US5075487A - Fluorene derivative - Google Patents

Fluorene derivative Download PDF

Info

Publication number
US5075487A
US5075487A US07/506,602 US50660290A US5075487A US 5075487 A US5075487 A US 5075487A US 50660290 A US50660290 A US 50660290A US 5075487 A US5075487 A US 5075487A
Authority
US
United States
Prior art keywords
compound
layer
fluorene
formula
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/506,602
Inventor
Yutaka Akasaki
Katsuhiro Sato
Katsumi Nukada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP63287613A external-priority patent/JPH02135357A/en
Priority claimed from JP63287618A external-priority patent/JPH02135361A/en
Priority claimed from JP63287621A external-priority patent/JPH02135358A/en
Priority claimed from JP63287620A external-priority patent/JPH02135362A/en
Priority claimed from JP1087860A external-priority patent/JPH0657689B2/en
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Assigned to FUJI XEROX, CO., LTD. reassignment FUJI XEROX, CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: AKASAKI, YUTAKA, NUKADA, KATSUMI, SATO, KATSUHIRO
Application granted granted Critical
Publication of US5075487A publication Critical patent/US5075487A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/06Compounds containing nitro groups bound to a carbon skeleton having nitro groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/45Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by at least one doubly—bound oxygen atom, not being part of a —CHO group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/45Carboxylic acid nitriles having cyano groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C255/47Carboxylic acid nitriles having cyano groups bound to carbon atoms of rings other than six-membered aromatic rings to carbon atoms of rings being part of condensed ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/587Unsaturated compounds containing a keto groups being part of a ring
    • C07C49/657Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings
    • C07C49/683Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings having unsaturation outside the aromatic rings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0618Acyclic or carbocyclic compounds containing oxygen and nitrogen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0666Dyes containing a methine or polymethine group
    • G03G5/0668Dyes containing a methine or polymethine group containing only one methine or polymethine group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes

Definitions

  • the present invention relates to a novel fluorene derivative useful in an electrophotosensitive material.
  • Electrophotographic photoreceptors employing organic photoconductive materials have conventionally been produced by forming a function-separated type photosensitive layer having a multilayer construction composed of a charge generating layer containing a charge generating material that absorbs visible light to generate charges and a charge transport layer containing a charge transport material that transports the charges.
  • charge transport materials various substances having the property of transporting positive holes are known, such as amine compounds, hydrazone compounds, pyrazoline compounds, oxadiazole compounds, stilbene compounds, and carbazole compounds.
  • the mechanically strong charge transport layer generally constitutes the upper layer and, hence, where a conventional positive hole transport material is used for the charge transport layer, the photoreceptor is of the negatively charged type.
  • a conventional positive hole transport material is used for the charge transport layer
  • the photoreceptor is of the negatively charged type.
  • positively charged photoreceptors from the standpoints of preventing ozone generation in corotrons and controlling the electrification of toners in developers.
  • an electron transport material is required for making an electrophotographic photoreceptor to be of the positively charged type with the charge transport layer as the upper layer, a sufficiently effective electron transport material has not been known hitherto.
  • An object of the present invention is to provide an organic material useful as an electron transport material in multilayered electrophotographic photoreceptors of positively charged type.
  • the present invention have synthesized various compounds and studied their electrophotographic properties. As a result, it has now been found that certain fluorene derivatives function as excellent electron transport materials. The present invention has been completed base on this finding.
  • the present invention provides a fluorene derivative represented by formula (I) ##STR2## wherein R 1 represents a hydrogen atom or a phenyl group, R 2 represents a hydrogen atom, a nitro group, or an alkoxycarbonyl group, and R 3 and R 4 each represents a hydrogen atom or an alkyl group.
  • the phenyl group for R 1 may be substituted or unsubstituted.
  • the substituent include an alkyl group such as methyl, ethyl and butyl, and an alkoxycarbonyl group such as methoxycarbonyl, ethoxycarbonyl and butoxycarbonyl.
  • the substituent is preferably bonded at the p-position of the phenyl group.
  • the alkoxycarbonyl group for R 2 preferably has 2 to 9 carbon atoms and more preferably 3 to 9 carbon atoms.
  • the alkyl group for R 3 and R 4 preferably has 1 to 8 carbon atoms and more preferably 1 to 4 carbon atoms.
  • the fluorene derivative of this invention can be produced by oxidizing a fluorene derivative represented by formula (II) in a solvent such as a basic solvent (e.g., pyridine and quinoline) under oxygen atmosphere (e.g., air) at room temperature to 150° C.
  • a solvent such as a basic solvent (e.g., pyridine and quinoline)
  • oxygen atmosphere e.g., air
  • a base catalyst such as hydroxides (e.g., NaOH) and benzyltrimethyl ammonium to thereby synthesize a fluorenone derivative represented by formula (III), and then refluxing the fluorenone derivative of formula (III), with heating, together with malononitrile in a solvent (e.g., pyridine and quinoline), or reacting the fluorenone derivative of formula (III) with malononitrile in methylene chloride or chloroform at -20° to 50° C. in the presence of titanium tetrachloride.
  • a base catalyst such as hydroxides (e.g., NaOH) and benzyltrimethyl ammonium
  • a solvent e.g., pyridine and quinoline
  • the fluorene derivative of formula (II) used in the above process can be synthesized by a method in which formylfluorene is reacted, for example, with diethyl diphenylphosphonate or a method in which chloromethylfluorene is reacted with triphenylphosphine and the resulting fluorene compound is then condensed with benzaldehyde or derivatives thereof. There reactions are generally carried out at -20 to 100° C.
  • ethylene glycol e.g., ethylene glycol dimethyl ether
  • base such as n-butyl litium, sodium hydroxide and sodium ethoxide
  • a electrophotographic photoreceptor in which the fluorene derivative of formula (I) of the present invention can be used as an electron transport material comprises an electrically conductive substrate having a photosensitive layer formed thereon.
  • Examples of electrically conductive substrates which can be used in the present invention include metallic pipes, metallic plates, metallic sheets, metallic foils, highmolecular material films having electrical conductivity imparted thereto, high-molecular material films having a metallized layer such as a layer metallized with a metal such as Al, and high-molecular material films or paper coated with a metal oxide such as SnO 2 or a quaternary ammonium salt.
  • the photosensitive layer may be a single layer structure type or a laminated layer type wherein a charge generating layer and a charge transport layer are functionally separated from each other.
  • the compound of formula (I) as a charge transport material may be incorporated in a binder resin layer containing a conventional charge generating agent.
  • the single layer-type photosensitive layer may contain one or more compounds of formula (I) in an amount of 10 to 70 % by weight and preferably 20 to 60 % weight, and the thickness thereof is generally within the range of about 5 to about 30 ⁇ m.
  • the charge generating layer may be formed by depositing a charge generating agent on the conductive substrate or by coatng the conductive substrate with a coating solution composed mainly of a charge generating agent and a binder resin.
  • any single or mixture of conventional charge generating agents and any single or mixture of binder resins can be used.
  • conventional charge generating agents include inorganic semiconductors such as trigonal selenium, organic semiconductors such as polyvinyl carbazole and organic pigments such as bis-azo compounds, tris-azo compounds, phthalocyanine compunds, pyrylium compounds and squarylium compounds.
  • the binder resins include polystyrene, silicone resins, polycarbonate resins, acrylic resins, methacrylic resins, polyesters, vinyl polymers, celluloses and alkyd resins.
  • the thickness of the charge generating layer is generally within the range of about 0.05 to about 10 ⁇ m.
  • the change transport layer is formed on the charge generating layer.
  • the charge transporting layer comprises one or more of the compounds of formula (I) and one or more of binder resins.
  • the amount of the compound of formula (I) in the charge transporting layer is generally from 10 to 70 % by weight and preferably from 20 to 60 % by weight.
  • This charge transport layer can be formed coating a coating solution composed mainly of the compound of formula (I), the binder resin and an appropriate solvent on the charge generating layer by means of an applicator, a bar coater, a dip coater or the like.
  • the weight ratio of the compound of formula (I) and the binder resin is preferably in the range of from about 1/20 to about 20/1.
  • binder resins can be used for the charge transport layer.
  • binder resins include styrene-butadiene copolymer, vinyl-toluene-styrene copolymer, styrene-modified alkyd resin, silicone-modified alkyd resin, soybean oil-modified alkyd resin, vinylidene chloride-vinyl chloride copolymer, polyvinyl butyral, nitrated polystyrene, polymethylstyrene, polyisoprene, polyeter, phenolic resin, ketone resin, polyamide polycarbonate, polythiocarbonate, polyvinyl haloarylate, vinyl acetate resin, polystyrene, polyvinyl acrylate, polysulfone and polymethacrylate.
  • electron-donating materials such as tetraphenylbenzidine, triarylamines, hydrazone and stilbene may be added to the charge
  • the thickness of the charge transport layer is generally within the range of about 2 to about 100 ⁇ m.
  • the compound of formula (I) is preferably used in a charge transport layer of functionseparated type electrophotographic photoreceptor which is positively charged.
  • a barrier layer may be optionally provided on the conductive substrate.
  • the barrier layer is effective in preventing undesired charge injection into the photosensitive layer from the substrate and thus is capable of improving the image quality.
  • Suitable materials for the barrier layer include metal oxides such as aluminum oxide, acrylic resins, phenolic resins, polyester resins and polyurethane.
  • a fluorene compound (m.p. 76°-77° C.) having the structural formula ##STR11## which had been synthesized by reacting 4-chloromethylfluorene with triphenylphosphine and then reacting the reaction product with butyl 4-formylbenzoate, was treated in the same manner as in Example 2.
  • the trans-form fluorenone compound obtained above was treated in the same manner as in Example 2 to obtain a fluorene compound (Compound 3) having the following structural formula as reddish orange needle crystals (yield 77.6%).
  • the melting point of this compound was 171-172° C.
  • Example 4 The cis-form fluorenone compound obtained in Example 3 was treated in the same manner as in Example 2 to obtain a fluorene compound (Compound 4) having the following structural formula as an orange powder (yield 81.2%). The melting point of this compound was 163°-165° C.
  • the trans-form fluorenone compound obtained above was treated in the same manner as in Example 2 to obtain a fluorene compound (Compound 5) having the following structural formula as reddish orange needle crystals (yield 82.0%).
  • the melting point of this compound was 142°-144° C.
  • This cis-form fluorenone compound obtained in Example 5 was treated in the same manner as in Example 2 to obtain a fluorene compound (Compound 6) having the following structural formula as orange cotton-like crystals (yield 60.4%). The melting point of this compound was 120°-121.5° C.
  • a charge generating layer (2.5 ⁇ m) composed of trigonal selenium/polyvinylcarbazole (trigonal selenium content: 7% by volume).
  • a solution obtained by dissolving 0.5 g of Compound 3, 4, 5, or 6 and 0.75 g of a polycarbonate in 7 g of methylene chloride was coated on the charge generating layer at a wet thickness of 5 mils and then dried, thereby preparing an electrophotographic photoreceptor.
  • An electrophotographic photoreceptor was prepared in the same manner as in Application Example 1 except that 2,4,7-trinitrofluorene (TNF) as described in JP-B-49-31658 and JP-B-50-10496 was used in place of Compound 3.
  • TNF 2,4,7-trinitrofluorene
  • JP-B used herein means Japanese patent publication.
  • the sensitivity of this photoreceptor was likewise measured, and the results obtained are shown in Table 1.
  • a 0.1 ⁇ m-thick charge generating layer was formed on an electrically conductive substrate by vapor deposition of metal-free phthalocyanine.
  • 0.5 g of Compound 1 or 2 and 0.75 g of bisphenol A polycarbonate were dispersed in 1,2-dichloroethane and the dispersion was treated with a ball mill.
  • the resulting dispersion was coated on the above-formed charge generating layer at a wet thickness of 7 mils and then dried to prepare an electrophotographic photoreceptor.
  • the thus obtained electrophotographic photoreceptors were evaluated for sensitivity in the same manner as in Application Example 1 except that the photoreceptors were charged so as to have surface potentials of +500 V and -500 V. The results obtained are shown in Table 1.
  • the fluorene derivative represented by formula (I) of the present invention is superior in electron transport characteristics to TNF known as a relatively excellent material and, hence, it is useful as an electron transport material for use in electrophotographic photoreceptors.
  • an electrophotographic photoreceptor of the positively charged type having excellent electrophotographic properties can be produced by forming a charge generating layer on an electrically conductive support and then applying the fluorene derivative of this invention on the charge generating layer together with a film-forming resin to form a charge transport layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

A fluorene derivative useful as an electron transport material is disclosed, which is represented by formula (I) ##STR1## wherein R1 represents a hydrogen atom or a phenyl group, R2 represents a hydrogen atom, a nitro group, or an alkoxycarbonyl group, and R3 and R4 each represents a hydrogen atom or an alkyl group.

Description

CROSS-REFERENCE TO RELATED APPLICATION
This is a continuation-in-part-application of Ser. No. 436,875 filed Nov. 15, 1989 now U.S. Pat. No. 5,011,757.
FIELD OF THE INVENTION
The present invention relates to a novel fluorene derivative useful in an electrophotosensitive material.
BACKGROUND OF THE INVENTION
Electrophotographic photoreceptors employing organic photoconductive materials have conventionally been produced by forming a function-separated type photosensitive layer having a multilayer construction composed of a charge generating layer containing a charge generating material that absorbs visible light to generate charges and a charge transport layer containing a charge transport material that transports the charges. As charge transport materials, various substances having the property of transporting positive holes are known, such as amine compounds, hydrazone compounds, pyrazoline compounds, oxadiazole compounds, stilbene compounds, and carbazole compounds.
In such a function-separated type of electrophotographic photoreceptor, the mechanically strong charge transport layer generally constitutes the upper layer and, hence, where a conventional positive hole transport material is used for the charge transport layer, the photoreceptor is of the negatively charged type. However, preferred are positively charged photoreceptors from the standpoints of preventing ozone generation in corotrons and controlling the electrification of toners in developers. Although an electron transport material is required for making an electrophotographic photoreceptor to be of the positively charged type with the charge transport layer as the upper layer, a sufficiently effective electron transport material has not been known hitherto.
SUMMARY OF THE INVENTION
An object of the present invention is to provide an organic material useful as an electron transport material in multilayered electrophotographic photoreceptors of positively charged type.
The present invention have synthesized various compounds and studied their electrophotographic properties. As a result, it has now been found that certain fluorene derivatives function as excellent electron transport materials. The present invention has been completed base on this finding.
That is, the present invention provides a fluorene derivative represented by formula (I) ##STR2## wherein R1 represents a hydrogen atom or a phenyl group, R2 represents a hydrogen atom, a nitro group, or an alkoxycarbonyl group, and R3 and R4 each represents a hydrogen atom or an alkyl group.
DETAILED DESCRIPTION OF THE INVENTION
In formula (I), the phenyl group for R1 may be substituted or unsubstituted. Examples of the substituent include an alkyl group such as methyl, ethyl and butyl, and an alkoxycarbonyl group such as methoxycarbonyl, ethoxycarbonyl and butoxycarbonyl. The substituent is preferably bonded at the p-position of the phenyl group. The alkoxycarbonyl group for R2 preferably has 2 to 9 carbon atoms and more preferably 3 to 9 carbon atoms. The alkyl group for R3 and R4 preferably has 1 to 8 carbon atoms and more preferably 1 to 4 carbon atoms.
Preferred are the fluorene derivatives having the group of ##STR3## at the 2- or 4-position in the fluorene moiety.
As illustrated by the following reaction scheme, the fluorene derivative of this invention can be produced by oxidizing a fluorene derivative represented by formula (II) in a solvent such as a basic solvent (e.g., pyridine and quinoline) under oxygen atmosphere (e.g., air) at room temperature to 150° C. generally in the presence of a base catalyst such as hydroxides (e.g., NaOH) and benzyltrimethyl ammonium to thereby synthesize a fluorenone derivative represented by formula (III), and then refluxing the fluorenone derivative of formula (III), with heating, together with malononitrile in a solvent (e.g., pyridine and quinoline), or reacting the fluorenone derivative of formula (III) with malononitrile in methylene chloride or chloroform at -20° to 50° C. in the presence of titanium tetrachloride. ##STR4## wherein R1 to R4 each is the same as defined above.
The fluorene derivative of formula (II) used in the above process can be synthesized by a method in which formylfluorene is reacted, for example, with diethyl diphenylphosphonate or a method in which chloromethylfluorene is reacted with triphenylphosphine and the resulting fluorene compound is then condensed with benzaldehyde or derivatives thereof. There reactions are generally carried out at -20 to 100° C. in a solvent such as ethanol, pyridine, dimethyl sulfoxide and ethersof ethylene glycol (e.g., ethylene glycol dimethyl ether) in the presence of base such as n-butyl litium, sodium hydroxide and sodium ethoxide.
A electrophotographic photoreceptor in which the fluorene derivative of formula (I) of the present invention can be used as an electron transport material comprises an electrically conductive substrate having a photosensitive layer formed thereon.
Examples of electrically conductive substrates which can be used in the present invention include metallic pipes, metallic plates, metallic sheets, metallic foils, highmolecular material films having electrical conductivity imparted thereto, high-molecular material films having a metallized layer such as a layer metallized with a metal such as Al, and high-molecular material films or paper coated with a metal oxide such as SnO2 or a quaternary ammonium salt.
The photosensitive layer may be a single layer structure type or a laminated layer type wherein a charge generating layer and a charge transport layer are functionally separated from each other.
When the photosensitive layer is of a single layer structure type, the compound of formula (I) as a charge transport material may be incorporated in a binder resin layer containing a conventional charge generating agent. The single layer-type photosensitive layer may contain one or more compounds of formula (I) in an amount of 10 to 70 % by weight and preferably 20 to 60 % weight, and the thickness thereof is generally within the range of about 5 to about 30 μm.
When the photosensitive layer is of a laminated layer structure type, the charge generating layer may be formed by depositing a charge generating agent on the conductive substrate or by coatng the conductive substrate with a coating solution composed mainly of a charge generating agent and a binder resin.
Any single or mixture of conventional charge generating agents and any single or mixture of binder resins can be used. Examples of conventional charge generating agents include inorganic semiconductors such as trigonal selenium, organic semiconductors such as polyvinyl carbazole and organic pigments such as bis-azo compounds, tris-azo compounds, phthalocyanine compunds, pyrylium compounds and squarylium compounds. Examples of the binder resins include polystyrene, silicone resins, polycarbonate resins, acrylic resins, methacrylic resins, polyesters, vinyl polymers, celluloses and alkyd resins.
The thickness of the charge generating layer is generally within the range of about 0.05 to about 10 μm.
The change transport layer is formed on the charge generating layer. The charge transporting layer comprises one or more of the compounds of formula (I) and one or more of binder resins. The amount of the compound of formula (I) in the charge transporting layer is generally from 10 to 70 % by weight and preferably from 20 to 60 % by weight. This charge transport layer can be formed coating a coating solution composed mainly of the compound of formula (I), the binder resin and an appropriate solvent on the charge generating layer by means of an applicator, a bar coater, a dip coater or the like. The weight ratio of the compound of formula (I) and the binder resin is preferably in the range of from about 1/20 to about 20/1.
Any convertional binder resins can be used for the charge transport layer. Examples of binder resins include styrene-butadiene copolymer, vinyl-toluene-styrene copolymer, styrene-modified alkyd resin, silicone-modified alkyd resin, soybean oil-modified alkyd resin, vinylidene chloride-vinyl chloride copolymer, polyvinyl butyral, nitrated polystyrene, polymethylstyrene, polyisoprene, polyeter, phenolic resin, ketone resin, polyamide polycarbonate, polythiocarbonate, polyvinyl haloarylate, vinyl acetate resin, polystyrene, polyvinyl acrylate, polysulfone and polymethacrylate. If desired, electron-donating materials (positive hole transporting agents) such as tetraphenylbenzidine, triarylamines, hydrazone and stilbene may be added to the charge transport layer.
The thickness of the charge transport layer is generally within the range of about 2 to about 100 μm.
As described above, the compound of formula (I) is preferably used in a charge transport layer of functionseparated type electrophotographic photoreceptor which is positively charged.
In the elctrophotographic photoreceptor of the present invention, a barrier layer may be optionally provided on the conductive substrate. The barrier layer is effective in preventing undesired charge injection into the photosensitive layer from the substrate and thus is capable of improving the image quality. Suitable materials for the barrier layer include metal oxides such as aluminum oxide, acrylic resins, phenolic resins, polyester resins and polyurethane.
The present invention will be explained below in more detail by reference to the following Examples.
EXAMPLE 1
11.2 g of diethyl diphenylphosphonate and 300 ml of tetrahydrofurane (THF) were charged in a 500 ml three-necked flask, to which 23.2 mol of n-butyl litium was added, and subsequently a solution containing 7.1 g of 2-formylfluorene in 40 ml of THF was added dropwise over 30 minutes while cooling the reaction system with ice under nitrogen stream. The color of the reaction solution changed from yellow to green and then to brown. After stirring for 30 minutes, the resulting solution was heated under reflux over 2 hours and poured into 1 liter of water, to which 200 ml of hexane was further added. After filtration of the solution, an organic phase was separated from the resulting filtrate and dried with Na2 SO4, followed by removing the solvent under reduced pressure. The residue was purified with a silica gel column chromatography (eluent: a mixture of methylene chloride/hexane (1/10 by weight)) and recrystallized from a mixture of ethyl acetate and ethanol, whereby 3.2 g (yield 25.3%) of light yellow crystals (m.p. 136.5°-138° C.) having the following structural formula was obtained. ##STR5##
Into a 150 ml three-necked flask, 6.5 g of the thus obtained fluorene compound and 100 ml of pyridine were introduced. The mixture was cooled with ice and then 0.5 ml of a 40% methanol solution of benzyltrimethylammonium hydroxide was added thereto. The resulting mixture was stirred for one hour in an oxygen stream. After completion of the reaction, the contents were poured into 100 ml of water, resulting in a yellow precipitate. This precipitate was filtered off, washed with diluted hydrochloric acid and then with water, and dissolved in methylene chloride. This solution was dried with Na2 SO4 and then purified with a silica gel short column (methylene chloride/hexane=1/1). Subsequently, the solvent was removed by evaporation under reduced pressure, and then the residue was recrystallized from a mixture of ethyl acetate and ethanol. Thus, 6.5 g (yield 94%) of a fluorenone compound having the following structural formula was obtained as orangish yellow needle crystals. The melting point of this compound was 172°-173.5° C. ##STR6##
5.0 grams of this fluorenone derivative was placed, together with 90 ml of pyridine, in 250 ml three-necked flask, and the resulting mixture was heated at 100° C in a nitrogen stream, thereby dissolving the fluorenone derivative. Subsequently, a solution containing 1.8 g of malononitrile in 10 ml of pyridine was added dropwise to the above-obtained solution over about 10 minutes. After completion of the addition, the resulting mixture was refluxed for one hour and then cooled to room temperature. The reaction mixture was then poured into 100 ml of water, and the resulting precipitate was filtered off and washed with pyridine, diluted hydrochloric acid, water, and methanol in this order. Thus, 5.5 g (yield 97%) of a fluorene compound (Compound 1) having the following structural formula was obtained as a brown powder. The melting point of this compound was 293°-295.5° C.
______________________________________                                    
 ##STR7##                                                                 
Elementary Analysis:                                                      
            C            H      N                                         
______________________________________                                    
Calculated: 88.65        4.46   6.89                                      
Found:      88.75        4.29   6.76                                      
______________________________________                                    
Mass Spectrometric Analysis: M+ 406. UV Absorption Spectrum λmax : 525 nm, 323 nm (in CH2 Cl2) IR Absorption Spectrum: 2220 cm-1 (KBr).
EXAMPLE 2
Into a 200 ml round-bottom flask, 5.0 g of a fluorene compound (m.p. 205.5°-207.5° C.) having the following structural formula ##STR8## which had been obtained by reacting 2,7-di-t-butyl-4-chloromethylfluorene with triphenylphosphine and then condensing the reaction product with 4-nitrobenzaldehyde, was introduced together with 0.3 g of potassium hydroxide and 100 ml of pyridine. The resulting mixture was stirred at room temperature for 20 hours in an air atmosphere. After completion of the reaction, 200 ml of water was added to the reaction mixture, and the reaction product was extracted with methylene chloride. The resulting organic layer was dried with Na2 SO4 and the solvent was then removed by evaporation under reduced pressure. The residue was purified with a silica gel short column (methylene chloride/hexane = 2/1). Thereafter, the solvent was removed by evaporation under reduced pressure and the residue was recrystallized from a mixture of ethyl acetate and ethanol, thereby obtaining 1.7 g (yield 33%) of a fluorenone compound having the following structural formula as a yellow powder. The melting point of this compound was 223°-224° C. ##STR9##
In 100 ml flask with a side arm were introduced 110 mg of the above-obtained fluorenone derivative, 0.33 g of malononitrile, and 50 ml of pyridine. The resulting mixture was refluxed for one hour in a nitrogen stream and the pyridine was then removed by evaporation under reduced pressure. The residue was dissolved in methylene chloride and purified with a silica gel short column (eluent: with methylene chloride). Subsequently, the methylene chloride was removed by evaporation under reduced pressure, and the residue was then washed with methanol and recrystallized from ethyl acetate. Thus, 0.84 g (yield 69%) of a fluorene compound (Compound 2) having the following structural formula was obtained as reddish brown needle crystals. The melting point of this compound was 289°-290° C.
______________________________________                                    
 ##STR10##                                                                
Elementary Analysis:                                                      
            C            H      N                                         
______________________________________                                    
Calculated: 78.83        5.99   8.62                                      
Found:      78.94        5.82   8.58                                      
______________________________________                                    
Mass Spectrometric Analysis: M+ 487. UV Absorption Spectrum λmax : 366 nm, 259 nm (in CH2 Cl2). IR Absorption Spectrum: 2224, 1594, 1528, 1344 cm-1 (KBr).
EXAMPLE 3
A fluorene compound (m.p. 76°-77° C.) having the structural formula ##STR11## which had been synthesized by reacting 4-chloromethylfluorene with triphenylphosphine and then reacting the reaction product with butyl 4-formylbenzoate, was treated in the same manner as in Example 2. The resulting crude product was purified with a silica gel column (methylene chloride/hexane=1/2 to 1/0), thereby obtaining fluorenone compounds having the following structural formulae (cis form, melting point 96.5°-97.5° C. (yield 7.7%); trans form, melting point 116°-117.5° C. (yield 81.3 %)). ##STR12##
The trans-form fluorenone compound obtained above was treated in the same manner as in Example 2 to obtain a fluorene compound (Compound 3) having the following structural formula as reddish orange needle crystals (yield 77.6%). The melting point of this compound was 171-172° C.
______________________________________                                    
 ##STR13##                                                                
Elementary Analysis:                                                      
            C            H      N                                         
______________________________________                                    
Calculated: 80.91        5.15   6.51                                      
Found:      80.93        5.29   6.49                                      
______________________________________                                    
Mass Spectrometric Analysis: M+ 430. UV Absorption Spectrum λmax : 345 nm, 316 nm, 267 nm. IR Absorption Spectrum: 2220, 1730, 1708 cm-1 (KBr); 2224, 1712 cm-1 (CHCl3).
EXAMPLE 4
The cis-form fluorenone compound obtained in Example 3 was treated in the same manner as in Example 2 to obtain a fluorene compound (Compound 4) having the following structural formula as an orange powder (yield 81.2%). The melting point of this compound was 163°-165° C.
______________________________________                                    
 ##STR14##                                                                
Elementary Analysis:                                                      
            C            H      N                                         
______________________________________                                    
Calculated: 80.91        5.15   6.51                                      
Found:      80.89        5.02   6.58                                      
______________________________________                                    
Mass Spectrometric Analysis: M+ 430. UV Absorption Spectrum λmax : 358 nm, 297 nm, 286 nm, 270 nm. IR Absorption Spectrum: 2224, 1718 cm-1 (KBr).
EXAMPLE 5
A fluorene compound (m.p. 67°-73° C.) having the structural formula ##STR15## which had been synthesized by reacting a fluorene compound having the structural formula ##STR16## (wherein Ph represents a phenyl group) with octyl 4-formylbenzoate, was treated in the same manner as in Example 2. The resulting crude product was purified with a silica gel column (methylene chloride/hexane=1/2 to 1/0), thereby obtaining fluorenone compounds having the following structural formulae (cis form, melting point 81°-83° C. (yield 6.9%); trans form, melting point 113.5°-114.5° C. (yield 80.2%)). ##STR17##
The trans-form fluorenone compound obtained above was treated in the same manner as in Example 2 to obtain a fluorene compound (Compound 5) having the following structural formula as reddish orange needle crystals (yield 82.0%). The melting point of this compound was 142°-144° C.
______________________________________                                    
 ##STR18##                                                                
Elementary Analysis:                                                      
            C            H      N                                         
______________________________________                                    
Calculated: 81.45        6.21   5.76                                      
Found:      81.48        6.26   5.83                                      
______________________________________                                    
Mass Spectrometric Analysis: M+ 486. UV Absorption Spectrum λmax : 345 nm, 315 nm, 265 nm. IR Absorption Spectrum: 2220, 1728, 1710 cm-1 (KBr).
EXAMPLE 6
This cis-form fluorenone compound obtained in Example 5 was treated in the same manner as in Example 2 to obtain a fluorene compound (Compound 6) having the following structural formula as orange cotton-like crystals (yield 60.4%). The melting point of this compound was 120°-121.5° C.
______________________________________                                    
 ##STR19##                                                                
Elementary Analysis:                                                      
            C            H      N                                         
______________________________________                                    
Calculated: 81.45        6.21   5.76                                      
Found:      81.55        6.05   5.87                                      
______________________________________                                    
Mass Spectrometric Analysis: M+ 486. UV Absorption Spectrum λmax : 355 nm, 297 nm, 285 nm, 270 nm. IR Absorption Spectrum: 2224, 1708 cm-1 (KBr).
APPLICATION EXAMPLE 1
On an electrically conductive substrate was formed a charge generating layer (2.5 μm) composed of trigonal selenium/polyvinylcarbazole (trigonal selenium content: 7% by volume). Subsequently, a solution obtained by dissolving 0.5 g of Compound 3, 4, 5, or 6 and 0.75 g of a polycarbonate in 7 g of methylene chloride was coated on the charge generating layer at a wet thickness of 5 mils and then dried, thereby preparing an electrophotographic photoreceptor. Using an electrostatic copying-paper testing machine (SP428, manufactured by Kawaguchi Denki Seisakusho K.K., Japan), the electrophotographic photoreceptors obtained above were charged so as to have potentials of +800 V and -800 V and then exposed to white light at an illuminance of 5 luxes to measure the sensitivities (dV/dT) of the photoreceptors. The results obtained are shown in Table 1.
REFERENCE EXAMPLE
An electrophotographic photoreceptor was prepared in the same manner as in Application Example 1 except that 2,4,7-trinitrofluorene (TNF) as described in JP-B-49-31658 and JP-B-50-10496 was used in place of Compound 3. (The term "JP-B" used herein means Japanese patent publication.) The sensitivity of this photoreceptor was likewise measured, and the results obtained are shown in Table 1.
APPLICATION EXAMPLE 2
A 0.1 μm-thick charge generating layer was formed on an electrically conductive substrate by vapor deposition of metal-free phthalocyanine. On the other hand, 0.5 g of Compound 1 or 2 and 0.75 g of bisphenol A polycarbonate were dispersed in 1,2-dichloroethane and the dispersion was treated with a ball mill. The resulting dispersion was coated on the above-formed charge generating layer at a wet thickness of 7 mils and then dried to prepare an electrophotographic photoreceptor. The thus obtained electrophotographic photoreceptors were evaluated for sensitivity in the same manner as in Application Example 1 except that the photoreceptors were charged so as to have surface potentials of +500 V and -500 V. The results obtained are shown in Table 1.
              TABLE 1                                                     
______________________________________                                    
             Sensitivity (V/sec)                                          
       Compound                                                           
               Positive charge                                            
                            Negative charge                               
______________________________________                                    
Application                                                               
         3         190           --*                                      
Example 1                                                                 
         4         90           --                                        
         5         165          --                                        
         6         86           --                                        
Reference                                                                 
         TNF       66           --                                        
Example                                                                   
Application                                                               
         1         70           --                                        
Example 2                                                                 
         2         85           --                                        
______________________________________                                    
 *Note: "--" means that the sample exhibited no sensitivity               
The fluorene derivative represented by formula (I) of the present invention is superior in electron transport characteristics to TNF known as a relatively excellent material and, hence, it is useful as an electron transport material for use in electrophotographic photoreceptors. For example, an electrophotographic photoreceptor of the positively charged type having excellent electrophotographic properties can be produced by forming a charge generating layer on an electrically conductive support and then applying the fluorene derivative of this invention on the charge generating layer together with a film-forming resin to form a charge transport layer.
While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof.

Claims (3)

What is claimed is:
1. A fluorene derivative represented by formula (I) ##STR20## wherein R1 represents a hydrogen atom or a phenyl group, R2 represents a hydrogen atom, a nitro group, or an alkoxycarbonyl group, and R3 and R4 each represents a hydrogen atom or an alkyl group.
2. A fluorene derivative as in claim 1, wherein the alkoxycarbonyl group for R2 has 2 to 9 carbon atoms, and the alkyl group for R3 and R4 has 1 to 8 caron atoms.
3. A fluorene derivative as in claim 2, wherein the group of ##STR21## is bonded at 2- or 4- position of the fluorene nucleus.
US07/506,602 1988-11-16 1990-04-10 Fluorene derivative Expired - Lifetime US5075487A (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP63287613A JPH02135357A (en) 1988-11-16 1988-11-16 Electrophotographic sensitive body
JP63287618A JPH02135361A (en) 1988-11-16 1988-11-16 Electrophotographic sensitive body
JP63287621A JPH02135358A (en) 1988-11-16 1988-11-16 Electrophotographic sensitive body
JP63287620A JPH02135362A (en) 1988-11-16 1988-11-16 Electrophotographic sensitive body
JP1087860A JPH0657689B2 (en) 1989-04-10 1989-04-10 Fluorene derivative
JP1-87860 1989-04-10

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US07/436,875 Continuation-In-Part US5011757A (en) 1988-11-16 1989-11-15 Electrophotographic photoreceptor containing a fluorene derivative

Publications (1)

Publication Number Publication Date
US5075487A true US5075487A (en) 1991-12-24

Family

ID=27525306

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/506,602 Expired - Lifetime US5075487A (en) 1988-11-16 1990-04-10 Fluorene derivative

Country Status (1)

Country Link
US (1) US5075487A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002065984A2 (en) * 2001-02-16 2002-08-29 Bristol-Myers Squibb Company Compounds having retinoid-like activity
US20030235771A1 (en) * 2002-06-07 2003-12-25 Samsung Electronics Co., Ltd. Single layered electrophotographic photoreceptor
US9125829B2 (en) 2012-08-17 2015-09-08 Hallstar Innovations Corp. Method of photostabilizing UV absorbers, particularly dibenzyolmethane derivatives, e.g., Avobenzone, with cyano-containing fused tricyclic compounds
US9145383B2 (en) 2012-08-10 2015-09-29 Hallstar Innovations Corp. Compositions, apparatus, systems, and methods for resolving electronic excited states
US9184388B2 (en) 2010-07-29 2015-11-10 Sumitomo Chemical Company, Limited Layered structure, electronic device using same, aromatic compound, and method for manufacturing said compound
US9867800B2 (en) 2012-08-10 2018-01-16 Hallstar Innovations Corp. Method of quenching singlet and triplet excited states of pigments, such as porphyrin compounds, particularly protoporphyrin IX, with conjugated fused tricyclic compounds have electron withdrawing groups, to reduce generation of reactive oxygen species, particularly singlet oxygen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5011969A (en) * 1988-11-16 1991-04-30 Fuji Xerox Co., Ltd. Fluorene derivative and process for preparation thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5011969A (en) * 1988-11-16 1991-04-30 Fuji Xerox Co., Ltd. Fluorene derivative and process for preparation thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002065984A2 (en) * 2001-02-16 2002-08-29 Bristol-Myers Squibb Company Compounds having retinoid-like activity
US6825233B2 (en) 2001-02-16 2004-11-30 Bristol-Myers Squibb Company Compounds having retinoid-like activity
WO2002065984A3 (en) * 2001-02-16 2009-06-11 Bristol Myers Squibb Co Compounds having retinoid-like activity
US20030235771A1 (en) * 2002-06-07 2003-12-25 Samsung Electronics Co., Ltd. Single layered electrophotographic photoreceptor
US7045264B2 (en) * 2002-06-07 2006-05-16 Samsung Electronics Co., Ltd. Single layered electrophotographic photoreceptor
US9184388B2 (en) 2010-07-29 2015-11-10 Sumitomo Chemical Company, Limited Layered structure, electronic device using same, aromatic compound, and method for manufacturing said compound
US9145383B2 (en) 2012-08-10 2015-09-29 Hallstar Innovations Corp. Compositions, apparatus, systems, and methods for resolving electronic excited states
US9611246B2 (en) 2012-08-10 2017-04-04 Hallstar Innovations Corp. Compositions, apparatus, systems, and methods for resolving electronic excited states
US9765051B2 (en) 2012-08-10 2017-09-19 Hallstar Innovations Corp. Compositions, apparatus, systems, and methods for resolving electronic excited states
US9867800B2 (en) 2012-08-10 2018-01-16 Hallstar Innovations Corp. Method of quenching singlet and triplet excited states of pigments, such as porphyrin compounds, particularly protoporphyrin IX, with conjugated fused tricyclic compounds have electron withdrawing groups, to reduce generation of reactive oxygen species, particularly singlet oxygen
US9926289B2 (en) 2012-08-10 2018-03-27 Hallstar Innovations Corp. Compositions, apparatus, systems, and methods for resolving electronic excited states
US10632096B2 (en) 2012-08-10 2020-04-28 HallStar Beauty and Personal Care Innovations Company Method of quenching singlet and triplet excited states of photodegradable pigments, such as porphyrin compounds, particularly protoporphyrin IX, with conjugated fused tricyclic compounds having electron withdrawing groups, to reduce generation of singlet oxygen
US9125829B2 (en) 2012-08-17 2015-09-08 Hallstar Innovations Corp. Method of photostabilizing UV absorbers, particularly dibenzyolmethane derivatives, e.g., Avobenzone, with cyano-containing fused tricyclic compounds

Similar Documents

Publication Publication Date Title
US4514481A (en) 4H-Thiopyran-1,1-dioxide and electrophotographic layers and elements comprising same
US4933245A (en) Electrophotographic photoreceptor
EP0234247B1 (en) Electrophotographic photoreceptor and electrophotographic process
JPH02135361A (en) Electrophotographic sensitive body
US4485160A (en) Electrophotographic hydrazone plate
DE69411665T2 (en) Triphenylamine derivatives and charge transfer material and electrophotographic photoreceptors containing them
JP2990307B2 (en) Electrophotographic photoreceptor
JPH04338760A (en) Electrophotographic sensitive body
US4642280A (en) Electrophotographic photoreceptors containing hydrazone compounds as charge-transfer agents
US5075487A (en) Fluorene derivative
JPH04290851A (en) New styryl compound and photo-sensitive material containing the same
US5011757A (en) Electrophotographic photoreceptor containing a fluorene derivative
US5011969A (en) Fluorene derivative and process for preparation thereof
JP2572650B2 (en) Electrophotographic photoreceptor
US5389480A (en) Electrophotographic photoreceptor
EP1435355B1 (en) Stilbeneamine derivatives and electrophotosensitive material using the same
US4192677A (en) 1,3,4-Oxadiazole derivatives and use thereof
US5753393A (en) Electrophotographic photoreceptor
US5008431A (en) Benzophenone derivative
US6090512A (en) Electrophotographic photoreceptor
JPH02135357A (en) Electrophotographic sensitive body
US4871633A (en) Photosensitive member comprising azo compound having pyridine-n-oxide or pyridazine-n oxide
US5502196A (en) Pyrrolo 3,4-c!pyrroles containing amine oxide groups
US4450217A (en) Chalcogenopentalene compounds in electrophotography
JPH04282349A (en) Distyryl compound and its production

Legal Events

Date Code Title Description
AS Assignment

Owner name: FUJI XEROX, CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:SATO, KATSUHIRO;NUKADA, KATSUMI;AKASAKI, YUTAKA;REEL/FRAME:005317/0675

Effective date: 19900509

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12