support functions to attract the desired metal cations according to Formula 3:
(SS--O).sub.n --Si--Spacer--L+DI→(SS--O).sub.n --Si--Spacer--L:DI(Formula 3)
Except for DI, Formula 3 is an abbreviated form of Formula 2 wherein SS stands for solid support, n is an integer of 1-3 and L stands for a pyridine containing ligand. DI stands for desired ion being removed.
Once the desired metal ions are bound to the pyridine containing ligand, they are subsequently separated by use of a smaller volume of a receiving liquid according to Formula 4: ##STR10##
The preferred embodiment disclosed herein involves carrying out the process by bringing a large volume of the source multiple ion solution into contact with a pyridine ligand-solid support compound of Formula 2 in a separation column through which the mixture is first flowed to complex the desired metal ions (DI) with the pyridine ligand-solid support compound as indicated by Formula 3 above, followed by the flow through the column of a smaller volume of a receiving liquid, such as aqueous solutions of Na2 S2 O3, NH3, NaI, EDTA and others which form a stronger complex with the desired metal ion than does the pyridine containing ligand bound to the solid support. In this manner the desired metal ions are carried out of the column in a concentrated form in the receiving solution. The degree or amount of concentration will obviously depend upon the concentration of desired metal ions in the source solution and the volume of source solution to be treated. The specific receiving liquid being utilized will also be a factor. Generally speaking the concentration of desired transition metal ions in the receiving liquid will be from 20 to 1,000,000 times greater than in the source solution. Other equivalent apparatus may be used instead of a column, e.g., a slurry which is filtered, washed with a receiving liquid to break the complex and recover the desire metal ion(s). The concentrated desired metal ions are then recovered from the receiving phase by known procedures.
Illustrative of desired transition metal ions which have strong affinities for pyridine containing ligands bound to solid supports are Cu2+, Ni2+, Zn2+, Mn2+, Co2+, Cd2+, Hg2+, Pd2+, Rh3+, Co3+, Fe2+, Ir3+, Pt2+, Pt4+ and Ru3+. This listing of preferred cations is not comprehensive and is intended only to show the types of preferred metal ions which may be bound to pyridine containing ligands attached to solid supports in the manner described above.
Removal of Desired Molecules With Cation-Ligand-Matrix Compounds
The following Examples demonstrate how the pyridine containing ligand bound to a solid support compound of Formula 2 may be used to concentrate and remove desired ions. The pyridine ligand containing solid support compound is placed in a column. An aqueous source solution containing the desired metal ion or ions, in a mixture of other metal ions which may be in a much greater concentration, is passed through the column. The flow rate for the solution may be increased by applying pressure with a pump on the top of the column or applying a vacuum in the receiving vessel. After the source solution has passed through the column, a much smaller volume of a recovery solution i.e. an aqueous solution, which has a stronger affinity for the desired metal ions than does the pyridine containing ligand, is passed through the column. This receiving solution contains only the desired metal ions in a concentrate form for subsequent recovery. Suitable receiving solutions can be selected from the group consisting of Na2 S2 O3, thiourea, HI, HCl, NaI, Na4 EDTA, Na3 NTA, NH3, NH4 OH, ethylenediamine and mixtures thereof. The preceding listing is exemplary and other receiving solutions may also be utilized, the only limitation being their ability to function to remove the desired metal ions from the pyridine ligands.
The following examples of separations and recoveries of transition metal ions by the inorganic support-bound pyridine containing ligands which were made as described in Examples 4 through 6 are given as illustrations. These examples are illustrative only, and are not comprehensive of the many separations of metal ions that are possible using the materials of Formula 2.
EXAMPLE 7
In this example, 2 grams of the silica gel-bound dipyridylmonoamine (dipicolylamine) of Example 4 were placed in a column 1.9 cm in diameter and 2.3 cm long. A 250 ml solution of 0.001 M CuCl2 in 1M HCl and 0.1M FeCl3 was passed through the column using a vacuum pump at 100 torr to increase the flow rate. Atomic absorption spectroscopic analysis of the solution after passing through the column revealed that 98% of the Cu2+ had been removed. Another 500 mls of 0.001M CuCl2 in 1M HCl and 0.1M FeCl3 was passed through the column to load the maximum amount of Cu2+ that could possibly be loaded in this matrix. After washing the column with distilled water, a 10 ml aqueous recovery solution of 2M ethylenediamine and 1M HCl was passed through the column. An analysis of the recovery solution by atomic absorption spectroscopy showed that an amount of Cu.sup. 2+ equivalent to the moles of the bound ligand (0.2 mmoles/g) was collected and no Fe3+ could be detected.
EXAMPLE 8
In this example, 2 grams of the silica gel-bound tripyridyldiamine of Example 5 were placed in a column as described in Example 7. A 250 ml solution of 40 ppm Mn2+ present as the Cl- salt in 0.1M Na-acetate was passed through the column using a vacuum pump at 100 torr to increase the flow rate. After washing the column with distilled water, a 10 ml aqueous recovery solution of 3M HCl was passed through the column. Atomic absorption analysis of the original solution after passing through the column and the recovery solution indicated that the Mn+2 was removed to a 1.6 ppm level and all of the Mn+2 removed was recovered in the recovery solution within experimental error. Furthermore, the Na+ in the recovery solution was below detection.
EXAMPLE 9
In this example, 2 grams of the silica gel-bound dipyridyltetraamine of Example 6 were placed in a column as described in Example 7. A 250 ml solution of 10 ppm Pd2+, 10 ppm Ir3+, and 10 ppm Rh3+ in 0.1M HCl and 0.1M NaCl was passed through the column using a vacuum pump at 100 torr to increase the flow rate. Atomic absorption spectroscopic analysis of the solution after passing through the column revealed that the Pd2+ level was below detection and the Ir3+ and Rh3+ levels were at 0.5 ppm each. After washing the column with water, a 10 ml aqueous recovery solution of 2M NH4 OH and 1M HCl was passed through the column. An analysis of the recovery solution by atomic absorption spectroscopy showed that all of the Pd2+, Ir3+, and Rh3+ in the column were recovered within experimental error.
From the foregoing, it will be appreciated that the inorganic solid support bound pyridine-containing hydrocarbon ligands of Formula 2 of the present invention provide a material useful for the separation and concentration of the transition metal cations from mixtures of those cations with other metal cations and H+. The transition metals can then be recovered from the concentrated recovery solution by standard techniques known in the art. Similar examples have also been successfully established for many other transition metal ions.
Although the invention has been described and illustrated by reference to certain specific inorganic solid support-bound pyridine-containing hydrocarbon ligands of Formula 2 and processes of using them, analogs, as above defined, of these pyridine-containing hydrocarbon ligands are within the scope of the compounds and processes of the invention as defined in the following claims.

Claims (13)

We claim:
1. A method for the concentration and removal of desired heavy metal ions from a source solution which comprises
(a) bringing said source solution having a first volume into contact with a compound comprising a pyridine containing ligand covalently bonded to a solid inorganic support having the formula: ##STR11## wherein Spacer is a 1 to 10 carbon member hydrophilic grouping; A is a member selected from the group consisting of N, NH, S and O; B, D, G, and L are each members selected from the group consisting of NRx, 2-pyridyl or substituted 2-pyridyl, with x being 1 if NR is an intermediate part of a pyridine ligand and x being 2 if NR is at the terminal end of a pyridine ligand; a, c, g and h are each integers ranging from 1 to 5; e and j are each integers ranging from 0 to 5; and k is an integer of 0 or 1; with the proviso that k must be 0 when A is NH, S or O and k must be 1 when A is N; R is a member selected from the group consisting of H, lower alkyl, substituted lower alkyl, pyridyl or substituted pyridyl; with the further proviso that at least one of B or D and G or L must be 2-pyridyl or substituted 2-pyridyl and X', Y' and Z' are each a member selected from the group consisting of Cl, Br, I, alkyl, alkoxy, substituted alkyl, substituted alkoxy and O-solid support with the proviso that at least one of X', Y' and Z' must be O-solid support; said pyridine containing ligand portion of said compound having an affinity for the desired heavy metal ions to form a complex between said desired heavy metal ions and said pyridine containing ligand portion of said compound;
(b) removing said source solution from contact with said compound to which said desired heavy metal ions have been complexed; and
(c) contacting said compound having said desired heavy metal ions complexed thereto with a smaller volume of a receiving solution having a greater affinity for said desired heavy metal ions than said compound thereby breaking said complex and recovering the desired heavy metal ions in concentrated form in said smaller volume of said receiving solution.
2. A method according to claim 1 wherein said pyridine containing ligand covalently bonded solid supported compound is contained in a packed column and wherein said source solution is first flowed through said column wherein said desired heavy metal ions are removed from said source solution by the formation of a complex between said desired heavy metal ions and said pyridine containing ligand portion of said compound followed by the breaking of said complex and removal of said desired heavy metal ions from said packed column by flowing said smaller volume of said receiving solution through said packed column and recovering said receiving solution containing said desired heavy metal ions in concentrated form.
3. A method according to claim 2 wherein the O-solid support is a member selected from the group consisting of silica, zirconia, titania, alumina, nickel oxide or any other similar hydrophilic inorganic support materials.
4. A method according to claim 3 wherein Spacer is a member selected from the group consisting of lower alkyl, aryl, glycidyl and alkylamino.
5. A method according to claim 4 wherein the desired heavy metal ions are embers selected from the group consisting of Cu2+, Ni2+, Zn2+, Mn2+, Co2+, Cd2+, Hg2+, Pd2+, Rh3+, Co3+, Fe2+, Ir3+, Pt2+, Pt4+ and Ru3+.
6. A method according to claim 5 wherein the source solution additionally contains H+ ions.
7. A method according to claim 5 wherein the source solution is a solution selected from a water supply source, a waste solution containing emulsions from treatment of photographic film or a waste solution from treatment of x-ray film.
8. A method according to claim 5 wherein Spacer is glycidyl and O-solid support is O-silica.
9. A method according to claim 8 wherein the pyridine containing ligand covalently bonded to a solid inorganic support has the formula: ##STR12##
10. A method according to claim 8 wherein the pyridine containing ligand covalently bonded to a solid inorganic support has the formula: ##STR13##
11. A method according to claim 8 wherein the pyridine containing ligand covalently bonded to a solid inorganic support has the formula: ##STR14##
12. A method according to claim 3 wherein the ##STR15## portion of the compound is a reaction product of O-solid hydrophilic support material with a silicon containing spacer grouping selected from the group consisting of dimethyl(triethoxysilylpropyl)malonate; 3-mercaptopropyltrimethoxysilane; 3-aminopropyltrimethoxysilane; N-[(3-trimethoxysilyl)propyl]ethylenediaminetriacetic acid; p-(chloromethyl)phenyltrimethoxysilane; vinyltriethoxysilane; 3-bromopropyltriethoxysilane; 3-glycidoxypropyltrimethoxysilane; and combinations thereof.
13. A method according to claim 5 wherein the receiving solution is selected from the group consisting of Na2 S2 O3, thiourea, HI, HCl, NaI, Na4 EDTA, Na3 TNA, NH3, NH4 OH, ethylenediamine and mixtures thereof.
US07/432,199 1989-11-06 1989-11-06 Pyridine-containing alkoxysilanes bonded to inorganic supports and processes of using the same for removing and concentrating desired ions from solutions Expired - Lifetime US5078978A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US07/432,199 US5078978A (en) 1989-11-06 1989-11-06 Pyridine-containing alkoxysilanes bonded to inorganic supports and processes of using the same for removing and concentrating desired ions from solutions
CA002029021A CA2029021C (en) 1989-11-06 1990-10-31 Pyridine-containing alkoxysilanes bonded to inorganic supports and processes of using the same for removing and concentrating desired ions from solutions
AU65718/90A AU640961B2 (en) 1989-11-06 1990-11-01 Pyridine-containing alkoxysilanes bonded to inorganic supports and processes of using the same for removing and concentrating desired ions from solutions
JP2297377A JP2977264B2 (en) 1989-11-06 1990-11-05 Pyridine-containing alkoxysilanes bound to inorganic supports and methods of using the same to separate and concentrate desired ions from solution
DE69006464T DE69006464T2 (en) 1989-11-06 1990-11-05 Pyridine-containing alkoxysilanes bound to inorganic carriers and processes for their use for the removal and concentration of desired ions in liquids.
EP90121152A EP0431324B1 (en) 1989-11-06 1990-11-05 Pyridine-containing alkoxysilanes bonded to inorganic supports and processes of using the same for removing and concentrating desired ions from solutions
ES90121152T ES2062260T3 (en) 1989-11-06 1990-11-05 PIRIDINE-CONTAINING ALKOXYLANES JOINED INORGANIC SUPPORTS AND PROCEDURES USING THEM TO SEPARATE AND CONCENTRATE IONS IN SOLUTIONS.
ZA908885A ZA908885B (en) 1989-11-06 1990-11-06 Pyridine-containing alkoxysilanes bonded to inorganic supports and processes of using the same for removing and concentrating desired ions from solutions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/432,199 US5078978A (en) 1989-11-06 1989-11-06 Pyridine-containing alkoxysilanes bonded to inorganic supports and processes of using the same for removing and concentrating desired ions from solutions

Publications (1)

Publication Number Publication Date
US5078978A true US5078978A (en) 1992-01-07

Family

ID=23715164

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/432,199 Expired - Lifetime US5078978A (en) 1989-11-06 1989-11-06 Pyridine-containing alkoxysilanes bonded to inorganic supports and processes of using the same for removing and concentrating desired ions from solutions

Country Status (8)

Country Link
US (1) US5078978A (en)
EP (1) EP0431324B1 (en)
JP (1) JP2977264B2 (en)
AU (1) AU640961B2 (en)
CA (1) CA2029021C (en)
DE (1) DE69006464T2 (en)
ES (1) ES2062260T3 (en)
ZA (1) ZA908885B (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286464A (en) * 1993-06-14 1994-02-15 Nalco Chemical Company Silica gel ion exchange resins for the selective removal of lead and cadmium ions from aqueous liquids
US5342430A (en) * 1993-07-28 1994-08-30 Grocela Kathe Teresa A Passivation of methylchlorosilane fines
WO1994026943A1 (en) * 1993-05-07 1994-11-24 Ibc Advanced Technologies, Inc. Process for removing, separating, and concentrating metals
US5397642A (en) * 1992-04-28 1995-03-14 The United States Of America As Represented By The United States Department Of Energy Articles including thin film monolayers and multilayers
US5423990A (en) * 1993-04-05 1995-06-13 Agfa-Gevaert, N.V. Method for the purification of waste water containing silver
WO1995029008A1 (en) * 1994-04-26 1995-11-02 Ibc Advanced Technologies, Inc. Separating and concentrating certain ions using ion-binding ligands bonded to membranes
WO1996009985A1 (en) * 1994-09-27 1996-04-04 Syracuse University Chemically active ceramic compositions with a thiol and/or amine moiety
US5612275A (en) * 1994-09-27 1997-03-18 Syracuse University Chemically active ceramic compositions with a phospho-acid moiety
US5624881A (en) * 1994-09-27 1997-04-29 Syracuse University Chemically active ceramic compositions with a pyrogallol moiety
US5668079A (en) * 1994-09-27 1997-09-16 Syracuse University Chemically active ceramic compositions with an hydroxyquinoline moiety
US6071416A (en) * 1996-06-24 2000-06-06 Ibc Advanced Technologies, Inc. Poly N-cyclic aromatic ligands bonded to solid supports for removing and concentrating ions from solutions
US6139749A (en) * 1997-11-20 2000-10-31 3M Innovative Properties Company Method for radioactive species analysis using a self-scintillating sheet material
WO2001023067A1 (en) * 1999-09-27 2001-04-05 Ibc Advanced Technologies, Inc. Polyamide-containing ligands covalently bonded to supports, polyamide-containing resins, and methods for removing metals from solutions
US6232265B1 (en) 1999-06-11 2001-05-15 Ibc Advanced Technologies, Inc. Particulate solid supports functionalized with polyhydroxypyridinone ligands
US6447684B2 (en) * 1999-08-25 2002-09-10 Mykrolis Corporation Filtration and purification system for pH neutral solutions
US6475340B1 (en) 1995-03-22 2002-11-05 3M Innovative Properties Company Solid phase extraction membrane
US6479300B1 (en) 1999-03-15 2002-11-12 Millipore Corporation Metal loaded ligand bound membranes for metal ion affinity chromatography
US6479159B1 (en) 2001-04-19 2002-11-12 Ibc Advanced Technologies, Inc. Polymeric membranes functionalized with EGTA ligands
US6506706B1 (en) 1999-09-27 2003-01-14 Ibc Advanced Technologies, Inc. Polyamide-containing ligating agents bonded to inorganic and organic polymeric supports and methods of using the same for removing and concentrating desired metal ions from solutions
US6524482B2 (en) 2001-04-19 2003-02-25 Ibc Advanced Technologies, Inc. Use of ion binding ligands attached to solid supports and membranes for ion removal from a biological system
US20030050458A1 (en) * 2001-05-11 2003-03-13 Ibc Advanced Technologies, Inc. Compositions and methods for separating heterocyclic aromatic amine bases, nucleosides, nucleotides, and nucleotide sequences
US6551515B1 (en) 2001-04-19 2003-04-22 Ibc Advanced Technologies, Inc. Particulate soild supports functionalized with EGTA ligands
US6630106B1 (en) 2001-03-13 2003-10-07 Selecto, Inc. Compositions and methods for controlling microorganism growth in water processing systems
US6649064B2 (en) 1999-08-25 2003-11-18 Mykrolis Corporation Filtration and purification method for aqueous acids
US6662956B2 (en) 1997-03-18 2003-12-16 Selecto, Inc. Nanocrystal-containing filtration media
US6667016B1 (en) * 1997-10-29 2003-12-23 Commissariat A L'energie Atomique And Compagnie Generale Des Matieres Nucleaires Inorganic-organic hybrid gels for extracting species such as lanthanides and actinides, and their preparation
US6686479B2 (en) 2000-03-10 2004-02-03 Ibc Advanced Technologies, Inc. Compositions and methods for selectively binding amines or amino acid enantiomers over their counter-enantiomers
US20040069707A1 (en) * 2001-02-22 2004-04-15 Michael Naldrett Method of isolating a charged compound
US20040132998A1 (en) * 2000-03-10 2004-07-08 Bruening Ronald L. Compositions and methods for separating amines and amino acids from their counter-enantiomers
US6764601B1 (en) 2001-04-16 2004-07-20 Selecto Scientific, Inc. Method for granulating powders
US20040258698A1 (en) * 2003-04-10 2004-12-23 Wightman Paul D. Delivery of immune response modifier compounds
US7288498B1 (en) 1997-03-18 2007-10-30 Selecto, Inc Transition metal oxide-aluminosilicate purification media
CN102274718A (en) * 2011-05-31 2011-12-14 辽宁大学 Reversed-phase bonded phase stuffing with nitrogenous alicyclic structure, preparation method and application thereof
US20120135959A1 (en) * 2006-07-31 2012-05-31 Cohen Seth M Metalloprotein inhibitors containing nitrogen based ligands
WO2012122022A1 (en) 2011-03-10 2012-09-13 3M Innovative Properties Company Filtration media

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU646889B2 (en) * 1990-10-10 1994-03-10 Brigham Young University Polytetraalkylammonium and polytrialkylamine containing ligands bonded to inorganic supports and processes of using the same for removing and concentrating desired ions from solution
US5262018A (en) * 1991-08-12 1993-11-16 Fmc Corporation Metals removal from aqueous peroxy acids or peroxy salts
US5182251A (en) * 1991-10-10 1993-01-26 Brigham Young University Aminoalkylphosphonic acid containing ligands attached to solid supports for removal of metal ions
AU687033B2 (en) * 1993-09-13 1998-02-19 Ciba Corning Diagnostics Corp. Undercoating of solid phase surfaces and direct coating method
AUPM632894A0 (en) * 1994-06-21 1994-07-14 Alldredge, Robert Louis Immobilised branched polyalkyleneimines
AT405056B (en) * 1997-04-01 1999-05-25 Buchmeiser Michael Rudolf Mag MEANS FOR THE EXTRACTION OF METALIONS
FR2813208B1 (en) * 2000-08-30 2003-03-28 Commissariat Energie Atomique COMPLEXING STRUCTURE, DEVICE AND METHOD FOR TREATING LIQUID EFFLUENTS
EP1964811B1 (en) * 2007-02-28 2016-11-30 China Petrochemical Development Corporation Method for preparing hydroxylammonium phosphate
JP5010561B2 (en) * 2008-09-05 2012-08-29 株式会社東芝 Water purification machine magnetic particles and water treatment method using the same
DE102010013732A1 (en) 2010-03-31 2011-10-06 Voxeljet Technology Gmbh Device for producing three-dimensional models

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3957504A (en) * 1974-11-11 1976-05-18 Allied Chemical Corporation Membrane hydro-metallurgical extraction process
US4051230A (en) * 1973-12-18 1977-09-27 W. L. Gore & Associates, Inc. Liquid-liquid extraction process of metals
US4448694A (en) * 1981-09-04 1984-05-15 Dow Corning Corporation Metal extraction from solution and immobilized chelating agents used therefor
US4942023A (en) * 1988-01-18 1990-07-17 Metallurgie Hoboken-Overpelt Metal extraction process with substituted 8-hydroxyquinoline
US4952321A (en) * 1988-10-07 1990-08-28 Brigham Young University Process of removing and concentrating desired ions from solutions
US4959153A (en) * 1988-07-13 1990-09-25 Brigham Young University Process of removing ions from solutions by forming a complex with a sulfur containing hydrocarbon covalently bonded to silica

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4071546A (en) * 1976-08-30 1978-01-31 Dow Corning Corporation Silicon-containing chelating composition and method therefor
GB1569346A (en) * 1977-12-08 1980-06-11 British Petroleum Co Removal of actinide metals from solution
US4379931A (en) * 1981-07-01 1983-04-12 Dow Corning Corporation Metal extraction from solution and novel compounds used therefor
GB2203741A (en) * 1987-03-25 1988-10-26 Shell Int Research Nitrogen-containing bidentate compound immobilized on a solid inorganic carrier; organic silicon and organic lithium intermediates

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4051230A (en) * 1973-12-18 1977-09-27 W. L. Gore & Associates, Inc. Liquid-liquid extraction process of metals
US3957504A (en) * 1974-11-11 1976-05-18 Allied Chemical Corporation Membrane hydro-metallurgical extraction process
US4448694A (en) * 1981-09-04 1984-05-15 Dow Corning Corporation Metal extraction from solution and immobilized chelating agents used therefor
US4942023A (en) * 1988-01-18 1990-07-17 Metallurgie Hoboken-Overpelt Metal extraction process with substituted 8-hydroxyquinoline
US4959153A (en) * 1988-07-13 1990-09-25 Brigham Young University Process of removing ions from solutions by forming a complex with a sulfur containing hydrocarbon covalently bonded to silica
US4952321A (en) * 1988-10-07 1990-08-28 Brigham Young University Process of removing and concentrating desired ions from solutions

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5397642A (en) * 1992-04-28 1995-03-14 The United States Of America As Represented By The United States Department Of Energy Articles including thin film monolayers and multilayers
US5423990A (en) * 1993-04-05 1995-06-13 Agfa-Gevaert, N.V. Method for the purification of waste water containing silver
JPH08511466A (en) * 1993-05-07 1996-12-03 アイビーシー・アドバンスト・テクノロジーズ・インコーポレイテッド Method for removing, separating and concentrating metals
US5393892A (en) * 1993-05-07 1995-02-28 Ibc Advanced Technologies, Inc. Processes for removing, separating and concentrating lead, thallium, alkali metals, alkaline earth metals from concentrated matrices using macrocyclic polyether cryptand ligands bonded to inorganic supports
WO1994026943A1 (en) * 1993-05-07 1994-11-24 Ibc Advanced Technologies, Inc. Process for removing, separating, and concentrating metals
US5286464A (en) * 1993-06-14 1994-02-15 Nalco Chemical Company Silica gel ion exchange resins for the selective removal of lead and cadmium ions from aqueous liquids
US5342430A (en) * 1993-07-28 1994-08-30 Grocela Kathe Teresa A Passivation of methylchlorosilane fines
WO1995029008A1 (en) * 1994-04-26 1995-11-02 Ibc Advanced Technologies, Inc. Separating and concentrating certain ions using ion-binding ligands bonded to membranes
LT4226B (en) 1994-04-26 1997-10-27 Ibc Advanced Tech Inc Separating and concentrating certain ions using ion-binding ligands bonded to membranes
US5612275A (en) * 1994-09-27 1997-03-18 Syracuse University Chemically active ceramic compositions with a phospho-acid moiety
US5616533A (en) * 1994-09-27 1997-04-01 Syracuse University Chemically active ceramic compositions with a thiol and/or amine moiety
US5624881A (en) * 1994-09-27 1997-04-29 Syracuse University Chemically active ceramic compositions with a pyrogallol moiety
US5668079A (en) * 1994-09-27 1997-09-16 Syracuse University Chemically active ceramic compositions with an hydroxyquinoline moiety
WO1996009985A1 (en) * 1994-09-27 1996-04-04 Syracuse University Chemically active ceramic compositions with a thiol and/or amine moiety
US5690832A (en) * 1994-09-27 1997-11-25 Syracuse University Chemically active ceramic compositions with a phospho-acid moiety
US5779906A (en) * 1994-09-27 1998-07-14 Syracuse University Method of removing heavy metal ions from a liquid with chemically active ceramic compositions with a pyrogallol moiety
US5814226A (en) * 1994-09-27 1998-09-29 Syracuse University Method of removing heavy metal ions from a liquid with chemically active ceramic compositions with a thiol and/or amine moiety
US5817239A (en) * 1994-09-27 1998-10-06 Syracuse University Method of removing heavy metal ions from a liquid with chemically active ceramic compositions with an hydroxyquinoline moiety
US6475340B1 (en) 1995-03-22 2002-11-05 3M Innovative Properties Company Solid phase extraction membrane
US6071416A (en) * 1996-06-24 2000-06-06 Ibc Advanced Technologies, Inc. Poly N-cyclic aromatic ligands bonded to solid supports for removing and concentrating ions from solutions
US6662956B2 (en) 1997-03-18 2003-12-16 Selecto, Inc. Nanocrystal-containing filtration media
US7288498B1 (en) 1997-03-18 2007-10-30 Selecto, Inc Transition metal oxide-aluminosilicate purification media
US6667016B1 (en) * 1997-10-29 2003-12-23 Commissariat A L'energie Atomique And Compagnie Generale Des Matieres Nucleaires Inorganic-organic hybrid gels for extracting species such as lanthanides and actinides, and their preparation
US6139749A (en) * 1997-11-20 2000-10-31 3M Innovative Properties Company Method for radioactive species analysis using a self-scintillating sheet material
US6479300B1 (en) 1999-03-15 2002-11-12 Millipore Corporation Metal loaded ligand bound membranes for metal ion affinity chromatography
US6232265B1 (en) 1999-06-11 2001-05-15 Ibc Advanced Technologies, Inc. Particulate solid supports functionalized with polyhydroxypyridinone ligands
US6432313B2 (en) 1999-06-11 2002-08-13 Ibc Advanced Technologies, Inc. Method for concentrating, removing, and separating selected ions from source solutions using particulate solid supports functionalized with polyhydroxypyridinone ligands
US6649064B2 (en) 1999-08-25 2003-11-18 Mykrolis Corporation Filtration and purification method for aqueous acids
US6447684B2 (en) * 1999-08-25 2002-09-10 Mykrolis Corporation Filtration and purification system for pH neutral solutions
US6506706B1 (en) 1999-09-27 2003-01-14 Ibc Advanced Technologies, Inc. Polyamide-containing ligating agents bonded to inorganic and organic polymeric supports and methods of using the same for removing and concentrating desired metal ions from solutions
WO2001023067A1 (en) * 1999-09-27 2001-04-05 Ibc Advanced Technologies, Inc. Polyamide-containing ligands covalently bonded to supports, polyamide-containing resins, and methods for removing metals from solutions
US7205401B2 (en) 2000-03-10 2007-04-17 Ibc Advanced Technologies, Inc. Compositions and methods for separating amines and amino acids from their counter-enantiomers
US6686479B2 (en) 2000-03-10 2004-02-03 Ibc Advanced Technologies, Inc. Compositions and methods for selectively binding amines or amino acid enantiomers over their counter-enantiomers
US20040132998A1 (en) * 2000-03-10 2004-07-08 Bruening Ronald L. Compositions and methods for separating amines and amino acids from their counter-enantiomers
US20040069707A1 (en) * 2001-02-22 2004-04-15 Michael Naldrett Method of isolating a charged compound
US6630106B1 (en) 2001-03-13 2003-10-07 Selecto, Inc. Compositions and methods for controlling microorganism growth in water processing systems
US6764601B1 (en) 2001-04-16 2004-07-20 Selecto Scientific, Inc. Method for granulating powders
US6479159B1 (en) 2001-04-19 2002-11-12 Ibc Advanced Technologies, Inc. Polymeric membranes functionalized with EGTA ligands
US6719905B2 (en) 2001-04-19 2004-04-13 Ibc Advanced Technologies, Inc. Polymeric membranes functionalized with EGTA ligands, and process of separating ions
US6551515B1 (en) 2001-04-19 2003-04-22 Ibc Advanced Technologies, Inc. Particulate soild supports functionalized with EGTA ligands
US6524482B2 (en) 2001-04-19 2003-02-25 Ibc Advanced Technologies, Inc. Use of ion binding ligands attached to solid supports and membranes for ion removal from a biological system
US6774082B2 (en) 2001-05-11 2004-08-10 Ibc Advanced Technologies, Inc. Compositions for separating heterocyclic aromatic amine bases, nucleosides, nucleotides, and nucleotide sequences
US20050064468A1 (en) * 2001-05-11 2005-03-24 Ibc Advanced Technologies, Inc. Compositions and methods for separating heterocyclic aromatic amine bases, nucleosides, nucleotides, and nucleotide sequences
US20030050458A1 (en) * 2001-05-11 2003-03-13 Ibc Advanced Technologies, Inc. Compositions and methods for separating heterocyclic aromatic amine bases, nucleosides, nucleotides, and nucleotide sequences
US20040258698A1 (en) * 2003-04-10 2004-12-23 Wightman Paul D. Delivery of immune response modifier compounds
US7923560B2 (en) * 2003-04-10 2011-04-12 3M Innovative Properties Company Delivery of immune response modifier compounds
US20120135959A1 (en) * 2006-07-31 2012-05-31 Cohen Seth M Metalloprotein inhibitors containing nitrogen based ligands
WO2012122022A1 (en) 2011-03-10 2012-09-13 3M Innovative Properties Company Filtration media
CN102274718A (en) * 2011-05-31 2011-12-14 辽宁大学 Reversed-phase bonded phase stuffing with nitrogenous alicyclic structure, preparation method and application thereof

Also Published As

Publication number Publication date
EP0431324A1 (en) 1991-06-12
JP2977264B2 (en) 1999-11-15
AU640961B2 (en) 1993-09-09
ES2062260T3 (en) 1994-12-16
CA2029021A1 (en) 1991-05-07
DE69006464T2 (en) 1994-07-14
ZA908885B (en) 1991-10-30
CA2029021C (en) 2001-07-17
EP0431324B1 (en) 1994-02-02
AU6571890A (en) 1991-05-09
DE69006464D1 (en) 1994-03-17
JPH03197485A (en) 1991-08-28

Similar Documents

Publication Publication Date Title
US5078978A (en) Pyridine-containing alkoxysilanes bonded to inorganic supports and processes of using the same for removing and concentrating desired ions from solutions
EP0621801B1 (en) Aminoalkylphosphonic acid containing ligands attached to solid supports for removal of metal ions
US5120443A (en) Processes for removing, separating and concentrating rhodium, iridium, and ruthenium from solutions using macrocyclic and nonmacrocyclic polyalkylene-polyamine-containing ligands bonded to inorganic supports
EP0641252B1 (en) Compositions and processes for removing, separating and concentrating desired ions from solutions
US5190661A (en) Process of removing ions from solutions using a complex with sulfur-containing hydrocarbons
JP2984683B2 (en) Method of removing desired ions from desired ion solution and concentrating
EP0361060B1 (en) Sulfur and nitrogen-containing hydrocarbon compounds and process using same in recovering and concentrating desired ions from solutions thereof
US5084430A (en) Sulfur and nitrogen containing hydrocarbons and process of using same in separating desired ions from solutions thereof
EP0355376A2 (en) Sulfur-containing hydrocarbon compounds and process of using same in recovering and concentrating desired ions from solutions thereof
US5273660A (en) Aminoalkylphosphonic acid containing ligands attached to solid supports for removal of metal ions
US5244856A (en) Polytetraalkylammonium and polytrialkylamine-containing ligands bonded to inorganic supports and processes of using the same for removing and concentrating desired ions from solutions
US5334316A (en) Process of using polytetraalkylammonium and polytrialkylamine-containing ligands bonded to inorganic supports for removing and concentrating desired ions from solutions
US5612275A (en) Chemically active ceramic compositions with a phospho-acid moiety
US6071416A (en) Poly N-cyclic aromatic ligands bonded to solid supports for removing and concentrating ions from solutions
WO1992017403A1 (en) Support bonded polyalkylene-polyamine-poly(carboxylic acid) and extraction of metal ions therewith
EP0480386B1 (en) Polytetraalkylammonium and polytrialkylamine containing ligands bonded to inorganic supports and processes of using the same for removing and concentrating desired ions from solutions

Legal Events

Date Code Title Description
AS Assignment

Owner name: BRIGHAM YOUNG UNIVERSITY, UTAH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:TARBET, BRYON J.;BRADSHAW, JERALD S.;KRAKOWIAK, KRZYSZTOF E.;AND OTHERS;REEL/FRAME:005171/0667

Effective date: 19891102

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 8

SULP Surcharge for late payment
FPAY Fee payment

Year of fee payment: 12

SULP Surcharge for late payment

Year of fee payment: 11