US5059657A - Polymerization of selected vinyl monomers - Google Patents
Polymerization of selected vinyl monomers Download PDFInfo
- Publication number
- US5059657A US5059657A US07/562,981 US56298190A US5059657A US 5059657 A US5059657 A US 5059657A US 56298190 A US56298190 A US 56298190A US 5059657 A US5059657 A US 5059657A
- Authority
- US
- United States
- Prior art keywords
- recited
- sub
- component
- sup
- polymerization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000178 monomer Substances 0.000 title claims abstract description 31
- 238000006116 polymerization reaction Methods 0.000 title claims abstract description 31
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 title claims description 12
- 229920002554 vinyl polymer Polymers 0.000 title claims description 12
- 238000000034 method Methods 0.000 claims abstract description 59
- JRNVZBWKYDBUCA-UHFFFAOYSA-N N-chlorosuccinimide Chemical compound ClN1C(=O)CCC1=O JRNVZBWKYDBUCA-UHFFFAOYSA-N 0.000 claims abstract description 14
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims abstract description 12
- NFMHSPWHNQRFNR-UHFFFAOYSA-N hyponitrous acid Chemical compound ON=NO NFMHSPWHNQRFNR-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229920001400 block copolymer Polymers 0.000 claims abstract description 10
- 239000012954 diazonium Substances 0.000 claims abstract description 10
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Chemical compound BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 claims abstract description 8
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate Chemical compound [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 claims abstract description 8
- 150000001989 diazonium salts Chemical class 0.000 claims abstract description 7
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 30
- -1 p-cyanophenyl Chemical group 0.000 claims description 21
- 239000011734 sodium Substances 0.000 claims description 15
- 125000001424 substituent group Chemical group 0.000 claims description 10
- 125000003118 aryl group Chemical group 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 9
- 239000000839 emulsion Substances 0.000 claims description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 6
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 claims description 5
- 125000000636 p-nitrophenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)[N+]([O-])=O 0.000 claims description 5
- 239000000725 suspension Substances 0.000 claims description 5
- 125000005207 tetraalkylammonium group Chemical group 0.000 claims description 5
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 claims description 4
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 claims description 4
- 125000000217 alkyl group Chemical group 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 125000003107 substituted aryl group Chemical group 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 229910052783 alkali metal Inorganic materials 0.000 claims description 3
- 150000001340 alkali metals Chemical class 0.000 claims description 3
- 150000001450 anions Chemical group 0.000 claims description 3
- 125000004432 carbon atom Chemical group C* 0.000 claims description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 3
- HIDBROSJWZYGSZ-UHFFFAOYSA-N 1-phenylpyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C1=CC=CC=C1 HIDBROSJWZYGSZ-UHFFFAOYSA-N 0.000 claims description 2
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 claims description 2
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 claims description 2
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 claims description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical group C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical group [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 2
- 239000007900 aqueous suspension Substances 0.000 claims description 2
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 claims description 2
- OIWOHHBRDFKZNC-UHFFFAOYSA-N cyclohexyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1CCCCC1 OIWOHHBRDFKZNC-UHFFFAOYSA-N 0.000 claims description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 2
- 150000002500 ions Chemical class 0.000 claims description 2
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 claims description 2
- WRAQQYDMVSCOTE-UHFFFAOYSA-N phenyl prop-2-enoate Chemical compound C=CC(=O)OC1=CC=CC=C1 WRAQQYDMVSCOTE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052700 potassium Inorganic materials 0.000 claims description 2
- 239000011591 potassium Chemical group 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 150000001805 chlorine compounds Chemical group 0.000 claims 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims 1
- 229920000642 polymer Polymers 0.000 abstract description 36
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 abstract description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 36
- 239000004926 polymethyl methacrylate Substances 0.000 description 36
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 33
- 229920006362 Teflon® Polymers 0.000 description 15
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 14
- 101150118584 NPHS1 gene Proteins 0.000 description 12
- 238000003756 stirring Methods 0.000 description 11
- 239000011521 glass Substances 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 9
- 238000005481 NMR spectroscopy Methods 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- YOIZTLBZAMFVPK-UHFFFAOYSA-N 2-(3-ethoxy-4-hydroxyphenyl)-2-hydroxyacetic acid Chemical compound CCOC1=CC(C(O)C(O)=O)=CC=C1O YOIZTLBZAMFVPK-UHFFFAOYSA-N 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- ZVCDLGYNFYZZOK-UHFFFAOYSA-M sodium cyanate Chemical compound [Na]OC#N ZVCDLGYNFYZZOK-UHFFFAOYSA-M 0.000 description 6
- 239000003039 volatile agent Substances 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 4
- 238000000113 differential scanning calorimetry Methods 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 125000001183 hydrocarbyl group Chemical group 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 150000001913 cyanates Chemical class 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- LDMOEFOXLIZJOW-UHFFFAOYSA-N 1-dodecanesulfonic acid Chemical compound CCCCCCCCCCCCS(O)(=O)=O LDMOEFOXLIZJOW-UHFFFAOYSA-N 0.000 description 2
- UAJRSHJHFRVGMG-UHFFFAOYSA-N 1-ethenyl-4-methoxybenzene Chemical compound COC1=CC=C(C=C)C=C1 UAJRSHJHFRVGMG-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 102100026735 Coagulation factor VIII Human genes 0.000 description 2
- 101000911390 Homo sapiens Coagulation factor VIII Proteins 0.000 description 2
- 229930194542 Keto Natural products 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 125000000468 ketone group Chemical group 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 2
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 150000001253 acrylic acids Chemical class 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 150000003983 crown ethers Chemical class 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 150000008040 ionic compounds Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 238000006053 organic reaction Methods 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 101150035983 str1 gene Proteins 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- WHRNULOCNSKMGB-UHFFFAOYSA-N tetrahydrofuran thf Chemical compound C1CCOC1.C1CCOC1 WHRNULOCNSKMGB-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F293/00—Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
Definitions
- This invention concerns a process for the polymerization of selected vinyl monomers, by contacting the vinyl monomer with an aryl diazotate, a cyanate, or a hyponitrite, and an aryl diazonium salt or an N-halosuccinimide.
- the polymers produced are useful for initiating further polymerization.
- Useful block polymers can also be produced.
- U.S. Pat. No. 4,761,360 describes a light sensitive material containing a silver halide, a reducing agent, a polymerizable compound (vinyl monomer) and a silver diazotate. This mixture is reported to be stable (indeed it is said to be an advantage) until the material is exposed to light, and then heated, at which time the vinyl monomer is polymerized. In the instant process a silver halide is not present.
- This process which may be carried out in a variety of ways, such as neat, in solution, or as an emulsion, may be restarted after the polymerization has stopped. This surprising property may be utilized to prepare block copolymers.
- This invention concerns a process for the polymerization of vinyl monomers, comprising, contacting:
- acrylic monomers particularly acrylic acids and esters.
- acrylic is meant a compound of the formula ##STR1## wherein the open valence is attached to a hydrocarbyloxy or substituted hydrocarbyloxy group to form an ester, or a hydroxy group to form an acid.
- the group R 3 is an alkyl group containing up to 4 carbon atoms or hydrogen. Preferred R 3 groups are methyl and hydrogen.
- Preferred acrylic monomers are acrylic acid, methacrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, phenyl acrylate, cyclohexyl methacrylate, 2-hydroxyethyl acrylate, and 2-hydroxyethyl methacrylate.
- substituted hydrocarbyl(oxy) herein is meant a hydrocarbyl(oxy) group that contains one or more substituents that do not interfere with the polymerization process.
- the substituents may be between hydrocarbyl segments, such as ether and amino. Examples of other suitable substituents include, but are not limited to fluoro, keto (oxo), ester, amido, and silyl.
- cyanates, diazotates, and hyponitrites used herein are metal and tetrahydrocarbylammonium salts.
- substituted aryl herein is meant an aryl group that contains one or more substituents that do not interfere with the polymerization process.
- the substituents may be between hydrocarbyl segments, such as ether and amino. Examples of other suitable substituents include, but are not limited to fluoro, keto (oxo), ester, amide, silyl, alkyl, and cycloalkyl. It is preferred if the aryl group, Ar 1 , is substituted with one or more electron withdrawing substituents.
- An electron withdrawing substituent has a so-called Hammett Constant of about 0.2 or more (for a listing of Hammett Constants, see H. Jaffe, Chem. Rev., vol. 53, pg. 222-223 (1953), which is hereby included by reference).
- Especially preferred substituents are nitro and nitrile.
- Especially preferred Ar 1 groups are p-nitrophenyl, and p-cyanophenyl.
- Preferred metal ions for the cyanate, diazotate, and hyponitrite salts are alkali metals and tetraalkylammonium and especially preferred are sodium, potassium and tetraalkylammonium.
- the diazonium salts used in the instant process have the formula Ar 2 N 2 + X - , and such diazonium compounds are well known to those skilled in the art. It is preferred if the group Ar 2 is derived from benzene, and preferred Ar 2 groups are phenyl, and p-nitrophenyl. Preferred anions X are chloride, hexafluorophosphate, hexafluoroantimonate, and tetrafluoroborate.
- the process may be run neat (no additional compounds added) or in a solvent, emulsion or suspension. No matter how the reaction is run, it is important that at least some of each ingredient be present in a single phase, at least to start the polymerization.
- ingredients (b) and (c), which are salts may not be soluble in the neat reaction medium, which normally is mostly vinyl monomer.
- the salts may be solublized by the addition of small amounts of polar solvents, or so-called crown ethers, which are known to those skilled in the art to solublize ionic compounds in nonpolar solvents. Other well known methods may be used.
- a solvent is usually meant a compound that can dissolve the monomer, polymer, and at least a small amount of the (b) and (c) components, although, for example, the solvent may only dissolve small amounts of polymer.
- Small amounts of compatibilizing compounds such as methanol, acetone and tetrahydrofuran, may also be useful.
- the process may be run in emulsion or suspension, preferably aqueous emulsion and aqueous suspension.
- the process is run at from about -20° C. to about 120° C., preferably about 0° C. to about 60° C., and most preferably about 10° C. to about 40° C.
- cooling may be necessary to control the temperature. It is preferred to exclude oxygen, a convenient method to do this is to use an inert atmosphere such as nitrogen.
- the use of mild agitation is preferred, especially if the ingredients and/or products form more than one phase.
- block copolymer By block copolymer is meant ". . . a polymer comprising molecules in which there is a linear arrangement of blocks.
- a block is defined as a portion of a polymer molecule in which the monomeric units have at least one constitutional or configurational feature absent from adjacent portions.
- the distinguishing feature is constitutional, i.e., each of the blocks comprises units derived from a characteristic species of monomer.” (Quotation from H. Mark, et. al., Encyclopedia of Polymer Science and Engineering, John Wiley and Sons, New York, 1985, vol. 2, pg. 324.)
- Block copolymers are produced by sequential addition of monomers. That is, a block is started with one or more monomers. When those monomers are used up (polymerized), a second monomer(s) is added to make the next block. Block polymers are a preferred product of this process.
- the polymers made by the process of this invention retain the unusual property of being able to initiate polymerization (herein termed a "secondary polymerization") of one of the selected monomers useful in the instant process. Temperatures needed for this secondary polymerization are about 80° C. to about 120° C., preferably about 90° C. to about 100° C. For the secondary polymerization no other ingredients other than the vinyl monomer and polymer are necessary, but it is convenient to mix the vinyl monomer and polymer in solution, so it is preferred to carry out the secondary polymerization in a solvent.
- the monomer may act as the solvent, in other words, in this case the secondary polymerization is done neat.
- Block copolymers may also be made by secondary polymerization. It is preferred if oxygen is excluded from the secondary polymerization.
- the polymers produced by the instant process are useful as molding resins, in coatings, and in films. They may be formed into useful articles by processes well known to those skilled in the art.
- P -- - indicates the polymer of the monomer acronym that follows
- Examples 1 through 26 were all carried out essentially identically, except for minor differences noted at the bottom of Table I. Most reactions involved syringe needle sparging with N 2 to remove air. The final polymers were analyzed by GPC on total product samples obtained by simply removing volatiles by vacuum (0.1 mm Hg), except for Examples 1 and 4, which involved precipitating the polymers from CH 2 Cl 2 with methanol.
- Example 27 The procedure and techniques described for Example 27 were repeated, except that a 30 cc bottle capped with a metal cap and a Teflon®-coated silicone disk, was used for the reaction. Rubber tubing, connected to N 2 inlet and outlet needles, was used to purge the bottle of air, and a Teflon®-coated stir bar was used for agitation.
- the empty bottle was charged with: 0.50 m moles ⁇ N 2 BF 4 , 0.52 m moles NaOCN, and 50 m moles MMA.
- the bottle was then capped and N 2 -purged, then placed in a 35° oil bath. At t+0, 1 cc of N 2 -purged methanol was injected and samples were withdrawn with time.
- Example 28 The procedure described for Example 28, including the use of a 30 cc glass bottle, was repeated as follows, at 25°.
- the 30 cc bottle was charged with: 0.40 m mole ⁇ N 2 BF 4 and 40 m mole MMA.
- a 0.52 g portion of the PMMA was placed in a 30 cc crimp cap vial with a stir bar, was sealed with a Teflon®-coated silicone disk, and was purged with N 2 .
- 5 cc of N 2 -purged BA and 2 cc of N 2 -purged acetone were injected and the resulting solution was stirred at 30° for 3 hours.
- a 6.64 g portion of the resulting polymer was stripped of volatiles to give 1.03 g of polymer (PMMA/PBA).
- the samples of PMMA and PMMA/PBA were characterized by lH NMR, GPC, and DSC (differential scanning calorimetry).
- Example 30 The procedure described for Example 30 was repeated, with the same periods of heating at 30°, except for using the following amounts of reagents: 0.67 mmole ⁇ N 2 BF 4 , 0.24 m mole Na 2 N 2 O 2 , and 52.9 m mole MMA.
- a 2 cc portion of N 2 -purged methanol was used in the preparation of PMMA.
- a 0.42 g sample of PMMA was heated at 30° and stirred with 5 cc of N 2 -purged BA and 2 cc of N 2 -purged acetone for 3 hours to prepare the final PMMA/PBA.
- the PMMA/PBA polymer was characterized by 1 H NMR and GPC.
- the final polymer was purified by dissolving the reaction product in about 5 cc of THF, followed by pouring into 50 cc methanol. A milky suspension resulted, even on cooling to 0°, so the solvent was allowed to evaporate, by standing in a fume hood for about 16 hours. A 3.54 g sample of tan solid resulted. The tan solid was dissolved in about 5 cc of THF, followed by pouring into 50 cc of heptane. A precipitate was collected by filtration, was air dried, and weighed 2.12 g. The PEHMA and PEHMA//PEHMA/PMAA polymers were analyzed by 1 H NMR, GPC, and acid titration for PMAA content.
- the liquid in vial B was then vacuum stripped (0.05 mm) to remove volatiles, giving rise to solid PMMA.
- the vial was sealed with a Teflon®-coated rubber septum, was purged with N 2 for about 15 minutes and was stirred and heated at 90° for 70 minutes.
- the contents of vial C were stripped (0.05 mm) to remove volatiles, giving rise to PMMA/PBA.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Graft Or Block Polymers (AREA)
Abstract
A process for the polymerization of selected acrylic and maleimide monomers by contacting the monomers with a diazotate, cyanate or hyponitrite, and N-chlorosuccinimide, N-bromosuccinimide or a diazonium salt. The polymers produced can themselves initiate further polymerization. Block copolymers can be produced.
Description
This invention concerns a process for the polymerization of selected vinyl monomers, by contacting the vinyl monomer with an aryl diazotate, a cyanate, or a hyponitrite, and an aryl diazonium salt or an N-halosuccinimide. The polymers produced are useful for initiating further polymerization. Useful block polymers can also be produced.
H. K. Hall Jr. and M. A. Howey, Polym. Bull., vol. 12, pg. 427-431 (1984) report that aryl diazonium salts polymerize p-methoxystyrene in nitrobenzene. No mention is made of cyanates or hyponitrites, or the ability to restart the polymerization.
H. Warson in two papers (Die Makromol. Chem., vol. 105, pg. 228-250 (1967)) reports that aryl diazonium compounds with either bisulfite or hypophosphorous acid will polymerize acrylonitrile.
P. R. Singh, et al., Tet. Lett., vol. 23, pg. 5191-5194 (1982) report the aryl diazonium ions react with nitrite ions to give free radical type intermediates. No mention is made of polymerization.
C. Walling, Free Radical in Solution, John Wiley & Sons, Inc., New York, 1957, pp. 518-519 and W. E. Bachmann and R. A. Hoffman, in R. Adams, Ed., Organic Reactions, Vol. II, John Wiley & Sons, Inc., New York, 1944, pp. 226-230 speculate that aryldiazohydroxides, which are said to be in equilibrium with their sodium salts when in contact with sodium hydroxide, decompose readily at room temperature to give free radicals.
In all of the above references, there is no mention of the use of diazotate, cyanate, hyponitrite "coagents", the use of these compounds for acrylic polymerizations, or the possibility of an "interruptible" polymerization.
U.S. Pat. No. 4,581,429, describes the use of a compound of the formula (here modified) Ra 2 N--O--X, wherein Ra is a hindered alkyl group and X is a group containing at least one carbon atom. Although this compound can initiate acrylic polymerization, and the polymerization is interruptible, no mention is made of diazonium salts, diazotates, cyanates or hyponitrites.
U.S. Pat. No. 4,761,360 describes a light sensitive material containing a silver halide, a reducing agent, a polymerizable compound (vinyl monomer) and a silver diazotate. This mixture is reported to be stable (indeed it is said to be an advantage) until the material is exposed to light, and then heated, at which time the vinyl monomer is polymerized. In the instant process a silver halide is not present.
It is the object of this invention to provide a method for the polymerization of acrylic and maleimide monomers, by contacting the monomers with an aryl diazotate, a cyanate, or a hyponitrite, and an aryl diazonium salt or an N-halosuccinimide. This process, which may be carried out in a variety of ways, such as neat, in solution, or as an emulsion, may be restarted after the polymerization has stopped. This surprising property may be utilized to prepare block copolymers.
This invention concerns a process for the polymerization of vinyl monomers, comprising, contacting:
(a) an acrylic monomer or N-phenylmaleimide;
(b) a diazotate of the formula Ar1 --N═N--O- M+, or a cyanate of the formula MOCN, or a hyponitrite of the formula M2 N2 O2, wherein Ar1 is aryl or substituted aryl, and M is a metal or a tetrahydrocarbylammonium ion; and
(c) N-chlorosuccinimide, N-bromosuccinimide, or a diazonium salt of the formula Ar2 N2 + X-, wherein Ar2 is aryl or substituted aryl, and X is an anion.
Among the vinyl monomers useful in the instant process are acrylic monomers, particularly acrylic acids and esters. By the term acrylic is meant a compound of the formula ##STR1## wherein the open valence is attached to a hydrocarbyloxy or substituted hydrocarbyloxy group to form an ester, or a hydroxy group to form an acid. The group R3 is an alkyl group containing up to 4 carbon atoms or hydrogen. Preferred R3 groups are methyl and hydrogen. Preferred acrylic monomers are acrylic acid, methacrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, phenyl acrylate, cyclohexyl methacrylate, 2-hydroxyethyl acrylate, and 2-hydroxyethyl methacrylate.
By the term "substituted hydrocarbyl(oxy)" herein is meant a hydrocarbyl(oxy) group that contains one or more substituents that do not interfere with the polymerization process. The substituents may be between hydrocarbyl segments, such as ether and amino. Examples of other suitable substituents include, but are not limited to fluoro, keto (oxo), ester, amido, and silyl.
The cyanates, diazotates, and hyponitrites used herein are metal and tetrahydrocarbylammonium salts. By the term "substituted" aryl herein is meant an aryl group that contains one or more substituents that do not interfere with the polymerization process. The substituents may be between hydrocarbyl segments, such as ether and amino. Examples of other suitable substituents include, but are not limited to fluoro, keto (oxo), ester, amide, silyl, alkyl, and cycloalkyl. It is preferred if the aryl group, Ar1, is substituted with one or more electron withdrawing substituents. An electron withdrawing substituent has a so-called Hammett Constant of about 0.2 or more (for a listing of Hammett Constants, see H. Jaffe, Chem. Rev., vol. 53, pg. 222-223 (1953), which is hereby included by reference). Especially preferred substituents are nitro and nitrile. Especially preferred Ar1 groups are p-nitrophenyl, and p-cyanophenyl. Preferred metal ions for the cyanate, diazotate, and hyponitrite salts are alkali metals and tetraalkylammonium and especially preferred are sodium, potassium and tetraalkylammonium.
The diazonium salts used in the instant process have the formula Ar2 N2 + X-, and such diazonium compounds are well known to those skilled in the art. It is preferred if the group Ar2 is derived from benzene, and preferred Ar2 groups are phenyl, and p-nitrophenyl. Preferred anions X are chloride, hexafluorophosphate, hexafluoroantimonate, and tetrafluoroborate.
The process may be run neat (no additional compounds added) or in a solvent, emulsion or suspension. No matter how the reaction is run, it is important that at least some of each ingredient be present in a single phase, at least to start the polymerization. For example, when the process is run neat, ingredients (b) and (c), which are salts, may not be soluble in the neat reaction medium, which normally is mostly vinyl monomer. Thus the salts may be solublized by the addition of small amounts of polar solvents, or so-called crown ethers, which are known to those skilled in the art to solublize ionic compounds in nonpolar solvents. Other well known methods may be used. By a solvent is usually meant a compound that can dissolve the monomer, polymer, and at least a small amount of the (b) and (c) components, although, for example, the solvent may only dissolve small amounts of polymer. Small amounts of compatibilizing compounds, such as methanol, acetone and tetrahydrofuran, may also be useful. The process may be run in emulsion or suspension, preferably aqueous emulsion and aqueous suspension. These various methods are illustrated in the examples.
The process is run at from about -20° C. to about 120° C., preferably about 0° C. to about 60° C., and most preferably about 10° C. to about 40° C. During rapid polymerization, cooling may be necessary to control the temperature. It is preferred to exclude oxygen, a convenient method to do this is to use an inert atmosphere such as nitrogen. The use of mild agitation is preferred, especially if the ingredients and/or products form more than one phase.
It is possible with this process to prepare block copolymers. By block copolymer is meant ". . . a polymer comprising molecules in which there is a linear arrangement of blocks. A block is defined as a portion of a polymer molecule in which the monomeric units have at least one constitutional or configurational feature absent from adjacent portions. In a block copolymer the distinguishing feature is constitutional, i.e., each of the blocks comprises units derived from a characteristic species of monomer." (Quotation from H. Mark, et. al., Encyclopedia of Polymer Science and Engineering, John Wiley and Sons, New York, 1985, vol. 2, pg. 324.) Block copolymers are produced by sequential addition of monomers. That is, a block is started with one or more monomers. When those monomers are used up (polymerized), a second monomer(s) is added to make the next block. Block polymers are a preferred product of this process.
The polymers made by the process of this invention, even after isolation, as by stripping off solvent under vacuum, or precipitation from a nonsolvent, retain the unusual property of being able to initiate polymerization (herein termed a "secondary polymerization") of one of the selected monomers useful in the instant process. Temperatures needed for this secondary polymerization are about 80° C. to about 120° C., preferably about 90° C. to about 100° C. For the secondary polymerization no other ingredients other than the vinyl monomer and polymer are necessary, but it is convenient to mix the vinyl monomer and polymer in solution, so it is preferred to carry out the secondary polymerization in a solvent. If the polymer is soluble in the vinyl monomer, the monomer may act as the solvent, in other words, in this case the secondary polymerization is done neat. Block copolymers may also be made by secondary polymerization. It is preferred if oxygen is excluded from the secondary polymerization.
The polymers produced by the instant process are useful as molding resins, in coatings, and in films. They may be formed into useful articles by processes well known to those skilled in the art.
In the Examples that follow, the following abbreviations are used:
BA - n-butyl acrylate
EHMA - 2-ethylhexyl methacrylate
HEMA - 2-hydroxyethyl methacrylate
MA - methyl acrylate
MAA - methacrylic acid
MMA - methyl methacrylate
Mn - number average molecular weight
Mw - weight average molecular weight
P-- - indicates the polymer of the monomer acronym that follows
Ph or φ - phenyl or phenylene
THF - tetrahydrofuran
To a 6 cc glass vial, containing a Teflon®-coated stir bar, in a N2 -filled dry box, was charged: 0.1 m mole φN2 BF4, 0.5 cc N2 -purged acetone, and 9.4 m mole N2 -purged MMA. Then 0.05 mmole Na2 N2 O2 was added, the vial was sealed with a Teflon®-coated silicon disk, and stirring was started. After stirring for 24 hours, the contents of the vial were combined with 5 cc CH2 Cl2 which was then poured into 20 cc of 0° methanol. The precipitated polymer was air dried and a sample was analyzed by GPC, giving MW =32,400 and MN =16,400.
Examples 1 through 26 were all carried out essentially identically, except for minor differences noted at the bottom of Table I. Most reactions involved syringe needle sparging with N2 to remove air. The final polymers were analyzed by GPC on total product samples obtained by simply removing volatiles by vacuum (0.1 mm Hg), except for Examples 1 and 4, which involved precipitating the polymers from CH2 Cl2 with methanol.
TABLE I
__________________________________________________________________________
Co-Solv
(Vol)/
Temp. °C.
Monomer
Initi-
Ex.
Component (c),
mmole
Component (b),
mmole
Monomer,
mmole
Co-Solvent
(Vol) ation
Rxn
__________________________________________________________________________
1 PhN.sub.2 BF.sub.4
0.10
Na.sub.2 N.sub.2 O.sub.2
0.05
MMA 9.4 CH.sub.3 COCH.sub.3
0.5/1 25 25
2 PhN.sub.2 BF.sub.4
0.10
Na.sub.2 N.sub.2 O.sub.2
0.05
MMA 9.4 CH.sub.3 CN
0.5/1 25 25
3 PhN.sub.2 BF.sub.4
0.10
Na.sub.2 N.sub.2 O.sub.2
0.05
BA 5.8 CH.sub.3 CN
0.5/1 25 25
4 PhN.sub.2 BF.sub.4
0.10
Na.sub.2 N.sub.2 O.sub.2
0.05
HEMA 7.2 CH.sub.3 CN
0.5/1 25 25
5 PhN.sub.2 BF.sub.4
0.10
(Bu.sub.4 N).sub.2 N.sub.2 O.sub.2
0.05
MMA 10 CH.sub.3 CN
0.5/1 25 25
40 40
6 PhN.sub.2 BF.sub.4
0.10
Li.sub.2 N.sub.2 O.sub.2
0.05
MMA 10 CH.sub.3 CN
0.5/1 25
7 PhN.sub.2 PF.sub.6
0.30
Na.sub.2 N.sub.2 O.sub.2
0.15
MMA CH.sub.3 CN
0.5/1 25 40
8 p-O.sub.2 NPhN.sub.2 BF.sub.4
0.33
Na.sub.2 N.sub.2 O.sub.2
0.17
N-Ph- 6.2 CH.sub.3 COCH.sub.3
5 cc/1.1
40 40
Maleimide
9 p-O.sub.2 NPhN.sub.2 BF.sub.4
0.25
Na.sub.2 N.sub.2 O.sub.2
0.13
MMA 23 CH.sub.3 OH
0.4/1 -50 0
40
10 p-O.sub.2 NPhN.sub.2 BF.sub.4
0.50
Na.sub.2 N.sub.2 O.sub.2
0.25
MMA 50 CH.sub.3 COCH.sub.3
0.5/1 40 40
11 p-O.sub.2 NPhN.sub.2 BF.sub.4
0.10
p-O.sub.2 NPhN=NONa
0.10
MMA 5.1 DMF 1/1 30 25
12 PhN.sub.2 BF.sub.4
0.10
[(CH.sub.3).sub.4 N)].sub.2 N.sub.2 O.sub.2
0.10
MA 5.0 CH.sub.3 OH
0.22/1
-78 0
Toluene
2.2/1 25
13 p-C.sub.10 H.sub.21 PhN.sub.2 SbF.sub.6
0.10
[(C.sub.4 H.sub.9).sub.4 N].sub.2 N.sub.2 O.sub.2
0.05
MMA 3.4 CH.sub.3 CN
1/1 25 25
14 p-C.sub.10 H.sub.21 PhN.sub.2 SbF.sub.6
0.04
[(C.sub.4 H.sub.9).sub.4 N].sub.2 N.sub.2 O.sub.2
0.04
MA 1.1 CH.sub.3 CN
2.6/1 25 25
15 p-C.sub.10 H.sub.21 PhN.sub.2 SbF.sub.6
0.05
p-O.sub.2 NPhN=NONa
0.05
MMA 5.2 Toluene
2/1 25 25
16 PhN.sub.2 BF.sub.4
0.10
Na.sub.2 N.sub.2 O.sub.2
0.05
EHMA 5.0 CH.sub.3 OH
0.18/1
25 25
17 p-O.sub.2 NPhN.sub.2 BF.sub.4
0.10
Na.sub.2 N.sub.2 O.sub.2
0.05
MMA 10 H.sub.2 O
0.2/1 25 25
18 p-O.sub.2 NPhN.sub.2 BF.sub.4
0.40
Na.sub.2 N.sub.2 O.sub.2
0.22
MMA 4 H.sub.2 O.sup.d
3.5/1 25 25
19 p-O.sub.2 NPhN.sub.2 BF.sub.4
0.40
Na.sub.2 N.sub.2 O.sub.2
0.22
MA 4 H.sub.2 O.sup.d
4.2/1 25 25
20 N-Cl-Succinimide
0.10
Na.sub.2 N.sub.2 O.sub.2
0.10
MMA 10 H.sub.2 O
0.2/1 25 25
21 N-Cl-Succinimide
0.05
p-O.sub.2 NPhN=NONa
0.05
MMA 5 H.sub.2 O
0.2/1 25 25
22 N-Cl-Succinimide
0.10
NaOCN 0.10
MMA 10 H.sub.2 O
0.2/1 25 25
23 N-Cl-Succinimide
0.10
NaOCN 0.10
MA 10 H.sub.2 O
0.2/1 25 25
24 p-O.sub.2 NPhN.sub.2 BF.sub.4
0.10
NaOCN 0.10
MMA 10 H.sub.2 O
0.2/1 25 25
25 PhN.sub.2 BF.sub.4
0.13
NaOCN 0.13
MMA 10 CH.sub.3 OH
0.2/1 25 25
26 p-O.sub.2 NPhN.sub.2 BF.sub.4
0.12
NaOCN 0.14
BA 10 H.sub.2 O.sup.e
10/1 25 25
__________________________________________________________________________
Ex. Time, hr. % Conv.
Mn Mw Reaction Vessel
__________________________________________________________________________
1 24 -- 16,400 32,400
.sup.a
2 24 -- 12,000 17,300
.sup.a
3 16 -- 33,500 128,000
.sup.a
4 16 solid .sup.a
5 16 -- 17,500 34,600
.sup.a
2
6 16 -- 5,920 22,600
7 0.5 10.sup.W
1,090 3,000
.sup.a
8 16 solid .sup.a
5 min. --
9 0.5 --
4 -- 11,400 21,100
.sup.a
10 2 -- 11,300 20,300
.sup.b
11 65 solid .sup.c
10 min. --
12 15 min.
165 min. ˜100.sup.N
6,350 34,000
.sup.c
13 20 25.sup.N .sup.c
14 68 78.sup.N .sup.c
15 4.7 (days) 29.sup.N
1,930 16,400
.sup.c
16 2.3 64.sup.N .sup.c
17 15 33.sup.N
19,400 62,800
.sup.c
18 17 91.sup.W
8,350 39,700
.sup.c
19 17 61.sup.W
2,090 33,000
.sup.c
20 21 15.sup.N .sup.c
21 16 28.sup.N
28,900 88,600
.sup.c
22 16 19.sup.N
11,800 37,900
.sup.c
23 16 4.sup.W
2,120 6,480
.sup.c
24 16 solid
32,400 523,000
.sup.c
25 15 solid
85,000 463,000
.sup.c
26 14 73.sup.W
66,700 908,000
.sup.f
__________________________________________________________________________
.sup.a 6 cc glass crimpcap vial
.sup.b 125 cc glass filter flask, sealed with rubber septa
.sup.c 3 cc glass septacapped vial
.sup.d H2O containing 0.05 wt. % lauryl sulfonate
.sup.e H2O containing 0.06 wt. % lauryl sulfonate
.sup.f 30 cc glass crimpcap vial
.sup.N % conversion determined by 1 H NMR
.sup.W % conversion determined by weight of vacuumstripped polymer
To a 50 cc three-necked glass round-bottomed flask, equipped with a thermometer, Teflon®-coated stir bar, water-cooled condenser, and N2 inlet and outlet tubes, was charged: 1.98 mmoles φN2 BF4, 0.78 mmoles Na2 N2 O2, and 214 mmoles MMA. The mixture was stirred and purged with N2 using a needle to admit N2 through the liquid for ten minutes. The needle was then changed to the vapor space. At t=0, 10 cc of N2 -purged methanol was injected, the pot was heated by means of an electric heating mantle to a liquid temperature of 40° C., and samples of about 1.5 cc each were withdrawn by syringe at the times shown below. Each sample was weighed in a 25 cc filter flask, vacuum stripped to remove volatiles (0.1 mm Hg) and re-weighed. GPC analyses were done for Mw and Mn, and % conversion was calculated for each sample.
______________________________________
Reaction time
at 40° (min.)
% Conv. M.sub.n
M.sub.w
______________________________________
45 17.6 2,310 6,770
90 24.0 3,350 10,900
135 31.6 4,710 12,800
180 43.1 5,310 14,500
225 41.5 4,230 15,500
______________________________________
The procedure and techniques described for Example 27 were repeated, except that a 30 cc bottle capped with a metal cap and a Teflon®-coated silicone disk, was used for the reaction. Rubber tubing, connected to N2 inlet and outlet needles, was used to purge the bottle of air, and a Teflon®-coated stir bar was used for agitation. The empty bottle was charged with: 0.50 m moles φN2 BF4, 0.52 m moles NaOCN, and 50 m moles MMA. The bottle was then capped and N2 -purged, then placed in a 35° oil bath. At t+0, 1 cc of N2 -purged methanol was injected and samples were withdrawn with time.
______________________________________
Reaction time
at 35° (hr)
% Conv. M.sub.n M.sub.w
______________________________________
1 21.7 9,230 83,800
2 34.7 9,900 128,000
3 44.4 17,400 200,000
______________________________________
The procedure described for Example 28, including the use of a 30 cc glass bottle, was repeated as follows, at 25°. The 30 cc bottle was charged with: 0.40 m mole φN2 BF4 and 40 m mole MMA. The bottle was sealed, N2 purged, and at t=0, injected with a N2 -purged solution of 0.40 m mole O2 NφN═NONa dissolved in 0.8 cc H2 O. Samples were removed by syringe as follows.
______________________________________
Reaction time
at 25° (min.)
% Conv. M.sub.n
M.sub.w
______________________________________
30 10.5 4,590 11,400
60 18.3 5,880 15,600
90 23.6 7,320 19,000
120 33.2 7,920 21,600
150 31.6 8,180 22,300
180 32.2 9,040 24,600
______________________________________
PMMA Preparation To a 25 cc filter flask, with a Teflon®-coated stir bar, was charged 0.69 mmole O2 NφN2 BF4, 0.24 mmole Na2 N2 O2, and 57.8 mmole MMA. The flask was sealed with a rubber septum and a rubber dropper bulb and was purged with N2 using inlet and outlet needles. At t=0, 2 cc of N2 -purged methanol was injected, the flask was heated at 30° and stirred for three hours. The volatiles were then removed by vacuum (0.1 mm Hg) stripping for 15 minutes at 25°. The polymeric product (PMMA) weighed 1.72 g. A 0.52 g portion of the PMMA was placed in a 30 cc crimp cap vial with a stir bar, was sealed with a Teflon®-coated silicone disk, and was purged with N2. Next, 5 cc of N2 -purged BA and 2 cc of N2 -purged acetone were injected and the resulting solution was stirred at 30° for 3 hours. A 6.64 g portion of the resulting polymer was stripped of volatiles to give 1.03 g of polymer (PMMA/PBA). The samples of PMMA and PMMA/PBA were characterized by lH NMR, GPC, and DSC (differential scanning calorimetry).
1 H NMR ##STR2## showed that the isolated PMMA contained<7% unreacted MMA. ##STR3## showed that the ratio of PBA/PMMA was 1.1.
______________________________________
GPC M.sub.n
M.sub.w
______________________________________
PMMA 4,540 20,900
PMMA/PBA 9,880 236,000
______________________________________
DSC A 0.76 g sample of PMMA/PBA was dissolved in 10 cc THF, filtered, reduced in volume to about 5 cc by vacuum (0.1 mm Hg), then poured into rapidly stirred 30 cc of methanol. The precipitated polymer was collected by filtration and dried at 65° for 16 hours at 15-20 inches of H2 O pressure. The final polymer (PMMA/PBA) weighed 0.63 g. A DSC analysis showed two distinct regions of phase transition; one at -37° (PBA) and one at +122° (PMMA). The two transitions show that the polymer was not a random copolymer, which would be expected to exhibit a single transition temperature midway between -37° and +122°.
The procedure described for Example 30 was repeated, with the same periods of heating at 30°, except for using the following amounts of reagents: 0.67 mmole φN2 BF4, 0.24 m mole Na2 N2 O2, and 52.9 m mole MMA. A 2 cc portion of N2 -purged methanol was used in the preparation of PMMA. A 0.42 g sample of PMMA was heated at 30° and stirred with 5 cc of N2 -purged BA and 2 cc of N2 -purged acetone for 3 hours to prepare the final PMMA/PBA. The PMMA/PBA polymer was characterized by 1 H NMR and GPC. The comparison of proton integrals for MMA (3.9 ppm) and PMMA (3.6 ppm) in the PMMA polymer showed a MMA/PMMA ratio of about 8/92. The PBA/PMMA ratio in the final polymer was about 1/4. The GPC analyses of the polymers gave the following:
______________________________________
M.sub.n
M.sub.w
______________________________________
PMMA 2,890 9,220
PMMA/PBA 3,900 16,300
______________________________________
To a 30 cc glass bottle was charged: 0.40 m mole φN2 BF4, 0.40 m mole Na2 N2 O2, and 20 m mole EHMA and a Teflon®-coated stir bar. The bottle was sealed using a Teflon®-coated silicone disk and the contents were N2 -purged using needles connected to a N2 source and an oil bubbler. At t=0, 0.8 cc of N2 -purged methanol was injected by syringe. At t=2 hours, about 1 cc of reaction liquid was removed by syringe for analysis by 1 H NMR and GPC. At t=2 hours a N2 -purged solution of 17.8 m mole MAA in 5 cc of THF was injected and the resulting solution was stirred for an additional 20 hours.
The final polymer was purified by dissolving the reaction product in about 5 cc of THF, followed by pouring into 50 cc methanol. A milky suspension resulted, even on cooling to 0°, so the solvent was allowed to evaporate, by standing in a fume hood for about 16 hours. A 3.54 g sample of tan solid resulted. The tan solid was dissolved in about 5 cc of THF, followed by pouring into 50 cc of heptane. A precipitate was collected by filtration, was air dried, and weighed 2.12 g. The PEHMA and PEHMA//PEHMA/PMAA polymers were analyzed by 1 H NMR, GPC, and acid titration for PMAA content. Comparison of the 1 H NMR integral for EHMA, 4.0 ppm ##STR4## showed a EHMA/PEHMA ratio of 5/3, or 37% conversion of EHMA to PEHMA, in the 2 hour sample. A 1 H NMR spectrum of the final PEHMA//PEHMA/PMAA polymer showed the presence of only a trace of residual EHMA.
______________________________________ GPC M.sub.n M.sub.w ______________________________________ PMMA 3,220 18,200 PMMA/PBA 28,700 56,200 ______________________________________
An acid titration was done to determine the amount of MAA in the final polymer. A 0.146 g portion of the final polymer was dissolved in 5 cc THF and 1 cc methanol, containing a drop of dilute phenolphthalein indicator solution. A total of 0.07 cc of 0.75 N aqueous NaOH solution was required to reach the endpoint. The calculated equivalent weight of the final polymer was 278 g/mole. The calculated ratio of PEHMA total/PMAA in the final polymer was 0.97.
To a 3 ml glass vial (A), containing Teflon®-coated magnetic stir bar, was charged 0.0465 g (0.31 mmole) AgOCN, 0.0414 g (0.30 mmole) N-chlorosuccinimide, and 2 ml THF. The vial was sealed with a Teflon®-coated rubber septum by means of a plastic screw cap and 22 gauge stainless needles were used to pass N2 through the vapor space for about 15 minutes. The contents of the vial were stirred for 30 minutes, then the stirrer stopped to allow solids to settle to the bottom of the vial. A second 3 ml vial (B), containing a Teflon®-coated magnetic stir bar, was charged with 1.07 ml (10 mmole) MMA and was sealed with a Teflon®-coated rubber septum and was purged with N2 for about 15 minutes. At t=0, 0.67 ml of the clear liquid phase from vial A was injected into vial B by syringe and the contents were stirred and heated in a 50° oil bath for about 16 hours. The liquid in vial B was then vacuum stripped (0.05 mm) to remove volatiles, giving rise to solid PMMA. A 3 ml glass vial (C), containing a Teflon®-coated stir bar, was charged with 0.0368 g of PMMA (vial B), 1 ml BA, and 1 ml ethyl acetate. The vial was sealed with a Teflon®-coated rubber septum, was purged with N2 for about 15 minutes and was stirred and heated at 90° for 70 minutes. The contents of vial C were stripped (0.05 mm) to remove volatiles, giving rise to PMMA/PBA. A 1 H NMR analysis of the PMMA/PBA showed the presence of PMMA (CH3 --O, 3.9 ppm) and PBA (C3 H7 --CH2 --O--, 4.0 ppm) in a mole ratio of PMMA/PBA=1/9.8. Samples of PMMA (vial B) and PMMA/PBA (vial C) were analyzed by GPC.
______________________________________ GPC M.sub.n M.sub.w ______________________________________ PMMA 53,000 144,000 PMMA/PBA 193,000 1,050,000 ______________________________________
The GPC elution curves for both polymers exhibited monomodal behavior. A 0.0274 g sample of PMMA (vial B), was combined with 1 ml of BA and 1 ml of ethyl acetate and was heated under N2 for 20 hours at 45°. A 1 H NMR analysis of the final solution showed the presence of no significant PBA.
Although preferred embodiments of the invention have been described hereinabove, it is to be understood that there is no intention to limit the invention to the precise constructions herein disclosed, and it is to be further understood that the right is reserved to all changes coming within the scope of the invention as defined by the appended claims.
Claims (34)
1. A process for the polymerization of vinyl monomers, comprising, contacting:
(a) an acrylic monomer or N-phenylmaleimide;
(b) a diazotate of the formula Ar1 --N═N--O--M+, or a cyanate of the formula MOCN, or a hyponitrite of the formula M2 N2 O2, wherein Ar1 is aryl or substituted aryl, and M is a metal or a tetrahydro-carbylammonium ion; and
(c) N-chlorosuccinimide, N-bromosuccinimide, or a diazonium salt of the formula Ar2 N2 + X-, wherein Ar2 is aryl or substituted aryl, and X is an anion.
2. The process as recited in claim 1 wherein said (a) component is a compound of the formula ##STR5## wherein the open valence is attached to a hydrocarbyloxy or substituted hydrocarbyloxy group, or a hydroxy group, and R3 is an alkyl group containing up to 4 carbon atoms or hydrogen.
3. The process as recited in claim 2 wherein said R3 is hydrogen or methyl.
4. The process as recited in claim 3 wherein said (a) component is acrylic acid, methacrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, phenyl acrylate, cyclohexyl methacrylate, 2-hydroxyethyl acrylate, or 2-hydroxyethyl methacrylate.
5. The process as recited in claim 1 wherein said M is an alkali metal or tetraalkylammonium.
6. The process as recited in claim 1 wherein said Ar1 contains one or more electron withdrawing substituents.
7. The process as recited in claim 1 wherein said Ar1 is p-nitrophenyl or p-cyanophenyl.
8. The process as recited in claim 7 wherein said M is an alkali metal or tetraalkylammonium.
9. The process as recited in claim 1 wherein said Ar2 is derived from benzene.
10. The process as recited in claim 9 wherein said Ar2 is phenyl, or p-nitrophenyl.
11. The process as recited in claim 8 wherein said Ar2 is phenyl or p-nitrophenyl.
12. The process as recited in claim 1 wherein said (b) component is said diazotate.
13. The process as recited in claim 1 wherein said (b) component is said cyanate.
14. The process as recited in claim 1 wherein said (b) component is said hyponitrite.
15. The process as recited in claim 1 wherein said (c) component is said diazonium salt.
16. The process as recited in claim 1 wherein said (c) component is N-chlorosuccinimide or N-bromosuccinimide.
17. The process as recited in claim 1 wherein said X is chloride, hexafluorophosphate, hexafluoroantimonate, or tetrafluoroborate.
18. The process as recited in claim 15 wherein said X is chloride, hexafluorophosphate, hexafluoroantimonate, or tetrafluoroborate.
19. The process as recited in claim 1 wherein the temperature is about -20° C. to about 120° C.
20. The process as recited in claim 19 wherein said temperature is about 0° C. to about 60° C.
21. The process as recited in claim 20 wherein said temperature is about 10° C. to about 40° C.
22. The process as recited in claim 1 carried out in solution.
23. The process as recited in claim 1 carried out as a suspension.
24. The process as recited in claim 23 wherein said suspension is an aqueous suspension.
25. The process as recited in claim 1 carried out as an emulsion.
26. The process as recited in claim 25 wherein said emulsion is an aqueous emulsion.
27. The process as recited in claim 1 wherein a block copolymer is produced.
28. The process as recited in claim 1, comprising the further step of a secondary polymerization.
29. The process as recited in claim 28 wherein said secondary polymerization is carried out at about 80° C. to about 120° C.
30. The process as recited in claim 3, comprising the further step of a secondary polymerization.
31. The process as recited in claim 28, wherein the product is a block copolymer.
32. The process as recited in claim 30, wherein the product is a block copolymer.
33. The process as recited in claim 29 wherein said secondary polymerization is carried out at about 90° C. to about 100° C.
34. The process as recited in claim 5 wherein said M is sodium, potassium or tetraalkylammonium.
Priority Applications (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US07/562,981 US5059657A (en) | 1990-08-06 | 1990-08-06 | Polymerization of selected vinyl monomers |
| DE69129629T DE69129629T2 (en) | 1990-08-06 | 1991-08-01 | POLYMERIZATION OF VINYL MONOMERS WITH A NEW CATALYST SYSTEM |
| ES91915360T ES2117012T3 (en) | 1990-08-06 | 1991-08-01 | VINYL MONOMER POLYMERIZATION WITH A NEW CATALYTIC SYSTEM. |
| JP3514473A JP3030084B2 (en) | 1990-08-06 | 1991-08-01 | Polymerization of selected vinyl monomers |
| CA002088782A CA2088782A1 (en) | 1990-08-06 | 1991-08-01 | Polymerization of selected vinyl monomers |
| EP91915360A EP0542877B1 (en) | 1990-08-06 | 1991-08-01 | Polymerisation of vinyl monomers with a new catalytic system |
| PCT/US1991/005331 WO1992002561A1 (en) | 1990-08-06 | 1991-08-01 | Polymerisation of vinyl monomers with a new catalytic system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US07/562,981 US5059657A (en) | 1990-08-06 | 1990-08-06 | Polymerization of selected vinyl monomers |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US5059657A true US5059657A (en) | 1991-10-22 |
Family
ID=24248591
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US07/562,981 Expired - Lifetime US5059657A (en) | 1990-08-06 | 1990-08-06 | Polymerization of selected vinyl monomers |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US5059657A (en) |
| EP (1) | EP0542877B1 (en) |
| JP (1) | JP3030084B2 (en) |
| CA (1) | CA2088782A1 (en) |
| DE (1) | DE69129629T2 (en) |
| ES (1) | ES2117012T3 (en) |
| WO (1) | WO1992002561A1 (en) |
Cited By (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5322912A (en) * | 1992-11-16 | 1994-06-21 | Xerox Corporation | Polymerization processes and toner compositions therefrom |
| US5412047A (en) * | 1994-05-13 | 1995-05-02 | Xerox Corporation | Homoacrylate polymerization processes with oxonitroxides |
| US5449724A (en) * | 1994-12-14 | 1995-09-12 | Xerox Corporation | Stable free radical polymerization process and thermoplastic materials produced therefrom |
| US5530079A (en) * | 1995-01-03 | 1996-06-25 | Xerox Corporation | Polymerization processes |
| US5552502A (en) * | 1995-11-16 | 1996-09-03 | Xerox Corporation | Polymerization process and compositions thereof |
| US5723511A (en) * | 1996-06-17 | 1998-03-03 | Xerox Corporation | Processes for preparing telechelic, branched and star thermoplastic resin polymers |
| US5817824A (en) * | 1997-08-01 | 1998-10-06 | Xerox Corporation | Processes for stabel free radicals |
| US5928611A (en) * | 1995-06-07 | 1999-07-27 | Closure Medical Corporation | Impregnated applicator tip |
| US6087451A (en) * | 1994-08-18 | 2000-07-11 | Xerox Corporation | Process for preparing polymers using bifunctional free radical reactive compounds |
| US6217603B1 (en) | 1997-08-29 | 2001-04-17 | Closure Medical Corporation | Methods of applying monomeric compositions effective as wound closure devices |
| US6320007B1 (en) | 1994-11-18 | 2001-11-20 | Xerox Corporation | Process for producing thermoplastic resin polymers |
| US20020018689A1 (en) * | 1995-06-07 | 2002-02-14 | Badejo Ibraheem T. | Adhesive applicators with improved polymerization initiators |
| US6425704B2 (en) | 2000-01-07 | 2002-07-30 | Closure Medical Corporation | Adhesive applicators with improved applicator tips |
| US6428233B1 (en) | 2000-01-07 | 2002-08-06 | Closure Medical Corporation | Adhesive applicator tips with improved flow properties |
| US6428234B1 (en) | 2000-01-07 | 2002-08-06 | Closure Medical Corporation | Adhesive applicator tips with improved flow properties |
| US20030063944A1 (en) * | 1995-06-07 | 2003-04-03 | Closure Medical Corporation | Impregnated applicator tip |
| US6616019B2 (en) | 2001-07-18 | 2003-09-09 | Closure Medical Corporation | Adhesive applicator with improved applicator tip |
| US20050196431A1 (en) * | 1998-04-30 | 2005-09-08 | Upvan Narang | Adhesive applicator tip with a polymerization initiator, polymerization rate modifier, and/or bioactive material |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2376963A (en) * | 1941-06-26 | 1945-05-29 | Goodrich Co B F | Polymerization of organic compounds containing a ch=c<group |
| US2845403A (en) * | 1954-06-02 | 1958-07-29 | Us Rubber Co | Maleic anhydride modified butyl rubber |
-
1990
- 1990-08-06 US US07/562,981 patent/US5059657A/en not_active Expired - Lifetime
-
1991
- 1991-08-01 EP EP91915360A patent/EP0542877B1/en not_active Expired - Lifetime
- 1991-08-01 WO PCT/US1991/005331 patent/WO1992002561A1/en active IP Right Grant
- 1991-08-01 ES ES91915360T patent/ES2117012T3/en not_active Expired - Lifetime
- 1991-08-01 JP JP3514473A patent/JP3030084B2/en not_active Expired - Fee Related
- 1991-08-01 CA CA002088782A patent/CA2088782A1/en not_active Abandoned
- 1991-08-01 DE DE69129629T patent/DE69129629T2/en not_active Expired - Fee Related
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2376963A (en) * | 1941-06-26 | 1945-05-29 | Goodrich Co B F | Polymerization of organic compounds containing a ch=c<group |
| US2845403A (en) * | 1954-06-02 | 1958-07-29 | Us Rubber Co | Maleic anhydride modified butyl rubber |
Non-Patent Citations (2)
| Title |
|---|
| Webster (1983), J. Am. Chem. Soc. 103, 5706 5708. * |
| Webster (1983), J. Am. Chem. Soc. 103, 5706-5708. |
Cited By (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5322912A (en) * | 1992-11-16 | 1994-06-21 | Xerox Corporation | Polymerization processes and toner compositions therefrom |
| US5401804A (en) * | 1992-11-16 | 1995-03-28 | Xerox Corporation | Polymerization process and toner compositions therefrom |
| US5412047A (en) * | 1994-05-13 | 1995-05-02 | Xerox Corporation | Homoacrylate polymerization processes with oxonitroxides |
| US6258911B1 (en) | 1994-08-18 | 2001-07-10 | Xerox Corporation | Bifunctional macromolecules and toner compositions therefrom |
| US6087451A (en) * | 1994-08-18 | 2000-07-11 | Xerox Corporation | Process for preparing polymers using bifunctional free radical reactive compounds |
| US6320007B1 (en) | 1994-11-18 | 2001-11-20 | Xerox Corporation | Process for producing thermoplastic resin polymers |
| US5449724A (en) * | 1994-12-14 | 1995-09-12 | Xerox Corporation | Stable free radical polymerization process and thermoplastic materials produced therefrom |
| US5530079A (en) * | 1995-01-03 | 1996-06-25 | Xerox Corporation | Polymerization processes |
| US5928611A (en) * | 1995-06-07 | 1999-07-27 | Closure Medical Corporation | Impregnated applicator tip |
| US6099807A (en) * | 1995-06-07 | 2000-08-08 | Closure Medical Corporation | Impregnated applicator tip |
| US7128241B2 (en) | 1995-06-07 | 2006-10-31 | Leung Jeffrey C | Impregnated applicator tip |
| US20030063944A1 (en) * | 1995-06-07 | 2003-04-03 | Closure Medical Corporation | Impregnated applicator tip |
| US6322852B1 (en) | 1995-06-07 | 2001-11-27 | Closure Medical Corporation | Impregnated applicator tip |
| US20020018689A1 (en) * | 1995-06-07 | 2002-02-14 | Badejo Ibraheem T. | Adhesive applicators with improved polymerization initiators |
| US6376019B1 (en) | 1995-06-07 | 2002-04-23 | Closure Medical Corporation | Impregnated applicator tip |
| US6676322B1 (en) | 1995-06-07 | 2004-01-13 | Closure Medical Corporation | Impregnated applicator tip |
| US5552502A (en) * | 1995-11-16 | 1996-09-03 | Xerox Corporation | Polymerization process and compositions thereof |
| US5723511A (en) * | 1996-06-17 | 1998-03-03 | Xerox Corporation | Processes for preparing telechelic, branched and star thermoplastic resin polymers |
| US5817824A (en) * | 1997-08-01 | 1998-10-06 | Xerox Corporation | Processes for stabel free radicals |
| US6217603B1 (en) | 1997-08-29 | 2001-04-17 | Closure Medical Corporation | Methods of applying monomeric compositions effective as wound closure devices |
| US20050196431A1 (en) * | 1998-04-30 | 2005-09-08 | Upvan Narang | Adhesive applicator tip with a polymerization initiator, polymerization rate modifier, and/or bioactive material |
| US6428234B1 (en) | 2000-01-07 | 2002-08-06 | Closure Medical Corporation | Adhesive applicator tips with improved flow properties |
| US6428233B1 (en) | 2000-01-07 | 2002-08-06 | Closure Medical Corporation | Adhesive applicator tips with improved flow properties |
| US6592281B2 (en) | 2000-01-07 | 2003-07-15 | Closure Medical Corporation | Adhesive applicator tips with improved flow properties |
| US6637967B2 (en) | 2000-01-07 | 2003-10-28 | Closure Medical Corporation | Adhesive applicator tips with improved flow properties |
| US6425704B2 (en) | 2000-01-07 | 2002-07-30 | Closure Medical Corporation | Adhesive applicators with improved applicator tips |
| US6705790B2 (en) | 2000-01-07 | 2004-03-16 | Closure Medical Corporation | Adhesive applicators with improved applicator tips |
| US6616019B2 (en) | 2001-07-18 | 2003-09-09 | Closure Medical Corporation | Adhesive applicator with improved applicator tip |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3030084B2 (en) | 2000-04-10 |
| DE69129629D1 (en) | 1998-07-23 |
| EP0542877A1 (en) | 1993-05-26 |
| JPH05509126A (en) | 1993-12-16 |
| ES2117012T3 (en) | 1998-08-01 |
| WO1992002561A1 (en) | 1992-02-20 |
| EP0542877B1 (en) | 1998-06-17 |
| CA2088782A1 (en) | 1992-02-07 |
| DE69129629T2 (en) | 1998-12-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5059657A (en) | Polymerization of selected vinyl monomers | |
| US5264530A (en) | Process of polymerization in an aqueous system | |
| CA2231398C (en) | Control of molecular weight and end-group functionality in polymers | |
| US4207238A (en) | Hydroxyl-terminated liquid polymers and process for preparation thereof using a mixture of at least one hydroxyl-containing disulfide and at least one hydroxyl-containing trisulfide | |
| JPH02281013A (en) | Diketone compound copolymer | |
| US4771117A (en) | Polymerization of acrylic esters | |
| KR960002979B1 (en) | Macromonomer compositions | |
| EP0455099A2 (en) | Synthesis of low viscosity non-functional terminated polymers | |
| JP3489893B2 (en) | Polymethacrylate having a functional group at one end and method for producing the same | |
| US3494901A (en) | Polymerizable monomers containing a n-alkoxymethylurethane group and polymers obtained therefrom | |
| US2735837A (en) | Interpolymers of z | |
| EP0542836B1 (en) | Polymerization of selected vinyl monomers | |
| US6063885A (en) | Oxazoline or oxazine methacrylate aqueous coating compositions | |
| US2484501A (en) | Copolymers of enol esters of diketones | |
| EP1948672B1 (en) | Catalysts for catalytic chain transfer | |
| EP0098729B1 (en) | Oxime derivatives and processes of forming polymeric oximes | |
| US2521914A (en) | Resinous copolymers comprising acetylated products obtained from the enol form of ketoesters | |
| US3532675A (en) | Polymerization process | |
| US4284483A (en) | Hydroxyl-terminated liquid polymers and process for preparation thereof using a mixture of at least one hydroxyl-containing disulfide and at least one hydroxyl-containing trisulfide | |
| AU720690B2 (en) | Control of molecular weight and end-group functionality in polymers | |
| JPS6357643A (en) | Production of dimethyl siloxane block copolymer |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: E.I. DU PONT DE NEMOURS AND COMPANY, DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:DRULINER, JOE D.;FRYD, MICHAEL;REEL/FRAME:005457/0405 Effective date: 19900803 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| FPAY | Fee payment |
Year of fee payment: 12 |