US5041619A - Process for the preparation of alkoxyalkylidenemalonic acid esters - Google Patents

Process for the preparation of alkoxyalkylidenemalonic acid esters Download PDF

Info

Publication number
US5041619A
US5041619A US07/552,902 US55290290A US5041619A US 5041619 A US5041619 A US 5041619A US 55290290 A US55290290 A US 55290290A US 5041619 A US5041619 A US 5041619A
Authority
US
United States
Prior art keywords
catalyst
reaction
dialkylmalonate
carboxylic acid
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/552,902
Inventor
Franz-Albert von Itter
Klaus-Dieter Steffen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huels AG
Original Assignee
Huels AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huels AG filed Critical Huels AG
Assigned to HUELS AKTIENGESELLSCHAFT reassignment HUELS AKTIENGESELLSCHAFT ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: STEFFEN, KLAUS-DIETER, VON ITTER, FRANZ-ALBERT
Application granted granted Critical
Publication of US5041619A publication Critical patent/US5041619A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/73Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
    • C07C69/734Ethers

Definitions

  • the invention relates to a process for the preparation of dialkyl alkoxyalkylidenemalonates by reaction of malonic acid esters with trialkyl orthocarboxylates.
  • Alkoxyalkylidenemalonic malonic acid esters are important intermediates for the synthesis of various substituted quinolines which are employed as pharmaceuticals against malaria or bacterial infections.
  • the Cd, Hg and Bi salts additionally lead to heavy metal-containing product residues.
  • the disposal of these residues is increasingly difficult and cost-intensive.
  • a substitution of the metal salts appears desirable.
  • the contamination of the alkoxyalkylidenemalonic esters with such toxic metal salts may limit their use as pharmaceutical precursors or even make it impossible.
  • the known catalysts moreover yield dimethyl methoxymethylenemalonate in unsatisfactory yields in the reaction of the less active trimethyl orthoformate with dimethyl malonate.
  • one object of the invention is a process for the preparation of alkoxyalkylidenemalonic acid esters which leads, by means of a simple reaction, to good yields and conversions without the use of heavy metal-containing catalysts.
  • improved yield and conversion in the preparation of dimethyl methoxymethylenemalonate and diethyl ethoxymethylenemalonate are also specific objects of the invention.
  • R 1 is alkyl having 1 to 4 carbon atoms
  • R 2 is hydrogen, alkyl having 1 to 4 carbon atoms, aryl, aralkyl or alkoxy and
  • R 3 and R 4 are alkyl having 1 to 4 carbon atoms, from malonic esters of the formula R 3 OOCCH 2 COOR 4 and orthocarboxylic acid esters of the formula R 2 (OR 1 ) 3 in the presence of carboxylic acids or their anhydrides.
  • the groups R 1 , R 3 and R 4 may in this case be identical or different.
  • Preferred aryl groups for R 2 are aryl groups having 6-10 carbon atoms, for example phenyl and naphthyl groups. If desired, the aryl group may be substituted with one or more alkyl groups having from 1-4 carbon atoms.
  • Preferred aralkyl groups contain 7-10 carbon atoms, for example benzyl or other alkylphenyl groups.
  • Preferred alkoxy groups are alkoxy groups having 1-4 carbon atoms.
  • a preferred embodiment is a process for the preparation of products of the formula (I), in which R 1 , R 3 and R 4 are identical and R 2 is hydrogen or alkyl having 1 to 4 carbon atoms.
  • the invention very particularly relates to the preparation of dimethyl methoxymethylenemalonate and diethyl ethoxymethylenemalonate.
  • the aluminum silicates employed as catalysts are preferably clay minerals, very preferably montmorillonite or montmorillonite-containing layer silicates such as, for example, bentonites, smectites or attapulgite.
  • the catalysts can be treated with acids or acidic salts, preferably with mineral acids such as, for example, sulphuric acid or phosphoric acid.
  • acids or acidic salts preferably with mineral acids such as, for example, sulphuric acid or phosphoric acid.
  • mineral acids such as, for example, sulphuric acid or phosphoric acid.
  • bentonites treated with H 2 SO 4 or H 3 PO 4 can be used.
  • Typical acidic salts are, for example, sodium and potassium hydrogen sulphates or hydrogen phosphates.
  • Activation of the catalysts can also be carried out during the reaction by addition of the acidic salts or acids continuously or in portions. Increases in activity generally lead to improved conversions.
  • the amount of the catalyst employed is in general about 0.001 g to about 10 g per mole of malonate.
  • the preferred range is 0.01 g to 1 g per mole of malonate.
  • the water adhering to the commercial clay minerals can be largely removed by customary drying methods such as heating in vacuo. Since the orthoesters employed in the reaction also act as drying agents, the commercial products can also be used directly.
  • the addition of the catalysts can be carried out by known methods.
  • the aluminum silicate catalysts can also be employed in combination with metal salt catalysts which are customarily used.
  • the reaction temperature is preferably about 60° to 200° C. A temperature range of 100° to 170° C. is very particularly preferred.
  • a pressure of about 1 to 10 bar is preferably set.
  • a pressure of 1 to 3 bar is particularly preferred.
  • the carboxylic acids and their anhydrides employed as additional condensing agents are preferably lower aliphatic carboxylic acids having 1 to 5 carbon atoms or the corresponding anhydrides.
  • the amount employed is in general about 0.01 to 1 mole per mole of malonate.
  • the orthocarboxylic acid ester can be used in the process stoichiometrically or in excess.
  • the amount employed is preferably 1 to 6 moles per mole of malonic acid ester. 1.2 to 4 moles of orthocarboxylic acid ester per mole of malonic acid ester are particularly preferred.
  • the orthocarboxylic acid ester may also be partially replaced by solvents boiling in the same temperature range.
  • Solvents of this type are, for example, aromatic hydrocarbons or high-boiling ethers. By means of these solvents, the excess orthocarboxylic acid esters can be somewhat reduced.
  • the reaction is carried out most simply by adding together the reactants and the catalysts in the above-mentioned ratios and reacting at the described temperatures.
  • malonic acid ester, orthoester and the mineral catalyst are initially introduced with a partial amount of the carboxylic acid and/or anhydride and the residual amounts of the carboxylic acid and/or anhydride are added continuously or in portions corresponding to the course of the reaction. It is likewise possible also to bring only a partial amount of the orthoester to reaction with the other starting compounds corresponding to the above-mentioned processes and to meter in the other part continuously or in portions during the reaction.
  • the alcohol eliminated in the condensation is advantageously removed continuously by distillation. After complete reaction of the malonic acid ester, it is desirable to leave the reaction mixture at the reaction temperature until extensive conversion of the intermediates formed, such as bis-alkoxy-alkylmalonic acid esters, to the alkoxyalkylidenemalonic acid esters has taken place.
  • the process can be carried out at normal pressure and elevated pressure.
  • the particularly preferred reaction temperatures are in the range from 100° to 170° C., with the maximum attainable reaction temperature at normal pressure being limited, however, by the boiling points of the components.
  • Working under pressure makes possible an increase in the reaction temperature to the optimum values and thus an increase in the reaction rate This leads to clearly improved space/time yields.
  • the relatively low-boiling orthoesters such as, for example, trimethyl orthoformate or trimethyl orthoacetate
  • the reaction and post-reaction times can be shortened and, as a result of lowered byproduct formation, the yields further increased.
  • the excess orthoester is preferably separated off by distillation at reduced pressure. This orthoester can be fed back or recycled to further batches.
  • the aluminum silicates of the invention have advantages here compared to the metal salts used hitherto, since they are insoluble and can be separated off without problems by filtration or sedimentation without other manipulations.
  • Aluminum silicate catalysts which have been filtered off can additionally be employed again after washing with the corresponding orthoester. In this way, the material and disposal costs are reduced.
  • the catalysts show high activity and selectivity under the reaction conditions and permit a virtually quantitative conversion of the malonic acid esters. It is thus now possible to obtain even dimethyl methoxymethylenemalonate in yields of above 92% of the theoretical yield, based on the malonic acid ester employed. In the synthesis of diethyl ethoxymethylenemalonate, yields of 95% of isolated product are obtained. It is thus possible, with the aid of easily separable aluminum silicates, to eliminate the heavy metal salts used hitherto.
  • Example 2 The batch from Example 2 was repeated, 0.25 g of conc. H 2 SO 4 being employed as catalyst and the reaction time being increased to 12 hours. After distillation of the crude product, 360 g of dimethyl methoxymethylenemalonate having a purity of 97% were obtained, which corresponds to a yield of 80% of the theoretical yield.
  • Example 3 The batch from Example 3 was repeated, 0.5 g of H 3 PO 4 -activated bentonite (montmorillonite catalyst KP 10 from Sud-Chemie, D-8000 Kunststoff) being employed as catalyst. After distillation, 204.7 g of diethyl ethoxymethylenemalonate were obtained, which corresponds to a yield of 94.7% of the theoretical yield.
  • H 3 PO 4 -activated bentonite montmorillonite catalyst KP 10 from Sud-Chemie, D-8000 Kunststoff
  • Example 3 The batch from Example 3 was repeated, 0.5 g of bentonite (montmorillonite catalyst K 10 from Sud-Chemie, D-8000 Kunststoff) being employed as catalyst. After distillation, diethyl ethoxymethylenemalonate was obtained in a yield of 76.8% of theory and diethyl diethoxymethylenemalonate in a yield of 18.2% of the theoretical yield.
  • bentonite montmorillonite catalyst K 10 from Sud-Chemie, D-8000 Kunststoff
  • Example 2 264 g (2 mol) of dimethyl malonate, 961 g (8 mol) of trimethyl orthoacetate and 1 g of catalyst from Example 1 were put into the pressure apparatus described in Example 2. The mixture was heated to 130° C., whereupon an internal pressure of 1.5 bar developed. 100 g of acetic anhydride were then metered in over the course of 12 hours, the low-boiling component was distilled off at a head temperature of 82° to 87° C. and the reaction temperature was gradually increased to 160° C. After complete distillation of the low-boiling component, the mixture was cooled, the excess trimethyl orthoacetate distilled off at reduced pressure and the crude product was fractionated through a short column at a head temperature of 110° C.
  • Example 5 188 g (1 mol) of diisopropyl malonate, 571 g (3 mol) of triisopropyl orthoformate and 0.05 g of catalyst from Example 5 were initially introduced into the apparatus mentioned in Example 1 and the mixture was heated to -10° C. 102 g of acetic anhydride were then metered in over the course of 5 hours. The bottom temperature was raised to 150° C. At the same time a low-boiling fraction was removed under reflux at a boiling temperature of 60° C. After 10 hours, the formation of low-boiling component decreased. The mixture was then fractionated in vacuo, first at 15 mbar and then at 0.3 mbar.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Steroid Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

A process for the preparation of alkoxyalkylidenemalonic acid esters. The reaction is catalyzed by easily separable, insoluble aluminum silicates.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a process for the preparation of dialkyl alkoxyalkylidenemalonates by reaction of malonic acid esters with trialkyl orthocarboxylates. Alkoxyalkylidenemalonic malonic acid esters are important intermediates for the synthesis of various substituted quinolines which are employed as pharmaceuticals against malaria or bacterial infections.
2. Discussion of the Background
The preparation of the alkoxyalkylidenemalonic acid esters from malonic acid esters and orthocarboxylic acid esters is known. The condensation is carried out in acetic anhydride using ZnCl2 as catalyst according to L. Claisen, Berichte 26, 2729 (1893).
Since then, various improvements to this route of preparation have been put forward with the aim of increasing the yields and the productivity of the reaction.
According to DE 2,426,964, the reaction of dialkyl malonate with an excess of trialkyl orthoformate is carried out in the presence of sub-stoichiometric amounts of acetic anhydride and Lewis acids such as zinc salts, aluminum salts or iron salts as catalyst For the preparation of diethyl ethoxymethylenemalonate, a yield of 94% of the theoretical yield based on malonic ester is mentioned. The preparation of dimethyl methoxymethylenemalonate is carried out under analogous conditions with a yield of 70% of the theoretical yield and, at a pressure of 3 bar, with a yield of 86% based on the malonic acid ester. These yields are not satisfactory. As a result of the incomplete conversion, purities of only 94 are obtained.
If, as described in U.S. Pat. No. 2,824,121, the preparation of diethyl ethoxymethylenemalonate is carried out by reaction of diethyl malonate with triethyl orthoformate in the absence of Lewis acids using acetic acid as the only catalyst, a yield of 91.8%, based on reacted diethyl malonate, with a conversion of only 60%, is achieved.
In EP 0,152,319, the reaction of diethyl malonate with triethyl orthoformate is catalysed by salts of Cd, Hg, Bi and Mg. The yields of diethyl ethoxymethylenemalonate determined by gas chromatography are very high. However, they do not correspond to the yields practically attainable by isolation of the product.
The Cd, Hg and Bi salts additionally lead to heavy metal-containing product residues. The disposal of these residues is increasingly difficult and cost-intensive. Also, from ecological points of view, a substitution of the metal salts appears desirable. The contamination of the alkoxyalkylidenemalonic esters with such toxic metal salts may limit their use as pharmaceutical precursors or even make it impossible.
The known catalysts moreover yield dimethyl methoxymethylenemalonate in unsatisfactory yields in the reaction of the less active trimethyl orthoformate with dimethyl malonate.
SUMMARY OF THE INVENTION
Accordingly, one object of the invention is a process for the preparation of alkoxyalkylidenemalonic acid esters which leads, by means of a simple reaction, to good yields and conversions without the use of heavy metal-containing catalysts. In particular, improved yield and conversion in the preparation of dimethyl methoxymethylenemalonate and diethyl ethoxymethylenemalonate are also specific objects of the invention.
This and other objects which will become apparent from the following specification have been achieved by employing aluminum silicates as catalysts in the preparation of alkoxyalkylidenemalonic acid esters of the formula ##STR1## in which
R1 is alkyl having 1 to 4 carbon atoms,
R2 is hydrogen, alkyl having 1 to 4 carbon atoms, aryl, aralkyl or alkoxy and
R3 and R4 are alkyl having 1 to 4 carbon atoms, from malonic esters of the formula R3 OOCCH2 COOR4 and orthocarboxylic acid esters of the formula R2 (OR1)3 in the presence of carboxylic acids or their anhydrides. The groups R1, R3 and R4 may in this case be identical or different.
Preferred aryl groups for R2 are aryl groups having 6-10 carbon atoms, for example phenyl and naphthyl groups. If desired, the aryl group may be substituted with one or more alkyl groups having from 1-4 carbon atoms. Preferred aralkyl groups contain 7-10 carbon atoms, for example benzyl or other alkylphenyl groups. Preferred alkoxy groups are alkoxy groups having 1-4 carbon atoms.
A preferred embodiment is a process for the preparation of products of the formula (I), in which R1, R3 and R4 are identical and R2 is hydrogen or alkyl having 1 to 4 carbon atoms. The invention very particularly relates to the preparation of dimethyl methoxymethylenemalonate and diethyl ethoxymethylenemalonate.
The aluminum silicates employed as catalysts are preferably clay minerals, very preferably montmorillonite or montmorillonite-containing layer silicates such as, for example, bentonites, smectites or attapulgite.
In order to increase their activity, the catalysts can be treated with acids or acidic salts, preferably with mineral acids such as, for example, sulphuric acid or phosphoric acid. Thus, for example, bentonites treated with H2 SO4 or H3 PO4 can be used. Typical acidic salts are, for example, sodium and potassium hydrogen sulphates or hydrogen phosphates. Activation of the catalysts can also be carried out during the reaction by addition of the acidic salts or acids continuously or in portions. Increases in activity generally lead to improved conversions.
If these acids or acidic salts are used without the catalysts, the necessary reaction times are lengthened considerably with a simultaneously clearly reduced yield.
The amount of the catalyst employed is in general about 0.001 g to about 10 g per mole of malonate. The preferred range is 0.01 g to 1 g per mole of malonate. The water adhering to the commercial clay minerals can be largely removed by customary drying methods such as heating in vacuo. Since the orthoesters employed in the reaction also act as drying agents, the commercial products can also be used directly. The addition of the catalysts can be carried out by known methods.
The aluminum silicate catalysts can also be employed in combination with metal salt catalysts which are customarily used.
The reaction temperature is preferably about 60° to 200° C. A temperature range of 100° to 170° C. is very particularly preferred.
During the reaction, a pressure of about 1 to 10 bar is preferably set. A pressure of 1 to 3 bar is particularly preferred.
The carboxylic acids and their anhydrides employed as additional condensing agents are preferably lower aliphatic carboxylic acids having 1 to 5 carbon atoms or the corresponding anhydrides. The amount employed is in general about 0.01 to 1 mole per mole of malonate.
The orthocarboxylic acid ester can be used in the process stoichiometrically or in excess. The amount employed is preferably 1 to 6 moles per mole of malonic acid ester. 1.2 to 4 moles of orthocarboxylic acid ester per mole of malonic acid ester are particularly preferred.
The orthocarboxylic acid ester may also be partially replaced by solvents boiling in the same temperature range. Solvents of this type are, for example, aromatic hydrocarbons or high-boiling ethers. By means of these solvents, the excess orthocarboxylic acid esters can be somewhat reduced.
The reaction is carried out most simply by adding together the reactants and the catalysts in the above-mentioned ratios and reacting at the described temperatures. Preferrably, malonic acid ester, orthoester and the mineral catalyst are initially introduced with a partial amount of the carboxylic acid and/or anhydride and the residual amounts of the carboxylic acid and/or anhydride are added continuously or in portions corresponding to the course of the reaction. It is likewise possible also to bring only a partial amount of the orthoester to reaction with the other starting compounds corresponding to the above-mentioned processes and to meter in the other part continuously or in portions during the reaction.
The alcohol eliminated in the condensation is advantageously removed continuously by distillation. After complete reaction of the malonic acid ester, it is desirable to leave the reaction mixture at the reaction temperature until extensive conversion of the intermediates formed, such as bis-alkoxy-alkylmalonic acid esters, to the alkoxyalkylidenemalonic acid esters has taken place. In order to complete the reaction, further catalytic amounts of about 0.05 to 0.5% by weight, based on the malonic acid ester employed, of carboxylic acid anhydrides and/or inorganic or organic acids such as, for example, sulphuric acid, phosphoric acid, citric acid and p-toluenesulphonic acid or of acidic salts such as, for example, potassium hydrogen sulphate can be optionally added to the reaction mixture, after separating off the mineral catalyst The mixture is then kept at a temperature of 100° to 180° C. for 1 to 5 hours. By this means, for example, the product purity of dimethyl methoxymethylenemalonate can be increased to above 98%.
The process can be carried out at normal pressure and elevated pressure. The particularly preferred reaction temperatures are in the range from 100° to 170° C., with the maximum attainable reaction temperature at normal pressure being limited, however, by the boiling points of the components. Working under pressure makes possible an increase in the reaction temperature to the optimum values and thus an increase in the reaction rate This leads to clearly improved space/time yields. In particular when using the relatively low-boiling orthoesters, such as, for example, trimethyl orthoformate or trimethyl orthoacetate, the reaction and post-reaction times can be shortened and, as a result of lowered byproduct formation, the yields further increased.
After completion of the reaction, the excess orthoester is preferably separated off by distillation at reduced pressure. This orthoester can be fed back or recycled to further batches.
It is advantageous to remove the catalyst before the distillation. The aluminum silicates of the invention have advantages here compared to the metal salts used hitherto, since they are insoluble and can be separated off without problems by filtration or sedimentation without other manipulations.
Aluminum silicate catalysts which have been filtered off can additionally be employed again after washing with the corresponding orthoester. In this way, the material and disposal costs are reduced.
The catalysts show high activity and selectivity under the reaction conditions and permit a virtually quantitative conversion of the malonic acid esters. It is thus now possible to obtain even dimethyl methoxymethylenemalonate in yields of above 92% of the theoretical yield, based on the malonic acid ester employed. In the synthesis of diethyl ethoxymethylenemalonate, yields of 95% of isolated product are obtained. It is thus possible, with the aid of easily separable aluminum silicates, to eliminate the heavy metal salts used hitherto.
Having generally described this invention, a further understanding can be obtained by reference to certain specific examples which are provided herein for purposes of illustration only and are not intended to be limiting unless otherwise specified.
EXAMPLES EXAMPLE 1
264.2 g (2.0 mol) of dimethyl malonate, 637 g (6 mol) of trimethyl orthoformate and 20.4 g (0.2 mol) of acetic anhydride containing 2 g of H2 SO4 -activated bentonite (montmorillonite catalyst KSF/O from Sud-Chemie, D-8000 Munich) were initially introduced into a reaction flask provided with a stirrer, thermometer, dropping funnel, column and reflux condensor, and the mixture was heated to boiling. 40.8 g (0.4 mol) of acetic anhydride were continuously metered in during the course of 6 hours. The low boiling component formed was distilled off at a head temperature of 62° to 67° C. The bottom temperature increased slowly from 109° to 133° C. After 8 hours, the excess orthoester was distilled off at reduced pressure. 40.8 g (0.4 mol) of acetic anhydride were added to the remaining reaction mixture and the mixture was heated at 140° C. for 2 hours. The catalyst was then filtered off and the crude product was distilled in vacuo. 330.4 g of dimethyl methoxymethylenemalonate (98% pure) having a melting point of 44° to 46° C. were obtained at 0.5 mbar and a head temperature of 110° C. This corresponds to a yield of 92% of theoretical yield.
EXAMPLE 2
330.3 g (2.5 mol) of dimethyl malonate, 1078 g (10.2 mol) of trimethyl orthoformate, 15 g of acetic anhydride and 1 g of catalyst from Example 1 were put into a glass autoclave having a pressure distillation section, stirrer, temperature measuring sites, safety valves and a metering pump. The sealed apparatus was heated to 120° C., whereupon an internal pressure of 1.95 bar built up. 36 g of acetic anhydride were then metered in 3 g portions over the course of 5 hours. The internal temperature increased slowly to 155° C. The low-boiling components formed distilled off at a head temperature of 91° to 92° C.
After a total reaction time of 7.5 hours, the mixture was cooled, the catalyst was filtered off and the excess of trimethyl orthoformate was distilled off under a slight vacuum. After adding 3 drops of H3 PO4, the mixture was then heated at 140° C. for 2 hours and the crude product distilled over at 0.5 mbar and a head temperature of 110° C. 406 g of dimethyl methoxymethylenemalonate (98.6% pure) were obtained, which corresponds to a yield of 91.9% of the theoretical yield.
COMPARISON EXAMPLE A
The batch from Example 2 was repeated, 0.25 g of conc. H2 SO4 being employed as catalyst and the reaction time being increased to 12 hours. After distillation of the crude product, 360 g of dimethyl methoxymethylenemalonate having a purity of 97% were obtained, which corresponds to a yield of 80% of the theoretical yield.
EXAMPLE 3
160.2 g (1.0 mol) of diethyl malonate, 474.2 g (3.2 mol) of triethyl orthoformate, 4 g of acetic anhydride and 0.5 g of catalyst from Example 1 were initially introduced into the apparatus described in Example 1 and the mixture was heated to boiling. A mixture of 10 g of acetic anhydride and 30 g of triethyl orthoformate were continuously added dropwise in the course of 6 hours. The low-boiling component formed was distilled off at a head temperature of 78° to 79° C. The reaction temperature slowly increased to 159° C. The mixture was kept at this temperature for a further hour. The unreacted orthoester was then distilled off at reduced pressure, the catalyst was filtered off and the crude product was purified by distillation at 0.5 mbar. In this way 205.6 g of diethyl ethoxymethylenemalonate were obtained, which corresponds to a yield of 95.1% of the theoretical yield.
EXAMPLE 4
The batch from Example 3 was repeated, 0.5 g of H3 PO4 -activated bentonite (montmorillonite catalyst KP 10 from Sud-Chemie, D-8000 Munich) being employed as catalyst. After distillation, 204.7 g of diethyl ethoxymethylenemalonate were obtained, which corresponds to a yield of 94.7% of the theoretical yield.
EXAMPLE 5
The batch from Example 3 was repeated, 0.5 g of bentonite (montmorillonite catalyst K 10 from Sud-Chemie, D-8000 Munich) being employed as catalyst. After distillation, diethyl ethoxymethylenemalonate was obtained in a yield of 76.8% of theory and diethyl diethoxymethylenemalonate in a yield of 18.2% of the theoretical yield.
EXAMPLE 6
160.2 g (1.0 mol) of diethyl malonate, 474.2 g (3.2 mol) of triethyl orthoformate and 0.5 g of catalyst from Example 5 were initially introduced and the mixture was heated to boiling. A mixture of 10 g of acetic anhydride, 1 g of H3 PO4 and 30 g of triethyl orthoformate were continuously added dropwise over the course of 6 hours. The reaction and work up were carried out in accordance with Example 3 and gave 200 g of diethyl ethoxymethylenemalonate, which corresponds to a yield of 92.6% of the theoretical yield.
EXAMPLE 7
264 g (2 mol) of dimethyl malonate, 961 g (8 mol) of trimethyl orthoacetate and 1 g of catalyst from Example 1 were put into the pressure apparatus described in Example 2. The mixture was heated to 130° C., whereupon an internal pressure of 1.5 bar developed. 100 g of acetic anhydride were then metered in over the course of 12 hours, the low-boiling component was distilled off at a head temperature of 82° to 87° C. and the reaction temperature was gradually increased to 160° C. After complete distillation of the low-boiling component, the mixture was cooled, the excess trimethyl orthoacetate distilled off at reduced pressure and the crude product was fractionated through a short column at a head temperature of 110° C. under a high vacuum of 0.3 mbar. In this way methyl 2-carbomethoxy-3-methoxy-2-butenoate was obtained in a yield of 77.5% and methyl 2-carbomethoxy-3,3-dimethoxy-butanoate was obtained in a yield of 11% of the theoretical yield.
EXAMPLE 8
160 g (1 mol) of diethyl malonate, 649 g (4 mol) of triethyl orthoacetate and 0.5 g of catalyst from Example 1 were heated to 130° C. in a glass apparatus having a distillation column. The metering-in of 102 g of acetic anhydride over the course of 7 h was then begun. The bottom temperature was increased to 159° C. with the distillation of low-boiling components at a head temperature of 72° to 73° C. After the end of the reaction, the residual low-boiling components were distilled off under a low vacuum and the excess triethyl orthoacetate was removed at 15 mbar. The desired product was then distilled over at 0.3 mbar and a head temperature of 100° to 102° C. Ethyl 2-carboethoxy-3-ethoxy-2-butenoate was obtained in a yield of 73% of the theoretical yield.
EXAMPLE 9
188 g (1 mol) of diisopropyl malonate, 571 g (3 mol) of triisopropyl orthoformate and 0.05 g of catalyst from Example 5 were initially introduced into the apparatus mentioned in Example 1 and the mixture was heated to -10° C. 102 g of acetic anhydride were then metered in over the course of 5 hours. The bottom temperature was raised to 150° C. At the same time a low-boiling fraction was removed under reflux at a boiling temperature of 60° C. After 10 hours, the formation of low-boiling component decreased. The mixture was then fractionated in vacuo, first at 15 mbar and then at 0.3 mbar. 7.6% of diisopropyl malonate, 80.2% of diisopropyl isopropoxymethylenemalonate and 6.5% of diisopropyl diisopropoxy-methylmalonate were obtained. The last-mentioned compound was converted into diisopropyl isopropoxymethylenemalonate by heating with 0.2 g of H3 PO4.
Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.

Claims (14)

What is claimed as new and desired to be secured by Letters Patent of the United States is:
1. A process for the preparation of a dialkyl alkoxyalkylidenemalonate of the formula ##STR2## wherein R1 is C1-4 alkyl,
R2 is hydrogen, C1-4 alkyl, aryl, aralkyl or alkoxy and
R3 and R4 are C1-4 alkyl, comprising reacting a dialkylmalonate of the formula R3 OOCCH2 COOR4 with a trialkyl orthocarboxylate of the formula R2 C(OR1)3 in the presence of a carboxylic acid, carboxylic acid anhydride, or mixture thereof and an aluminum silicate catalyst.
2. The process of claim 1, wherein R1, R3 and R4 are identical and R2 is hydrogen or C1-4 alkyl.
3. The process of claim 2, wherein R1, R3 and R4 are identical and are methyl or ethyl and R2 is hydrogen.
4. The process of claim 1, wherein said aluminum silicate is in the form of a clay mineral.
5. The process of claim 4, wherein said clay mineral is a montmorillonite or montmorillonite-containing layer silicate.
6. The process of claim 1, wherein said aluminum silicate is aluminum silicate treated with a mineral acid, acidic salt or mixture thereof.
7. The process of claim 6, wherein the mineral acid is added to the reaction mixture continuously or in portions before or during the reacting step.
8. The process of claim 1, wherein the amount of the catalyst is about 0.001 g to 10 g per mole of dialkylmalonate.
9. The process of claim 1, wherein the temperature of the reacting step is about at 60° to 200° C.
10. The process of claim 1, wherein the reacting step is carried out at a pressure of about 1 to 10 bar.
11. The process of claim 1, wherein the amount of carboxylic acid or carboxylic acid anhydride is about 0.01 to 1 mole per mole of dialkylmalonate.
12. The process of claim 1, wherein the amount of trialkyl orthocarboxylate is 1 to 6 moles per mole of dialkylmalonate.
13. The process of claim 1, further comprising adding 0.05 to 0.5% by weight, based on the dialkylmalonate of a carboxylic acid anhydride, inorganic acid, inorganic acid salt, organic acid, or organic acid salt to the reaction mixture after said reacting step, and heating at a temperature of 100° to 180° C.
14. The process of claim 13, wherein the catalyst is separated from the reaction mixture prior to said adding step.
US07/552,902 1989-08-23 1990-07-16 Process for the preparation of alkoxyalkylidenemalonic acid esters Expired - Fee Related US5041619A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3927761A DE3927761C2 (en) 1989-08-23 1989-08-23 Process for the preparation of alkoxyalkylidene malonic acid esters
DE3927761 1989-08-23

Publications (1)

Publication Number Publication Date
US5041619A true US5041619A (en) 1991-08-20

Family

ID=6387656

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/552,902 Expired - Fee Related US5041619A (en) 1989-08-23 1990-07-16 Process for the preparation of alkoxyalkylidenemalonic acid esters

Country Status (8)

Country Link
US (1) US5041619A (en)
EP (1) EP0413918B1 (en)
JP (1) JPH03109354A (en)
AT (1) ATE105545T1 (en)
DE (1) DE3927761C2 (en)
FI (1) FI904117A7 (en)
HU (1) HU208108B (en)
PT (1) PT94958A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5886219A (en) * 1997-02-06 1999-03-23 Huels Aktiengesellschaft Process for preparing malonic acid and alkylmalonic acids
US20050287339A1 (en) * 2004-06-25 2005-12-29 Schlegel Corporation Weatherseal having surface roughness forming particles of a polar material in a resin matrix having a maleated polyolefin
CN104860818A (en) * 2015-04-20 2015-08-26 浙江新和成股份有限公司 Synthesizing method of diethyl ethoxy-methylene malonate
CN115774065A (en) * 2022-11-11 2023-03-10 武汉海特生物创新医药研究有限公司 A kind of GC detection method of ethoxy methylene malonate diethyl

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0148439B1 (en) * 1994-03-11 1998-11-02 마사까쓰 마쓰모또 1, 2 dioxetane derivatives
FR2767822B1 (en) * 1997-09-04 1999-11-19 Merial Sas PROCESS FOR THE PREPARATION OF ARYLAMINOALKYLIDENEMALONATE COMPOUNDS
WO2005007608A2 (en) * 2003-07-10 2005-01-27 Schering Corporation Process for the preparation and purification of 2-(alkoxyalkylidene)-3-ketoalkanoic acid esters from 3-ketoalkanoic acid esters
AU2007280214A1 (en) 2006-08-01 2008-02-07 Glaxo Group Limited Pyrazolo[3,4-b]pyridine compounds, and their use as PDE4 inhibitors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5268116A (en) * 1975-12-02 1977-06-06 Nippon Synthetic Chem Ind Co Ltd:The Preparation of alkoxyalkylidene compounds
US4738796A (en) * 1984-06-25 1988-04-19 Rhone-Poulenc Specialites Chimiques Process for preparing organic compounds containing an alkoxyalkylidene group
JPH01100147A (en) * 1987-10-12 1989-04-18 Mect Corp Optically active malonic acid ester derivative

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2824121A (en) * 1954-11-04 1958-02-18 Kay Fries Chemicals Inc Process for preparation of oxy alkylidene compounds
DE2426964C3 (en) * 1974-06-04 1979-06-07 Dynamit Nobel Ag, 5210 Troisdorf Process for the preparation of alkoxymethylene malonic acid dialkyl esters
FR2559147B1 (en) * 1984-02-07 1986-06-13 Rhone Poulenc Spec Chim PROCESS FOR OBTAINING ORGANIC COMPOUNDS WITH ALKOXYALKYLIDENE GROUP
FR2589466B1 (en) * 1985-11-04 1988-10-14 Rhone Poulenc Spec Chim PROCESS FOR THE PREPARATION OF COMPOUNDS CARRYING ALKOXYALKYLIDENE PATTERNS

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5268116A (en) * 1975-12-02 1977-06-06 Nippon Synthetic Chem Ind Co Ltd:The Preparation of alkoxyalkylidene compounds
US4738796A (en) * 1984-06-25 1988-04-19 Rhone-Poulenc Specialites Chimiques Process for preparing organic compounds containing an alkoxyalkylidene group
JPH01100147A (en) * 1987-10-12 1989-04-18 Mect Corp Optically active malonic acid ester derivative

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5886219A (en) * 1997-02-06 1999-03-23 Huels Aktiengesellschaft Process for preparing malonic acid and alkylmalonic acids
US20050287339A1 (en) * 2004-06-25 2005-12-29 Schlegel Corporation Weatherseal having surface roughness forming particles of a polar material in a resin matrix having a maleated polyolefin
CN104860818A (en) * 2015-04-20 2015-08-26 浙江新和成股份有限公司 Synthesizing method of diethyl ethoxy-methylene malonate
CN115774065A (en) * 2022-11-11 2023-03-10 武汉海特生物创新医药研究有限公司 A kind of GC detection method of ethoxy methylene malonate diethyl

Also Published As

Publication number Publication date
DE3927761A1 (en) 1991-02-28
FI904117A0 (en) 1990-08-20
DE3927761C2 (en) 1997-11-27
EP0413918B1 (en) 1994-05-11
EP0413918A2 (en) 1991-02-27
HUT54613A (en) 1991-03-28
FI904117A7 (en) 1991-02-24
EP0413918A3 (en) 1992-01-22
ATE105545T1 (en) 1994-05-15
PT94958A (en) 1991-05-22
HU208108B (en) 1993-08-30
JPH03109354A (en) 1991-05-09
HU905277D0 (en) 1991-02-28

Similar Documents

Publication Publication Date Title
KR101158132B1 (en) Manufacture of vitamin b6
US5041619A (en) Process for the preparation of alkoxyalkylidenemalonic acid esters
KR20080112340A (en) Curcumin Synthesis
US4665218A (en) Method for the preparation of alkoxymethylene compounds of acetic esters and substituted acetic esters
EP0808826B1 (en) A method for preparing 3-amino substituted crotonates
US5260487A (en) Process for the preparation of 2-hydroxyarylaldehydes
EP0117882B1 (en) Novel aminopropylpivalamides and a method of preparation
US5153345A (en) Process for the preparation of alkyl methyl-3-carbalkoxyethylphosphinates
CA1100993A (en) Process for the production of alkoxy methylene compounds
US5132444A (en) Gas-phase preparation of vinyl phosphonic acid derivatives
CA1067508A (en) Process for producing alkoxymethylene malonic acid esters
US4760169A (en) Process for the preparation of hydroxymethylenealkoxyacetic acid esters
US6395920B1 (en) Process for preparing substituted acetals of malondialdehyde
KR100695334B1 (en) Method for preparing 2-substituted propionic acid
US5202461A (en) 3-substituted 2-hydroxy-3-formylpropionic esters, the preparation thereof and the use thereof for preparing 3-substituted 3-formylacrylic esters
US4504673A (en) Preparation of tartronic esters
US6452042B1 (en) Substituted propenoates and processes for the preparation thereof
EP0019374B1 (en) By-product recycling process in the production of lower alkyl 3.3-dimethyl-4-pentenoate esters
JPS6121624B2 (en)
US5256813A (en) 3-substituted 2-hydroxy-3-formylpropionic esters, the preparation thereof and the use thereof for preparing 3-substituted 3-formylacrylic esters
JPH03397B2 (en)
US6365752B1 (en) Process for preparing 1-substituted 5-hydroxy-imidazoline-2,4-diones and 1-substituted 5-alkoxy-imidazoline-2,4-diones
SU461104A1 (en) The method of producing isocyanatophosphoric acid dichloride
SU352554A1 (en) METHOD FOR PRODUCING R-RODANETHYL ETHERES OF PHOSPHONE OR PHOSPHORIC ACID
JP2001233823A (en) Method of preparing malonic acid diester by continuous transesterification

Legal Events

Date Code Title Description
AS Assignment

Owner name: HUELS AKTIENGESELLSCHAFT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:VON ITTER, FRANZ-ALBERT;STEFFEN, KLAUS-DIETER;REEL/FRAME:005689/0490

Effective date: 19900427

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 19950823

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362