US5055618A - Process for the preparation of α,ω-diamines - Google Patents
Process for the preparation of α,ω-diamines Download PDFInfo
- Publication number
- US5055618A US5055618A US07/527,112 US52711290A US5055618A US 5055618 A US5055618 A US 5055618A US 52711290 A US52711290 A US 52711290A US 5055618 A US5055618 A US 5055618A
- Authority
- US
- United States
- Prior art keywords
- dialdehyde
- treatment
- primary amine
- catalyst
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 98
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 150000003141 primary amines Chemical class 0.000 claims abstract description 41
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 41
- 238000006243 chemical reaction Methods 0.000 claims abstract description 39
- 239000000203 mixture Substances 0.000 claims abstract description 37
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000003054 catalyst Substances 0.000 claims abstract description 30
- ZNZYKNKBJPZETN-WELNAUFTSA-N Dialdehyde 11678 Chemical compound N1C2=CC=CC=C2C2=C1[C@H](C[C@H](/C(=C/O)C(=O)OC)[C@@H](C=C)C=O)NCC2 ZNZYKNKBJPZETN-WELNAUFTSA-N 0.000 claims abstract description 26
- 239000011541 reaction mixture Substances 0.000 claims abstract description 18
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 16
- 239000001257 hydrogen Substances 0.000 claims abstract description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 11
- 238000005984 hydrogenation reaction Methods 0.000 claims abstract description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 22
- 150000004985 diamines Chemical class 0.000 claims description 13
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 claims description 12
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 claims description 12
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 claims description 12
- DPBLXKKOBLCELK-UHFFFAOYSA-N pentan-1-amine Chemical compound CCCCCN DPBLXKKOBLCELK-UHFFFAOYSA-N 0.000 claims description 8
- 125000004432 carbon atom Chemical group C* 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- OADYBSJSJUFUBR-UHFFFAOYSA-N octanedial Chemical compound O=CCCCCCCC=O OADYBSJSJUFUBR-UHFFFAOYSA-N 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- ZNWNWEHQFXOPGK-UHFFFAOYSA-N decanedial Chemical compound O=CCCCCCCCCC=O ZNWNWEHQFXOPGK-UHFFFAOYSA-N 0.000 claims description 6
- SZCGBFUWBCDIEA-UHFFFAOYSA-N dodecanedial Chemical compound O=CCCCCCCCCCCC=O SZCGBFUWBCDIEA-UHFFFAOYSA-N 0.000 claims description 6
- KDSNLYIMUZNERS-UHFFFAOYSA-N 2-methylpropanamine Chemical compound CC(C)CN KDSNLYIMUZNERS-UHFFFAOYSA-N 0.000 claims description 4
- 125000004122 cyclic group Chemical group 0.000 claims description 4
- UMHJEEQLYBKSAN-UHFFFAOYSA-N Adipaldehyde Chemical compound O=CCCCCC=O UMHJEEQLYBKSAN-UHFFFAOYSA-N 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- BMVXCPBXGZKUPN-UHFFFAOYSA-N 1-hexanamine Chemical compound CCCCCCN BMVXCPBXGZKUPN-UHFFFAOYSA-N 0.000 claims description 2
- VJROPLWGFCORRM-UHFFFAOYSA-N 2-methylbutan-1-amine Chemical compound CCC(C)CN VJROPLWGFCORRM-UHFFFAOYSA-N 0.000 claims description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical class [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 2
- 239000007868 Raney catalyst Substances 0.000 claims description 2
- 229910000564 Raney nickel Inorganic materials 0.000 claims description 2
- 239000002262 Schiff base Substances 0.000 claims description 2
- 150000004753 Schiff bases Chemical class 0.000 claims description 2
- PCSMJKASWLYICJ-UHFFFAOYSA-N Succinic aldehyde Chemical compound O=CCCC=O PCSMJKASWLYICJ-UHFFFAOYSA-N 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- 125000001931 aliphatic group Chemical group 0.000 claims description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 2
- 150000001342 alkaline earth metals Chemical group 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052681 coesite Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 229910052906 cristobalite Inorganic materials 0.000 claims description 2
- 150000002431 hydrogen Chemical class 0.000 claims description 2
- BMFVGAAISNGQNM-UHFFFAOYSA-N isopentylamine Chemical compound CC(C)CCN BMFVGAAISNGQNM-UHFFFAOYSA-N 0.000 claims description 2
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 claims description 2
- 239000008262 pumice Substances 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 229910052682 stishovite Inorganic materials 0.000 claims description 2
- 239000000375 suspending agent Substances 0.000 claims description 2
- 239000000725 suspension Substances 0.000 claims description 2
- 229910052905 tridymite Inorganic materials 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- 239000000243 solution Substances 0.000 claims 5
- 150000001299 aldehydes Chemical class 0.000 claims 4
- 239000007864 aqueous solution Substances 0.000 claims 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims 1
- 150000001412 amines Chemical class 0.000 claims 1
- 229910017052 cobalt Inorganic materials 0.000 claims 1
- 239000010941 cobalt Substances 0.000 claims 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims 1
- LNRGVCBUONGIKW-UHFFFAOYSA-N hex-2-enedial Chemical compound O=CCCC=CC=O LNRGVCBUONGIKW-UHFFFAOYSA-N 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 claims 1
- 239000002184 metal Substances 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 description 7
- 229910000071 diazene Inorganic materials 0.000 description 7
- 239000007858 starting material Substances 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- RAABOESOVLLHRU-UHFFFAOYSA-N diazene Chemical compound N=N RAABOESOVLLHRU-UHFFFAOYSA-N 0.000 description 6
- 239000000839 emulsion Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000004587 chromatography analysis Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 4
- 239000008346 aqueous phase Substances 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 238000006268 reductive amination reaction Methods 0.000 description 3
- PWGJDPKCLMLPJW-UHFFFAOYSA-N 1,8-diaminooctane Chemical compound NCCCCCCCCN PWGJDPKCLMLPJW-UHFFFAOYSA-N 0.000 description 2
- YXOKJIRTNWHPFS-UHFFFAOYSA-N 2,5-dimethylhexane-1,6-diamine Chemical compound NCC(C)CCC(C)CN YXOKJIRTNWHPFS-UHFFFAOYSA-N 0.000 description 2
- OGJZJWVBRMAQBR-UHFFFAOYSA-N 2-methylheptane-1,7-diamine Chemical compound NCC(C)CCCCCN OGJZJWVBRMAQBR-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- CSFZOENQUCDFFR-UHFFFAOYSA-N bis(aminomethyl)tricyclo[5,2,1,02,6]decane Chemical compound C12CCCC2(CN)C2(CN)CC1CC2 CSFZOENQUCDFFR-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 230000005587 bubbling Effects 0.000 description 2
- NWEKXBVHVALDOL-UHFFFAOYSA-N butylazanium;hydroxide Chemical compound [OH-].CCCC[NH3+] NWEKXBVHVALDOL-UHFFFAOYSA-N 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- 150000003139 primary aliphatic amines Chemical class 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 238000005576 amination reaction Methods 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- -1 cyclic olefins Chemical class 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000008241 heterogeneous mixture Substances 0.000 description 1
- 238000009905 homogeneous catalytic hydrogenation reaction Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C209/00—Preparation of compounds containing amino groups bound to a carbon skeleton
- C07C209/24—Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C209/00—Preparation of compounds containing amino groups bound to a carbon skeleton
- C07C209/24—Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds
- C07C209/26—Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds by reduction with hydrogen
Definitions
- the present invention relates to a process for the preparation of a ⁇ , ⁇ -diamines from ⁇ , ⁇ -dialdehydes.
- diamines have great importance due to the chemical properties resulting from their two terminal amino groups. They are required, inter alia, for the preparation of plastics, e.g. polyamides and specific alkyd resins, and for the production of fabric finishes and adhesives. Condensation of diamines with dicarboxylic acids is used to obtain wetting agents and emulsifiers which are especially useful in the oil industry. Diamines are, moreover, particularly suitable as hardeners in epoxy resins.
- ⁇ , ⁇ -diamines can be prepared by various methods; for example, by reduction of dinitriles.
- dinitriles required as starting materials are not readily available, but rather can be obtained only by a synthesis involving many steps. For this reason, this method is not commercially important.
- German Offenlegungsschrift 2,824,423 describes a two-step process for the preparation of diamines by the reaction of dialdehydes with a monoamine and subsequent treatment of the reaction product with ammonia and hydrogen in the presence of a hydrogenation catalyst. In order to achieve yields which allow the commercial use of the process, it is, however, necessary to use the monoamine in large excess in relation to the dialdehyde.
- German Offenlegungsschrift 2,647,317 relates to a two-step process for the preparation of ⁇ , ⁇ -diamines by reductive amination of the corresponding dialdehydes.
- a first step the dialdehyde is reacted with ammonia at a low temperature in the presence of a mixture comprising water and an organic solvent, a diimine being formed from the dialdehyde with the elimination of water.
- This diimine is reacted in a second step by catalytic reduction to form the ⁇ , ⁇ -diamine.
- the ⁇ , ⁇ -diamine yield achievable is dependent to a large extent on the temperature used in the preparation of the diimine. The lower this temperature, the higher the yield.
- Temperatures in the range of -5° to -10° C. produce yields of between about 80 to 90% based on the dialdehyde. If the temperature of diimine formation is increased even slightly (for example to +5° C.), the ⁇ , ⁇ -diamine yield is greatly reduced and the formation of undesired by-products increases sharply.
- the low temperature which is necessary for diimine formation precludes the use of this process; industrially, low temperatures of this type can only be achieved at great cost.
- the object is therefore to provide a process which avoids the previously described disadvantages, can be readily applied, and allows the reaction to be carried out even at relatively high temperatures.
- This object is achieved by reacting an ⁇ , ⁇ -dialdehyde with a primary amine in the presence of water and treating the reaction mixture in the presence of a hydrogenation catalyst with excess ammonia and hydrogen, whereby the corresponding ⁇ , ⁇ -diamine is formed.
- An essential feature of the novel process is the presence of water in the reaction of the dialdehyde and the primary amine. Surprisingly, as a result of this measure, both the conversion and the selectivity of the reaction can be improved. If, due to the preparation, the ⁇ , ⁇ -dialdehyde is present as a mixture of n- and iso-dialdehydes, the addition of water furthermore favors the formation of the desired diamine resulting from the n-dialdehyde, while the conversion of the iso-dialdehyde to the corresponding diamine is suppressed.
- the reaction of the ⁇ , ⁇ -dialdehyde with the primary amine in the presence of water can be carried out at 0° to 60° C. In many cases, the reaction will be carried out at 10° to 55° C. It has proved particularly favorable to react the ⁇ , ⁇ -dialdehyde with the primary amine in the presence of water at 20 to 50, preferably 30° to 50° C.
- any desired ⁇ , ⁇ -dialdehydes can be reacted, particularly aliphatic straightchain, branched or cyclic ⁇ , ⁇ -dialdehydes.
- These preferably include straightchain and cyclic ⁇ , ⁇ -dialdehydes having 2 to 16, preferably 4 to 14, preferably 6 to 12 carbon atoms.
- Examples of useful ⁇ , ⁇ -dialdehydes are 1,4-butanedial, 1,6-hexanedial, 1,8-octanedial, 1,10-decanedial, 1,12-dodecanedial, bisformyltricyclo[5.2.1.0 2 ,6 ]-decane; particularly 1,6-hexanedial, 1,8-octanedial, 1,10-decane-dial, 1,12-dodecanedial, preferably 1,8-octanedial, 1,10-decanedial and 1,12-dodecanedial.
- the ⁇ , ⁇ -dialdehydes required for the reaction can be prepared using conventional processes described in the literature.
- primary aliphatic amines are those which are straightchain, branched or cyclic, particularly branched or straightchain.
- Primary aliphatic amines having 2 to 6, particularly 3 to 5 carbon atoms have proved particularly suitable.
- Examples of useful primary amines are ethylamine, n-propylamine, isopropylamine, n-butylamine, iso-butylamine, n-pentylamine, 2-methylbutylamine, 3-methylbutylamine, and n-hexylamine; particularly ethylamine, n-propylamine, n-butylamine, and n-pentylamine; preferable are ethylamine, n-propylamine and n-butylamine.
- ⁇ , ⁇ -dialdehyde It has proved desirable to react the ⁇ , ⁇ -dialdehyde with the primary amine dissolved in water.
- concentration of the primary amine in the water is normally 10 to 90, particularly 20 to 80, preferably 30 to 70% by weight.
- ⁇ , ⁇ -dialdehyde is used as a mixture with water. These mixtures generally contain 30 to 70% by weight, particularly 35 to 65% by weight of ⁇ , ⁇ -dialdehyde and 70 to 30, particularly 65 to 35% by weight of water.
- the ⁇ , ⁇ -dialdehyde can be admixed with the primary amine dissolved in water, or a mixture comprising the dialdehyde and water can be admixed with the primary amine dissolved in water. It is important for the success of the reaction that the ⁇ , ⁇ -dialdehyde is always reacted with an amount of primary amine which is adequate for formation of the desired azomethine (Schiff's base). In this reaction the primary amine should be present as far as possible in excess in relation to the reacting aldehyde groups. Usually the total amount or a partial amount of the primary amine is initially charged and the ⁇ , ⁇ -dialdehyde is metered in. Thorough mixing of the normally heterogeneous mixture is to be ensured, for example by intensive stirring.
- the process may be carried out batchwise or continuously. If the process is operated batchwise, the primary amine is initially charged and the ⁇ , ⁇ -dialdehyde is added in a continuous stream or in portions with stirring.
- the process is operated continuously, it has to be ensured that the reacting ⁇ , ⁇ -dialdehyde is always supplied with sufficient primary amine as co-reactant.
- the rapid, complete formation of the Schiff base is important for the success of the process according to the invention. Otherwise, the ⁇ , ⁇ -dialdehyde reacts to form undesired by-products; for example, aldolization reactions and condensation and polymerization reactions which are catalyzed by the primary amine.
- the ⁇ , ⁇ -dialdehyde and the primary amine are reacted in the molar ratio of 1:2 to 1:3, particularly 1:2.05 to 1:2.4, preferably 1:2.1 to 1:2.25. It often proves advantageous to use the primary amine in excess of these amounts. A stoichiometric excess of the primary amine of 5, particularly 8, preferably 10% is adequate in most cases.
- the reaction of the ⁇ , ⁇ -dialdehyde with the primary amine forms the corresponding ⁇ , ⁇ -diazomethine with the elimination of water.
- the resulting reaction mixture generally comprises two phases, namely, an organic phase and an aqueous phase.
- the organic phase contains the ⁇ , ⁇ -diazomethine, minor quantities of dissolved water and possibly portions of the primary amine used in excess.
- the aqueous phase is composed for the most part of water which enters the reaction mixture with the starting materials on the one hand and, on the other hand, is due to the liberation of water from the reaction.
- the foregoing reaction mixture is reacted with excess ammonia and hydrogen in a subsequent step in the presence of a hydrogenation catalyst in the liquid phase in the manner of an aminating hydrogenation to form the desired ⁇ , ⁇ -diamine.
- 5 to 50, particularly 10 to 40, preferably 15 to 30 moles of NH 3 and at least the stoichiometrically required amount of H 2 are used per mole of ⁇ , ⁇ -dialdehyde initially used. Excess ammonia and hydrogen can be recycled into the reaction.
- the reaction is favored by increasing the temperature and the pressure.
- the reaction temperature should be 30° to 180°, particularly 50° to 150°, preferably 80° to 130° C. and the reaction pressure should be 0.5 to 30, particularly 1 to 15, preferably 5 to 12 MPa.
- reaction temperature is adjusted by the addition of H 2 .
- the corresponding ⁇ , ⁇ -diimine is formed as an intermediate from the ⁇ , ⁇ -diazomethine by the action of NH 3 .
- the desired ⁇ , ⁇ -diamine is formed from this intermediate diimine by reduction with H 2 .
- the reaction may be carried out batchwise or continuously.
- Hydrogenation catalysts used may be available catalysts containing for example Cu, Co and/or Ni as the active hydrogenating component.
- Water-resistant Ni-containing catalysts are particularly suitable. These catalysts have 40 to 70% by weight, particularly 45 to 65% by weight, preferably 55 to 62% by weight of nickel relative to the total catalyst composition.
- Carriers used are pumice stone, aluminum oxide, siliceous earth and alumina and SiO 2 in its various forms.
- Activators used are compounds containing alkaline earth metals, aluminum, zinc and/or chromium. It is also possible to use a nickel catalyst without a carrier, for example Raney-nickel, as a catalyst.
- the space velocity (liquid volume of product per dry volume of catalyst per hour) depends on the reaction conditions selected. It is 0.1 to 1.0, particularly 0.15 to 0.5, preferably 0.2 to 0.35, per hour.
- the catalyst may be arranged fixed, for example in the form of a bed over which the mixture of starting materials is fed, or may be present suspended as a slurry. If it is intended to carry out the reaction with a fixed-bed catalyst, it can be advantageous to convert the mixture of starting materials into a homogeneous form by adding a suitable solvent, and then feeding this to the catalyst. It can occassionally be advantageous, before carrying out the reduction amination, to separate out a portion of the aqueous phase from the mixture of starting materials or to convert the mixture of starting materials into a homogenous form by the addition of a suitable solvent.
- the hydrogenation catalyst is placed in suspension and the mixture of starting materials is added to the catalyst slurry.
- the suspending agent used can be the primary amine, crude reaction product, or else previously formed ⁇ , ⁇ -diamine.
- the hydrogenation of the reaction mixture containing the ⁇ , ⁇ -diazomethine should always be carried out in the presence of an excess of NH 3 . In this way, it is ensured that the ⁇ , ⁇ -diazomethine splits off the primary amine originally used, the ⁇ , ⁇ -diimine forms as an intermediate, and the latter is converted into the corresponding ⁇ , ⁇ -diamine.
- a homogeneous product is present which is composed of the desired ⁇ , ⁇ -diamine, water, the primary amine, excess ammonia and possibly minor amounts of hydrogen and by-products.
- the gaseous components of the reaction mixture are separated off and the ⁇ , ⁇ -diamine is purified by distillation.
- 263 g (3.6 mol) of n-butylamine and 260 g of water are initially introduced into a 2 liter three-necked flask equipped with a stirrer, dropping funnel, dip pipe, thermometer, and reflux condenser.
- An emulsion, composed of 213 g (1.5 mol) of octanedial (n/iso ratio 80:20) and 200 g of water, is added to the n-butylamine-water mixture via the dip pipe with stirring over a period of 60 minutes.
- the emulsion in the dropping funnel is kept constantly agitated by bubbling in a stream of nitrogen so that the mixture does not separate.
- the temperature is 40° C. during the addition of the emulsion. At the end of the addition, the reaction of the mixture is allowed to continue for an additional 2 hours with stirring at 40° C.
- the reaction mixture obtained comprises two phases, an upper organic layer and a lower aqueous layer.
- the mixture is transferred to an autoclave equipped with a stirrer and to it are added 47 g of a nickel catalyst containing a carrier (50 to 54% by weight of Ni, a commercial product from Hoechst AG: RCH Ni 52/35) and a 20-fold molar excess of NH 3 .
- a pressure of 10 MPa is established by compressing the hydrogen.
- Hydrogenation is carried out with stirring at 120° C. for a period of 4 hours resulting in a homogeneous hydrogenation mixture. It has the composition given below (ignoring added water, formed water, and ammonia), determined by gas chromatographic analysis:
- Example 1 The procedure followed in Example 1 is repeated but without the addition of water.
- the resulting hydrogenated mixture has the following composition (ignoring water formed and ammonia).
- the reaction mixture obtained comprises two phases, an upper organic layer and a lower aqueous layer. It is transferred to an autoclave equipped with a stirrer and hydrogenated as described in Example 1.
- the resulting homogeneous hydrogenated mixture has the following composition (ignoring added water, formed water, and ammonia), determined by gas chromatographic analysis:
- the bis-(aminomethyl)-tricyclo[5.2.1.0 2 ,6 ]-decane yield is about 95%, relative to the dialdehyde used.
- Example 2 The procedure followed in Example 2 is repeated but without the addition of water.
- the resulting hydrogenated mixture has the following composition (ignoring formed water, and ammonia):
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
Description
______________________________________ forerun 0.1% by weight n-butylamine 51.5% by weight 2,5-dimethyl-1,6-diaminohexane 0.1% by weight 2-methyl-1,7-diaminoheptane 9.4% by weight 1,8-diaminooctane 38.2% by weight after-run 0.7% by weight ______________________________________
______________________________________ forerun 2.5% by weight n-butylamine 45.4% by weight 2,5-dimethyl-1,6-diaminohexane 3.0% by weight 2-methyl-1,7-diaminoheptane 4.7% by weight 1,8-diaminooctane 26.1% by weight after-run 18.3% by weight ______________________________________
______________________________________ n-butylamine 43.6% by weight forerun + isomeric monoamines 0.2% by weight TCD*-monmoamine 5.5% by weight forerun + isomeric diamines 1.6% by weight TCD*-diamine 43.4% by weight TCD*-hydroxyamine 1.2% by weight TCD*-diol + higher boiling 4.5% by weight components ______________________________________ *TCD = tricyclo[5.2.1.0.sup.2,6 ]-decane
______________________________________ n-butylamine 40.3% by weight forerun + isomeric monoamines 0.2% by weight TCD*monoamine 4.9% by weight forerun + isomeric diamines 1.4% by weight TCD*-diamine 38.4% by weight TCD*-hydroxyamine 1.1% by weight TCD*-diol + higher boiling 13.7% by weight components ______________________________________ *TCD = tricyclo[5.2.1.0.sup.2,6 ]-decane
Claims (76)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3917444A DE3917444A1 (en) | 1989-05-30 | 1989-05-30 | PROCESS FOR PREPARING (ALPHA), (OMEGA) DIAMINES |
DE3917444 | 1989-05-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
US5055618A true US5055618A (en) | 1991-10-08 |
Family
ID=6381601
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/527,112 Expired - Fee Related US5055618A (en) | 1989-05-30 | 1990-05-21 | Process for the preparation of α,ω-diamines |
Country Status (9)
Country | Link |
---|---|
US (1) | US5055618A (en) |
EP (1) | EP0400426B1 (en) |
JP (1) | JPH0686411B2 (en) |
KR (1) | KR930009038B1 (en) |
AT (1) | ATE92910T1 (en) |
AU (1) | AU620518B2 (en) |
CA (1) | CA2017762C (en) |
DE (2) | DE3917444A1 (en) |
ES (1) | ES2059878T3 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5475141A (en) * | 1993-06-07 | 1995-12-12 | Chemie Linz Gmbh | Process for preparing primary amines from aldehydes |
US5700934A (en) * | 1995-03-01 | 1997-12-23 | Dsm N.V. | Process for the preparation of epsilon-caprolactam and epsilon-caprolactam precursors |
US5717089A (en) * | 1995-03-01 | 1998-02-10 | Dsm N.V. | Process for the preparation of E-caprolactam |
EP0878462A1 (en) * | 1997-05-14 | 1998-11-18 | Kuraray Co., Ltd. | Process for producing diamines from dialdehydes |
US6147261A (en) * | 1998-11-23 | 2000-11-14 | Shell Oil Corporation | Diaminoalkane syntheses via selective amination of hydroxyaldehydes |
WO2007005594A2 (en) * | 2005-06-30 | 2007-01-11 | Dow Global Technologies, Inc. | Process for the reductive amination of aldehydes and ketones via the formation of macrocyclic polyimine intermediates |
US7323599B2 (en) | 2005-10-01 | 2008-01-29 | Clariant Speciality Fine Chemicals (Deutschland) Gmbh | Process for reductively aminating ketones and aldehydes with aqueous amines and catalysts suitable therefor |
WO2008076795A1 (en) | 2006-12-15 | 2008-06-26 | Dow Global Technologies Inc. | Process for the reductive amination of aldehydes and ketones |
WO2011014747A2 (en) | 2009-07-31 | 2011-02-03 | Dow Global Technologies Inc. | Cycloaliphatic diamines and method of making the same |
WO2011014787A2 (en) | 2009-07-31 | 2011-02-03 | Dow Global Technologies Inc. | Process for reductive amination of aliphatic cyanoaldehydes to aliphatic diamines |
WO2012087266A1 (en) | 2009-07-31 | 2012-06-28 | Dow Global Technologies Llc | Process for improving the catalytic activity of catalyst systems for reductive amination of aliphatic cyanoaldehydes to aliphatic diamines |
TWI481586B (en) * | 2012-08-17 | 2015-04-21 | Oxea Gmbh | Continuous process for preparing primary aliphatic amines from aldehydes |
KR20160034084A (en) * | 2014-09-19 | 2016-03-29 | 한국화학연구원 | Preparation of 2,5-bis(aminomethyl)furan |
US10899726B2 (en) | 2014-07-10 | 2021-01-26 | Rhodia Operations | Process for producing aromatic primary diamines |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100286008A1 (en) | 2007-05-09 | 2010-11-11 | Kyowa Hakko Chemical Co., Ltd. | Additive for oils and lubricant containing the same |
WO2009138377A2 (en) * | 2008-05-13 | 2009-11-19 | Basf Se | Method for producing n,n-substituted-1,3-propandiamines |
JP6714072B2 (en) * | 2016-03-29 | 2020-06-24 | 株式会社日本触媒 | Method for producing diamine compound having heterocycle |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB663294A (en) * | 1948-04-05 | 1951-12-19 | Bataafsche Petroleum | Process for the preparation of diamines |
US3346640A (en) * | 1963-07-24 | 1967-10-10 | Lonza Ag | Preparation of monoalkylamines and dialkylamines |
US3565954A (en) * | 1967-03-08 | 1971-02-23 | Melle Bezons | Process for preparing primary amines |
US3707563A (en) * | 1970-09-14 | 1972-12-26 | Du Pont | Process for preparing n-alkylated aliphatic diamines |
GB1520969A (en) * | 1975-10-20 | 1978-08-09 | Snia Viscosa | Process for the preparation of a,w-diamines |
US4855505A (en) * | 1983-09-09 | 1989-08-08 | Berol Kemi Ab | Promoted nickel and/or cobalt catalyst, its use, and process performed in its presence |
US4952734A (en) * | 1987-06-30 | 1990-08-28 | Hoechst Ag Werk Ruhrchemie | Process for the preparation of methylamines |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1470245A (en) * | 1965-03-05 | 1967-02-17 | Eastman Kodak Co | New 1, 6-hexanedifunctional compounds, process for their manufacture and industrial applications |
IT1113111B (en) * | 1978-02-28 | 1986-01-20 | Snia Viscosa | PROCESS PERFECTED FOR THE PREPARATION OF ALFA, DIAMMINE RANGE |
DE2824423A1 (en) * | 1978-06-03 | 1979-12-06 | Ruhrchemie Ag | PROCESS FOR PRODUCING DIAMINES |
DK642489A (en) * | 1988-12-19 | 1990-06-20 | Dow Chemical Co | PROCEDURE FOR REDUCED METHYLING OF PRIMARY AMINES |
-
1989
- 1989-05-30 DE DE3917444A patent/DE3917444A1/en not_active Withdrawn
-
1990
- 1990-04-12 KR KR1019900005077A patent/KR930009038B1/en not_active IP Right Cessation
- 1990-05-19 AT AT90109519T patent/ATE92910T1/en not_active IP Right Cessation
- 1990-05-19 EP EP90109519A patent/EP0400426B1/en not_active Expired - Lifetime
- 1990-05-19 DE DE9090109519T patent/DE59002268D1/en not_active Expired - Fee Related
- 1990-05-19 ES ES90109519T patent/ES2059878T3/en not_active Expired - Lifetime
- 1990-05-21 US US07/527,112 patent/US5055618A/en not_active Expired - Fee Related
- 1990-05-24 JP JP2132769A patent/JPH0686411B2/en not_active Expired - Lifetime
- 1990-05-28 AU AU55993/90A patent/AU620518B2/en not_active Ceased
- 1990-05-29 CA CA002017762A patent/CA2017762C/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB663294A (en) * | 1948-04-05 | 1951-12-19 | Bataafsche Petroleum | Process for the preparation of diamines |
US3346640A (en) * | 1963-07-24 | 1967-10-10 | Lonza Ag | Preparation of monoalkylamines and dialkylamines |
US3565954A (en) * | 1967-03-08 | 1971-02-23 | Melle Bezons | Process for preparing primary amines |
US3707563A (en) * | 1970-09-14 | 1972-12-26 | Du Pont | Process for preparing n-alkylated aliphatic diamines |
GB1520969A (en) * | 1975-10-20 | 1978-08-09 | Snia Viscosa | Process for the preparation of a,w-diamines |
US4855505A (en) * | 1983-09-09 | 1989-08-08 | Berol Kemi Ab | Promoted nickel and/or cobalt catalyst, its use, and process performed in its presence |
US4952734A (en) * | 1987-06-30 | 1990-08-28 | Hoechst Ag Werk Ruhrchemie | Process for the preparation of methylamines |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5475141A (en) * | 1993-06-07 | 1995-12-12 | Chemie Linz Gmbh | Process for preparing primary amines from aldehydes |
US5700934A (en) * | 1995-03-01 | 1997-12-23 | Dsm N.V. | Process for the preparation of epsilon-caprolactam and epsilon-caprolactam precursors |
US5717089A (en) * | 1995-03-01 | 1998-02-10 | Dsm N.V. | Process for the preparation of E-caprolactam |
EP0878462A1 (en) * | 1997-05-14 | 1998-11-18 | Kuraray Co., Ltd. | Process for producing diamines from dialdehydes |
US5973208A (en) * | 1997-05-14 | 1999-10-26 | Kuraray Co., Ltd. | Process for producing diamines |
US6147261A (en) * | 1998-11-23 | 2000-11-14 | Shell Oil Corporation | Diaminoalkane syntheses via selective amination of hydroxyaldehydes |
US8586793B2 (en) | 2005-06-30 | 2013-11-19 | Dow Global Technologies Llc | Process for the reductive amination of aldehydes and ketones via the formation of macrocyclic polyimine intermediates |
CN101213167B (en) * | 2005-06-30 | 2012-05-23 | 陶氏环球技术有限责任公司 | Process for the reductive amination of aldehydes and ketones via the formation of macrocyclic polyimine intermediates |
WO2007005594A2 (en) * | 2005-06-30 | 2007-01-11 | Dow Global Technologies, Inc. | Process for the reductive amination of aldehydes and ketones via the formation of macrocyclic polyimine intermediates |
WO2007005594A3 (en) * | 2005-06-30 | 2007-05-24 | Dow Global Technologies Inc | Process for the reductive amination of aldehydes and ketones via the formation of macrocyclic polyimine intermediates |
AU2006265918B2 (en) * | 2005-06-30 | 2011-03-31 | Dow Global Technologies Llc | Process for the reductive amination of aldehydes and ketones via the formation of macrocyclic polyimine intermediates |
US20100222611A1 (en) * | 2005-06-30 | 2010-09-02 | Michael Leo Tulchinsky | Process for the Reductive Amination of Aldehydes and Ketones Via the Formation of Macrocyclic Polyimine Intermediates |
US7323599B2 (en) | 2005-10-01 | 2008-01-29 | Clariant Speciality Fine Chemicals (Deutschland) Gmbh | Process for reductively aminating ketones and aldehydes with aqueous amines and catalysts suitable therefor |
WO2008076795A1 (en) | 2006-12-15 | 2008-06-26 | Dow Global Technologies Inc. | Process for the reductive amination of aldehydes and ketones |
US20080167499A1 (en) * | 2006-12-15 | 2008-07-10 | Dow Global Technologies Inc. | Process for the reductive amination of aldehydes and ketones |
CN101600681B (en) * | 2006-12-15 | 2013-09-18 | 陶氏环球技术有限责任公司 | Process for the reductive amination of aldehydes and ketones |
WO2011014747A2 (en) | 2009-07-31 | 2011-02-03 | Dow Global Technologies Inc. | Cycloaliphatic diamines and method of making the same |
WO2012087266A1 (en) | 2009-07-31 | 2012-06-28 | Dow Global Technologies Llc | Process for improving the catalytic activity of catalyst systems for reductive amination of aliphatic cyanoaldehydes to aliphatic diamines |
WO2011014787A2 (en) | 2009-07-31 | 2011-02-03 | Dow Global Technologies Inc. | Process for reductive amination of aliphatic cyanoaldehydes to aliphatic diamines |
US9024072B2 (en) | 2009-07-31 | 2015-05-05 | Dow Global Technologies Llc | Process for reductive amination of aliphatic cyanoaldehydes to aliphatic diamines |
US9233908B2 (en) | 2009-07-31 | 2016-01-12 | Dow Global Technologies Llc | Cycloaliphatic diamines and method of making the same |
TWI481586B (en) * | 2012-08-17 | 2015-04-21 | Oxea Gmbh | Continuous process for preparing primary aliphatic amines from aldehydes |
US10899726B2 (en) | 2014-07-10 | 2021-01-26 | Rhodia Operations | Process for producing aromatic primary diamines |
US11066377B2 (en) | 2014-07-10 | 2021-07-20 | Rhodia Operations | Process for producing aromatic primary diamines |
KR20160034084A (en) * | 2014-09-19 | 2016-03-29 | 한국화학연구원 | Preparation of 2,5-bis(aminomethyl)furan |
KR101627607B1 (en) * | 2014-09-19 | 2016-06-07 | 한국화학연구원 | Preparation of 2,5-bis(aminomethyl)furan |
Also Published As
Publication number | Publication date |
---|---|
EP0400426B1 (en) | 1993-08-11 |
CA2017762A1 (en) | 1990-11-30 |
JPH0686411B2 (en) | 1994-11-02 |
KR900018004A (en) | 1990-12-20 |
KR930009038B1 (en) | 1993-09-22 |
ATE92910T1 (en) | 1993-08-15 |
AU5599390A (en) | 1990-12-06 |
DE59002268D1 (en) | 1993-09-16 |
CA2017762C (en) | 1996-09-24 |
AU620518B2 (en) | 1992-02-20 |
DE3917444A1 (en) | 1991-02-21 |
EP0400426A2 (en) | 1990-12-05 |
EP0400426A3 (en) | 1991-06-12 |
JPH03204840A (en) | 1991-09-06 |
ES2059878T3 (en) | 1994-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5055618A (en) | Process for the preparation of α,ω-diamines | |
JPH0753535A (en) | Preparation of n-(2-hydroxyethyl)piperazine | |
CA1321796C (en) | Process for preparing 3(4),8(9)-bis-(aminomethyl)-tricyclo [5.2.1.0___]decane | |
JP3816546B2 (en) | Process for producing primary amines from aldehydes | |
EP0618895B1 (en) | Process for the preparation of an aminonitrile by partial hydrogenation of a nitrile compound with two or more nitrile groups | |
CZ20011562A3 (en) | Hemihydrogenation process for preparing dinitriles | |
CA1099291A (en) | Process for the production of diamines | |
US5070202A (en) | Cyanobutylation of amines with 2-pentenitrile | |
CA2354773C (en) | Cyanoethylation of cycloaliphatic vicinal primary diamines | |
SK66594A3 (en) | Method of preparation of primary amines from aldehydes and device for realization of this method | |
JP3811202B2 (en) | Method for producing 3-aminomethyl 3,5,5-trimethylcyclohexylamine | |
US4906783A (en) | Preparation of bis(hexamethylene)triamine | |
EP0212287A2 (en) | Process for producing aliphatic diamine dimers | |
AU673458B2 (en) | Process for the preparation of secondary or tertiary amines | |
US20020022737A1 (en) | Process for making 3-hydroxyalkanelnitriles and conversion of the 3-hydroxyalkanelnitrile to an hydroxyaminoalkane | |
EP1117632A2 (en) | Process for the production of cyclopropanemethylamine | |
GB2184119A (en) | Preparation of aliphatic tertiary amines | |
US5773658A (en) | Process for the preparation of N-methylalkylamines | |
CA1213616A (en) | Amination process | |
JPH05178797A (en) | Preparation of dicyclohexylamine compound | |
JPH0717557B2 (en) | Method for producing dihydroisophorone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HOECHST AKTIENGESELLSCHAFT, A CORP. OF THE FEDERAL Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:KAMPMANN, DETLEF;WEBER, JURGEN;KNIEP, CLAUS;REEL/FRAME:005320/0012 Effective date: 19900516 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20031008 |