US4955010A - Constant velocity track jump servo system for disc players - Google Patents

Constant velocity track jump servo system for disc players Download PDF

Info

Publication number
US4955010A
US4955010A US07/228,844 US22884488A US4955010A US 4955010 A US4955010 A US 4955010A US 22884488 A US22884488 A US 22884488A US 4955010 A US4955010 A US 4955010A
Authority
US
United States
Prior art keywords
signal
pick
velocity
kick
phase compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/228,844
Inventor
Daiki Nabeshima
Hiroshi Nakane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Application granted granted Critical
Publication of US4955010A publication Critical patent/US4955010A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B21/00Head arrangements not specific to the method of recording or reproducing
    • G11B21/02Driving or moving of heads
    • G11B21/08Track changing or selecting during transducing operation
    • G11B21/081Access to indexed tracks or parts of continuous track
    • G11B21/083Access to indexed tracks or parts of continuous track on discs
    • G11B21/085Access to indexed tracks or parts of continuous track on discs with track following of accessed part

Definitions

  • This invention relates generally to information reproducing systems capable of accessing a desired data or information record track on a disc-shape information carrier, and more particularly, to a track jump servo system for disc players having servos for positioning a transducer means rapidly and accurately to a desired record track location on a disc surface.
  • Digital record discs for recording information signals such as digitized audio signals, video or image signals have become quite common as have record disc reproducing apparatus for reproducing the recorded information data. Further, some digital record discs, e.g., so-called CDs (Compact Discs) have recently become used as ROM (Read Only Memory) devices for computers, called CD-ROMs.
  • CDs Compact Discs
  • ROM Read Only Memory
  • On such a digital record disc digital data intended for high density recording are recorded in the form of a spiral bit string on one side thereof and reproduced through reading the bit string by means of transducer means such as an optical pick-up device using laser beams.
  • the optical pick-up device of the record disc reproducing apparatus follows the bit string by means of a tracking control system.
  • CD players or video disc players are further used to process the read-out signal in a predetermined manner so as to convert the signal into a replica of the original analog signal which was recorded, i.e., an audio or video signal as an output.
  • address information may also be recorded on the record disc which may be detected for search and track jump operation so that reproduction at a desired track location can be easily and quickly achieved.
  • a selected address corresponding to the desired track location is preset, and the pick-up device is rapidly moved across or traverses to the track until the desired track corresponding to the selected address is reached.
  • a distance that the pick-up device should jump or traverse is calculated by, for example, a computer in accordance with the address of the track at which the pick-up device is presently located and the address of the desired track.
  • the pick-up device is moved by the distance radially across the disc by applying a predetermined, fixed voltage to a driver such as a voice coil, moving coil or linear motor.
  • the fixed voltage causes the pick-up device to continuously accelerate until the voltage ceases.
  • the pick-up device can jump to the desired track relatively accurately.
  • the pick-up device does not become accurately placed on the desired track for a long time.
  • the actual distance that the pick-up device has moved is apt to differ from the desired distance calculated by the computer.
  • a track at which the pick-up device has been placed at the end of the jump may differ more from the desired track due to mechanical loss or non-uniformity in the mechanism for transferring the pick-up device, inertia of the pick-up device, temperature conditions, the unpredictable speed when the desired track is reached and the like.
  • the search operation includes repeated track jumps so that the pick-up device gradually approaches the desired track location. After every track jump in the search operation, the track address is checked to determine whether a track where the pick-up device has been placed after the track jump coincides with the desired track or not.
  • an object of the present invention to provide an information reproducing system capable of rapidly and accurately accessing a desired data or information record track on a discshaped information carrier.
  • a record disc reproducing apparatus for use in reproducing data stored thereon having a pick-up device for reading data from the disc and movable in a radial direction with respect to the disc.
  • the moving velocity of the pick-up device is detected, and a velocity signal corresponding to the moving velocity is produced.
  • a kick signal generator supplies the driver for the pick-up device with a driving kick signal.
  • the kick signal generator controls the kick signal so that the velocity signal coincides with a reference voltage signal to maintain the speed of the pick-up device at a predetermined constant value.
  • FIG. 1 is a block diagram of a first embodiment of the present invention
  • FIG. 2 is a block diagram of a second embodiment of the present invention.
  • FIG. 3 is a block diagram of a third embodiment of the present invention.
  • FIGS. 4a and 4b together constitute is a practical circuit arrangement for the third embodiment of the present invention.
  • FIGS. 5a-5l and FIGS. 6a-6l are timing charts used to explain the modes of short distance and long distance search operations of the third embodiment shown in FIGS. 4a and 4b.
  • FIGS. 1 to 6 The present invention will now be described in detail with reference to FIGS. 1 to 6. Throughout the drawings, like reference numerals or letters are used to designate like or equivalent elements.
  • FIG. 1 description will be made of a fundamental block diagram of a track jump servo system for disc players according to the present invention.
  • a tracking error signal Se obtained in response to deviation of a pick-up device 11 from the center of the record track then being scanned is supplied to a fixed contact 13b of a switch 13.
  • a velocity detection circuit 19 is provided for detecting mechanically or electrically a moving speed of pick-up device 11 and generates a velocity signal Sv.
  • Velocity detection circuit 19 is provided, for example, on pick-up device 11 or a guide, etc., thereof.
  • Velocity signal Sv outputted from velocity detection circuit 19 is supplied to an input terminal of a kick signal generator circuit 18.
  • Kick signal generator circuit 18 compares velocity signal Sv with a reference voltage signal Sr supplied to another input terminal of kick signal generator 18 from a reference voltage source 20 so that a kick signal Sk is generated as described in detail later.
  • Kick signal Sk generated from kick signal generator circuit 18 is supplied to another fixed contact 13c of switch 13.
  • a movable contact 13a of switch 13 is coupled to fixed contact 13b by means of a command from system control circuit 12, so that tracking error signal Se on fixed contact 13b is supplied to a tracking actuator 16 for pick-up device 11 (represented by a coil symbol in the drawing) through a series circuit of a phase compensation circuit 14 and an amplifier 15. Therefore, tracking actuator 16 controls an objective lens (not shown) in pick-up device 11 according to tracking error signal Se so as that pick-up device 11 follows a predetermined record track on the optical disc correctly.
  • tracking actuator 16 may be a well known voice coil, moving coil or linear motor. Therefore, a tracking servo control for pick-up device 11 is performed.
  • system control circuit 12 calculates a number of record tracks that the pick-up device 11 should jump over or traverse, in other words, the number of record tracks between a record track then being scanned and the desired record track to be searched. Also, system control circuit 12 commands switch 13 to change movable contact 13a of switch 13 to fixed contact 13c. Kick signal generator circuit 18 then supplies fixed contact 13c with kick signal Sk. Kick signal Sk is then supplied to tracking actuator 16 through phase compensation circuit 14 and amplifier 15 in place of tracking error signal Se. Therefore, tracking actuator 16 drives the objective lens in pick-up device 11 according to kick signal Sk so that pick-up device 11 jumps over or traverses to the desired record track location radially relative to the optical disc.
  • the moving speed of the pick-up device is detected by velocity detection circuit 19 as described before and then fed back to kick signal generator circuit 18 as velocity signal Sv.
  • Kick signal generator circuit 18 controls its output, i.e., kick signal Sk so that velocity signal Sv coincides with reference voltage signal Sr.
  • the pick-up device is servo-controlled so that it moves at a constant speed in correspondence with reference voltage signal Sr.
  • system control circuit 12 counts pulses in tracking error signal Se supplied through a waveform shaping circuit 17 from pick-up device 11.
  • tracking error signal Se is modified to a rectangular pulsewaveform.
  • system control circuit 12 commands switch 13 so that movable contact 13a of switch 13 is again coupled to fixed contact 13b. Then the record disc reproducing apparatus is changed from an information search mode for accessing the desired record track location to an information reproducing mode, and the tracking servo control for pick-up device 11 is reestablished.
  • the moving velocity of pick-up device 11 is servocontrolled so that it is able to stop at a desired track location with a minimal possibility of failure by only one search operation. Therefore, the search operation for accessing a desired track location is performed within a very short time.
  • switch 36 may also be provided having one fixed terminal connected to kick signal generator 18, another fixed terminal connected to a voltage source which causes a slowing of pick-up 11 when applied to tracking actuator 16 and a movable terminal connected to switch 13.
  • Control circuit 12 controls switch 36 to connect kick signal generator 18 to switch 13 during most of a search operation.
  • system control circuit 12 determines that pick-up device 11 is within a predetermined number of tracks, e.g., one or two tracks of the desired track
  • control circuit 11 changes switch 36 to connect the voltage source to tracking actuator 16 to slow pick-up 11, producing an even more assured positioning when the desired track is reached.
  • FIG. 2 a second embodiment of the record disc reproducing apparatus according to the present invention will be described.
  • the second embodiment is contructed and improved from the first embodiment shown in FIG. 1. Therefore, descriptions for portions equivalent to those in the first embodiment shown in FIG. 1 will be made as the occasion may demand.
  • velocity detection circuit 19 is comprised of a frequency-to-voltage converter (F/V converter) 21 connected to waveform shaping circuit 17.
  • F/V converter 21 generates a velocity signal Sv with a voltage corresponding to a frequency of pulses in tracking error signal Se.
  • kick signal Sk generated from kick signal generator circuit 18 is supplied to second fixed contact 13c of switch 13 through a second phase compensation circuit 22 for reverse-compensating the phase compensation of first phase compensation circuit 14 connected between switch 13 and amplifier 15.
  • First phase compensation circuit 14 usually stabilizes the tracking servo control loop in the reproducing mode. First phase compensation circuit 14, therefore, must be deactivated in the search mode. Although it is possible to deactivate first phase compensation circuit 14 in other ways, for example, short-circuiting it in the search mode, first phase compensation circuit 14 fails to be initialized when the reproducing mode has again started. In the second embodiment, therefore, first phase compensation circuit 14 is always activated both in the reproducing and search modes, while second phase compensation circuit 22 having an opposite characteristic to first phase compensation circuit 14 virtually eliminates phase compensation due to first phase compensation circuit 14.
  • FIG. 2 operates in the same manner as the embodiment of FIG. 1.
  • FIG. 3 a third embodiment of the record disc reproducing apparatus according to the present invention will be described.
  • the third embodiment represents a modification of the second embodiment shown in FIG. 2. Therefore, descriptions for portions equivalent to those in the prior embodiments shown in FIGS. 1 and 2 will be made as the occasion may demand.
  • second phase compensation circuit 22 is comprised of an equalizer circuit 23 and a second switch 24 connected in series on a feedback path provided in parallel with the series circuit of first phase compensation circuit 14 and amplifier 15. That is, the feedback path is connected between the output end of amplifier 15 and a subtraction circuit 25 provided prior to the first phase compensation circuit 14.
  • Second switch 24 is controlled by a command from system control circuit 12 so that the coupling of the feedback path to subtraction circuit 25 is activated in the search mode.
  • Subtraction circuit 25 operates to subtract an output of equalizer circuit 23 from kicks signal SK supplied to first phase compensation circuit 14 in the search mode.
  • first and second reference voltage sources 27 and 28 are provided for being selectively connected to kick signal generator circuit 18 through a third switch 26 which is also controlled by a command from system control circuit 12.
  • first phase compensation circuit 14 is also activated both in the reproducing and the search modes, but its effect is virtually eliminated due to the subtraction of the output of equalizer circuit 23 from kick signal SK.
  • First and second reference voltage sources 27 and 28 generate respectively a reference voltage signal Sr-a and another reference voltage signal Sr-b which is lower than the former signal Sr-a.
  • System control circuit 12 commands third switch 26 so that first reference voltage source 27 is connected to kick signal generator circuit 18 first in the search mode and then second reference voltage source 28 is connected to kick signal generator circuit 18 for a predetermined period remaining in the search mode. Accordingly, pick-up device 11 is moved at relatively rapid speed to a vicinity of a desired track location first by kick signal Sk corresponding to the higher reference voltage signal Sr-a.
  • pick-up device 11 is moved at a relatively slow speed to the desired track location by kick signal Sk corresponding to the lower reference voltage signal Sr-b.
  • the switching operation of switch 26 from first reference voltage source 27 to second reference voltage source 28 is made by system control circuit 12 at a timing that a count of pulses in tracking error signal Se coincides with a value smaller than the number of tracks between the track location where pick-up device 11 had been located prior to the search mode operation and the desired track location by a predetermined value.
  • FIG. 4 shows a practical circuit arrangement embodying the third embodiment of the record disc reproducing apparatus according to the present invention as shown in FIG. 3. An operation of the record disc reproducing apparatus shown in FIG. 4 will be described hereinafter with reference to the graph diagrams of FIGS. 5 and 6. An explanation of its circuit construction will be also made properly in the description.
  • a tracking error signal Se from pick-up device 11 is supplied to an FET (Field Effect Transistor) Q1 which operates as first switch 13 in FIG. 3 (the same in below description) through an operational amplifier OP1.
  • FET Q1 is rendered conductive in the reproducing mode as described later.
  • Tracking error signal Se is then introduced to tracking actuator 16 via a series circuit of phase compensation circuit 14 comprised of an operational amplifier OP2 for its main component and amplifier 15 comprised of an operation amplifier OP3 for its main component.
  • system control circuit 12 When a search mode for accessing any desired track location is requested, system control circuit 12 produces a set of data NO to N7, a data NS6 and a direction signal FR.
  • Data NO to N7 represent the number of tracks that pick-up device 11 should jump over, and they are supplied to a counter 29.
  • Data NS6 changes the moving speed of pick-up device 11 and is supplied to a counter 30.
  • Direction signal FR determines the direction that pick-up device 11 should move.
  • System control circuit 12 further produces a set-up signal KST.
  • Set-up signal KST initiates generation of kick signal Sk by actuating a flipflop circuit FF1 comprised of NAND gates NA1 and NA2, a set-up circuit comprised of a resistor R13 and a capacitor C6, an inverter NOT1, a diode D1, operational amplifiers OP4 and OP5, transistors Q2 to Q4, resistors R14 to R19 and capacitors C7 and C8.
  • Kick signal Sk is supplied from an output side of resistor R19 to operational amplifier OP2 and is then introduced into tracking, actuator 16 via the series circuit of operational amplifiers OP2 and OP3 and differentiator circuit DF1.
  • an output signal APE of inverter NOT1 is supplied to counters 29 and 30 for starting the count operations thereof.
  • An output signal KGC from NAND gate NA2 is also supplied to the gate terminal of FET Q1 for deactivating it through a circuit comprised of transistor Q5 and resistors R20 to R22 at the same time.
  • the tracking servo control loop is cut off in the search mode.
  • the set of data NO to N7 is set as "1110000" in response to the number of tracks, seven, while data NS6 is set as "0". That is, data NO to N2 are H (high) levels, while data N3 to N7 and NS6 are L (low) levels.
  • direction signal FR is L level. Where the track jumps in the outward and the inward directions relative to the record disc, the level of direction signal FR is L and H, respectively.
  • tracking error signal Se is supplied to wave shaping circuit 17 comprised of comparator Al through a differentiator circuit comprised of a capacitor 9 and a resistor R23.
  • comparator Al tracking error signal Se is compared with a ground level signal so that it is converted to a digital tracking error signal Se-d of rectangular waveform as shown in FIG. 5.
  • the circuit shown in FIG. 4a has another input terminal 31 for receiving a signal Srf, i.e., a recorded information signal read by pick-up device 11.
  • Signal Srf on input terminal 31 is supplied to a level slice circuit LS comprised of operational amplifier OP6, diodes D2 to D5, capacitors C11 and C12, resistors R25 to R28, positive and negative DC sources +B and -B, and a comparator A2 through a transistor Q6.
  • RF signal Srf is sliced by a signal which is automatically adjusted to a level at the center point between the maximum amplitude and minimum amplitude of the RF signal. In this manner, RF signal Srf is converted to a digital information signal Srf-d which is identical to an original digital signal before it was recorded on the record disc.
  • Digital tracking error signal Se-d, digital information signal Srf-d and direction signal FR are supplied to F-V converter 21 comprised of a transistor Q7, an FET Q8, resistors R32 to R35, and capacitors C16 and C17, through a direction control circuit DCC comprised of an exclusive-OR (EX-OR) gate, D-type flip-flops (D-FFs) 32 to 35, inverters NOT2 to NOT6, diodes D6 to D1O NAND gate NA5, capacitors C13 to C15, and resistors R29 to R31.
  • inverters NOT4 and NOT6 produce pulse signals S-not4 and S-not6 respectively, whose periods vary in response to the moving speed of pick-up device 11 as shown in FIG. 5.
  • Output signal S-not6 of inverter NOT6 controls the operation of transistor Q7 so that an output signal S-q7 with a saw-tooth waveform as shown in FIG. 5 is produced on the collector terminal of transistor- Q7.
  • the saw-toothwaveform of output signal S-q7 has a period which varies in response to the moving speed of pick-up device 11.
  • Output signal S-q7 is supplied to operational amplifier OP4 in kick signal generator circuit 21 through FET Q8 which is controlled by output signal S-not4 of NOT4. Therefore, operational amplifier OP4 produces an output signal S-op4 with a relatively constant amplitude as shown in FIG. 5.
  • Kick signal generator circuit 21 then generates kick signal Sk.
  • System control circuit 12 calculates a number of pulses to be counted in digital tracking error signal Se-d. When the count coincides with the number, seven as set in counter 29, system control circuit 12 quits generation of set-up signal KST. In other words, set-up signal KST assumes a L level at that time. Output signal KGC from NAND gate NA2 assumes a L level in response to the L level state of set-up signal KST. Therefore, FET Q1 is switched ON and the tracking servo control starts. While signal KGC is a L level, it is introduced into the base terminal of a transistor Q4 through a transistor Q1O. Transistor Q4 is switched OFF in response to the L level state signal, KGC. Therefore, the output end of resistor R19 is grounded, and the generation of kick signal Sk is prohibited.
  • pick-up device 11 When the number of tracks to be jumped is greater than a predetermined number, e.g., sixtyfour, pick-up device 11 is moved at a rapid speed for all but the last predetermined number of tracks and is then slowed down.
  • data NO to N7 are set to "01001100" in response to the number.. of tracks to be jumped at the highest speed, i.e., one hundred and fourteen less sixty-four.
  • data NS6 is set to "1". That is, data N1, N4, N5, and NS6 are H levels, while data NO, N2, N3, N6 and N7 are L levels.
  • direction signal FR is also a L level.
  • pick-up device 11 When set-up signal KST is produced from system control circuit 12, pick-up device 11 starts the track jump for the accessed track location as set forth.
  • Transistor Q11 becomes conductive in response to data NS6 which is a H level as described before.
  • Kick signal generator circuit 21 is therefore given reference signal Sr of higher voltage Sr-a as set by resistors R33 and R34, corresponding to voltage reference signal Sr of higher 27 and 28 in FIG. 3.
  • Operational amplifier OP4 produces its output signal S-op4 of higher amplitude, too. Therefore, pick-up device 11 moves at a relatively rapid speed.
  • counter 29 When the count in counter 29, of digital tracking error signal pulses reaches the number fifty (one hundred and fourteen less sixty-four), counter 29 outputs a H level to a flip-flop FF2 comprised of NAND gates NA3 and NA4 so that the output of NAND gate NA3 is changed to a H level. Transistor Q11 is then switched OFF in response to the H level applied on its emitter terminal from NAND gate NA3. This causes pick-up device 11 to move at a slower speed as in the prior example. Simultaneously the output of NAND gate NA4 is supplied to counter 30 so that counter 30 starts its count operation for the pulses in digital tracking error signal Se-d.
  • a number of tracks to be traversed is freely set by data NO to N7 and NS6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)
  • Moving Of Head For Track Selection And Changing (AREA)

Abstract

A record disc reproducing apparatus, which can be used for searching for a desired track location rapidly, including a pick-up device for reading data from the disc and which is movable is a radial direction with respect to the disc and a driver for driving the pick-up device radially with respect to the disc. The moving velocity of the pick-up device is detected and used to produce a velocity signal corresponding to the moving velocity. A kick signal is generated to energize the driver and is controlled so that the velocity signal approaches a predetermined reference velocity value. During track seeking the apparatus eliminates or removes the effects of phase compensation used during reproduction.

Description

This is a continuation of application Serial No. 06/885,711, filed July, 15, 1986, now abandoned.
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to information reproducing systems capable of accessing a desired data or information record track on a disc-shape information carrier, and more particularly, to a track jump servo system for disc players having servos for positioning a transducer means rapidly and accurately to a desired record track location on a disc surface.
2. Background of the Invention
Digital record discs for recording information signals such as digitized audio signals, video or image signals have become quite common as have record disc reproducing apparatus for reproducing the recorded information data. Further, some digital record discs, e.g., so-called CDs (Compact Discs) have recently become used as ROM (Read Only Memory) devices for computers, called CD-ROMs. On such a digital record disc, digital data intended for high density recording are recorded in the form of a spiral bit string on one side thereof and reproduced through reading the bit string by means of transducer means such as an optical pick-up device using laser beams. The optical pick-up device of the record disc reproducing apparatus follows the bit string by means of a tracking control system. CD players or video disc players are further used to process the read-out signal in a predetermined manner so as to convert the signal into a replica of the original analog signal which was recorded, i.e., an audio or video signal as an output.
As is well known, address information may also be recorded on the record disc which may be detected for search and track jump operation so that reproduction at a desired track location can be easily and quickly achieved. In particular, a selected address corresponding to the desired track location is preset, and the pick-up device is rapidly moved across or traverses to the track until the desired track corresponding to the selected address is reached. During such searching, a distance that the pick-up device should jump or traverse is calculated by, for example, a computer in accordance with the address of the track at which the pick-up device is presently located and the address of the desired track. Then the pick-up device is moved by the distance radially across the disc by applying a predetermined, fixed voltage to a driver such as a voice coil, moving coil or linear motor. The fixed voltage causes the pick-up device to continuously accelerate until the voltage ceases.
In a short distance search operation of only a few tracks, the pick-up device can jump to the desired track relatively accurately. In a long distance search operation, however, to a track located dozens of tracks away from the track at which the pick-up device is presently located, the pick-up device does not become accurately placed on the desired track for a long time. During a long distance search operation, the actual distance that the pick-up device has moved is apt to differ from the desired distance calculated by the computer. As the distance the pick-up device should jump, or traverse becomes longer, a track at which the pick-up device has been placed at the end of the jump may differ more from the desired track due to mechanical loss or non-uniformity in the mechanism for transferring the pick-up device, inertia of the pick-up device, temperature conditions, the unpredictable speed when the desired track is reached and the like.
Therefore, the search operation includes repeated track jumps so that the pick-up device gradually approaches the desired track location. After every track jump in the search operation, the track address is checked to determine whether a track where the pick-up device has been placed after the track jump coincides with the desired track or not.
As a result, it is difficult to ensure that the pick-up device jumps over or traverses rapidly and accurately the record tracks to a desired track location on the disc.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide an information reproducing system capable of rapidly and accurately accessing a desired data or information record track on a discshaped information carrier.
It is another object of the present invention to provide a track jump servo system for disc players having servos for positioning a transducer means rapidly and accurately to a desired record track location on a disc surface.
It is still another object of the present invention to provide a track jump servo system for disc players which is able to avoid the abovedescribed difficulties encountered with the prior art.
These and other objects of the present invention are achieved in a record disc reproducing apparatus for use in reproducing data stored thereon having a pick-up device for reading data from the disc and movable in a radial direction with respect to the disc. The moving velocity of the pick-up device is detected, and a velocity signal corresponding to the moving velocity is produced. A kick signal generator supplies the driver for the pick-up device with a driving kick signal. The kick signal generator controls the kick signal so that the velocity signal coincides with a reference voltage signal to maintain the speed of the pick-up device at a predetermined constant value. As a result, much more precise control during a search operation is possible.
BRIEF DESCRIPTION OF THE DRAWINGS
Additional objects, advantages, and features of the present invention will further become apparent to persons skilled in the art from a study of the following description and of the accompanying drawings, in which:
FIG. 1 is a block diagram of a first embodiment of the present invention;
FIG. 2 is a block diagram of a second embodiment of the present invention;
FIG. 3 is a block diagram of a third embodiment of the present invention;
FIGS. 4a and 4b together constitute is a practical circuit arrangement for the third embodiment of the present invention; and
FIGS. 5a-5l and FIGS. 6a-6l are timing charts used to explain the modes of short distance and long distance search operations of the third embodiment shown in FIGS. 4a and 4b.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention will now be described in detail with reference to FIGS. 1 to 6. Throughout the drawings, like reference numerals or letters are used to designate like or equivalent elements.
Referring first to FIG. 1, description will be made of a fundamental block diagram of a track jump servo system for disc players according to the present invention.
In FIG. 1, a tracking error signal Se obtained in response to deviation of a pick-up device 11 from the center of the record track then being scanned is supplied to a fixed contact 13b of a switch 13. A velocity detection circuit 19 is provided for detecting mechanically or electrically a moving speed of pick-up device 11 and generates a velocity signal Sv. Velocity detection circuit 19 is provided, for example, on pick-up device 11 or a guide, etc., thereof. Velocity signal Sv outputted from velocity detection circuit 19 is supplied to an input terminal of a kick signal generator circuit 18. Kick signal generator circuit 18 compares velocity signal Sv with a reference voltage signal Sr supplied to another input terminal of kick signal generator 18 from a reference voltage source 20 so that a kick signal Sk is generated as described in detail later. Kick signal Sk generated from kick signal generator circuit 18 is supplied to another fixed contact 13c of switch 13.
In the information reproducing mode, a movable contact 13a of switch 13 is coupled to fixed contact 13b by means of a command from system control circuit 12, so that tracking error signal Se on fixed contact 13b is supplied to a tracking actuator 16 for pick-up device 11 (represented by a coil symbol in the drawing) through a series circuit of a phase compensation circuit 14 and an amplifier 15. Therefore, tracking actuator 16 controls an objective lens (not shown) in pick-up device 11 according to tracking error signal Se so as that pick-up device 11 follows a predetermined record track on the optical disc correctly. For example, tracking actuator 16 may be a well known voice coil, moving coil or linear motor. Therefore, a tracking servo control for pick-up device 11 is performed.
When an information search mode for accessing a desired record track location is requested, system control circuit 12 calculates a number of record tracks that the pick-up device 11 should jump over or traverse, in other words, the number of record tracks between a record track then being scanned and the desired record track to be searched. Also, system control circuit 12 commands switch 13 to change movable contact 13a of switch 13 to fixed contact 13c. Kick signal generator circuit 18 then supplies fixed contact 13c with kick signal Sk. Kick signal Sk is then supplied to tracking actuator 16 through phase compensation circuit 14 and amplifier 15 in place of tracking error signal Se. Therefore, tracking actuator 16 drives the objective lens in pick-up device 11 according to kick signal Sk so that pick-up device 11 jumps over or traverses to the desired record track location radially relative to the optical disc.
The moving speed of the pick-up device is detected by velocity detection circuit 19 as described before and then fed back to kick signal generator circuit 18 as velocity signal Sv. Kick signal generator circuit 18 controls its output, i.e., kick signal Sk so that velocity signal Sv coincides with reference voltage signal Sr. In other words, the pick-up device is servo-controlled so that it moves at a constant speed in correspondence with reference voltage signal Sr.
During the search operation, system control circuit 12 counts pulses in tracking error signal Se supplied through a waveform shaping circuit 17 from pick-up device 11. In waveform shaping circuit 17, tracking error signal Se is modified to a rectangular pulsewaveform. When a count of pulses coincides with the number of record tracks as calculated, system control circuit 12 commands switch 13 so that movable contact 13a of switch 13 is again coupled to fixed contact 13b. Then the record disc reproducing apparatus is changed from an information search mode for accessing the desired record track location to an information reproducing mode, and the tracking servo control for pick-up device 11 is reestablished.
According to the above embodiment the moving velocity of pick-up device 11 is servocontrolled so that it is able to stop at a desired track location with a minimal possibility of failure by only one search operation. Therefore, the search operation for accessing a desired track location is performed within a very short time.
As illustrated in FIG. 1, switch 36 may also be provided having one fixed terminal connected to kick signal generator 18, another fixed terminal connected to a voltage source which causes a slowing of pick-up 11 when applied to tracking actuator 16 and a movable terminal connected to switch 13. Control circuit 12 controls switch 36 to connect kick signal generator 18 to switch 13 during most of a search operation. However, when system control circuit 12 determines that pick-up device 11 is within a predetermined number of tracks, e.g., one or two tracks of the desired track, control circuit 11 changes switch 36 to connect the voltage source to tracking actuator 16 to slow pick-up 11, producing an even more assured positioning when the desired track is reached.
Referring now to FIG. 2, a second embodiment of the record disc reproducing apparatus according to the present invention will be described. The second embodiment is contructed and improved from the first embodiment shown in FIG. 1. Therefore, descriptions for portions equivalent to those in the first embodiment shown in FIG. 1 will be made as the occasion may demand.
In FIG. 2, velocity detection circuit 19 is comprised of a frequency-to-voltage converter (F/V converter) 21 connected to waveform shaping circuit 17. F/V converter 21 generates a velocity signal Sv with a voltage corresponding to a frequency of pulses in tracking error signal Se. Further, kick signal Sk generated from kick signal generator circuit 18 is supplied to second fixed contact 13c of switch 13 through a second phase compensation circuit 22 for reverse-compensating the phase compensation of first phase compensation circuit 14 connected between switch 13 and amplifier 15.
First phase compensation circuit 14 usually stabilizes the tracking servo control loop in the reproducing mode. First phase compensation circuit 14, therefore, must be deactivated in the search mode. Although it is possible to deactivate first phase compensation circuit 14 in other ways, for example, short-circuiting it in the search mode, first phase compensation circuit 14 fails to be initialized when the reproducing mode has again started. In the second embodiment, therefore, first phase compensation circuit 14 is always activated both in the reproducing and search modes, while second phase compensation circuit 22 having an opposite characteristic to first phase compensation circuit 14 virtually eliminates phase compensation due to first phase compensation circuit 14.
Other than for the source of the velocity signal, the embodiment of FIG. 2 operates in the same manner as the embodiment of FIG. 1.
Referring now to FIG. 3, a third embodiment of the record disc reproducing apparatus according to the present invention will be described. The third embodiment represents a modification of the second embodiment shown in FIG. 2. Therefore, descriptions for portions equivalent to those in the prior embodiments shown in FIGS. 1 and 2 will be made as the occasion may demand.
In FIG. 3, second phase compensation circuit 22 is comprised of an equalizer circuit 23 and a second switch 24 connected in series on a feedback path provided in parallel with the series circuit of first phase compensation circuit 14 and amplifier 15. That is, the feedback path is connected between the output end of amplifier 15 and a subtraction circuit 25 provided prior to the first phase compensation circuit 14. Second switch 24 is controlled by a command from system control circuit 12 so that the coupling of the feedback path to subtraction circuit 25 is activated in the search mode. Subtraction circuit 25 operates to subtract an output of equalizer circuit 23 from kicks signal SK supplied to first phase compensation circuit 14 in the search mode.
Further, first and second reference voltage sources 27 and 28 are provided for being selectively connected to kick signal generator circuit 18 through a third switch 26 which is also controlled by a command from system control circuit 12.
In the third embodiment, first phase compensation circuit 14 is also activated both in the reproducing and the search modes, but its effect is virtually eliminated due to the subtraction of the output of equalizer circuit 23 from kick signal SK. First and second reference voltage sources 27 and 28 generate respectively a reference voltage signal Sr-a and another reference voltage signal Sr-b which is lower than the former signal Sr-a. System control circuit 12 commands third switch 26 so that first reference voltage source 27 is connected to kick signal generator circuit 18 first in the search mode and then second reference voltage source 28 is connected to kick signal generator circuit 18 for a predetermined period remaining in the search mode. Accordingly, pick-up device 11 is moved at relatively rapid speed to a vicinity of a desired track location first by kick signal Sk corresponding to the higher reference voltage signal Sr-a. Then pick-up device 11 is moved at a relatively slow speed to the desired track location by kick signal Sk corresponding to the lower reference voltage signal Sr-b. The switching operation of switch 26 from first reference voltage source 27 to second reference voltage source 28 is made by system control circuit 12 at a timing that a count of pulses in tracking error signal Se coincides with a value smaller than the number of tracks between the track location where pick-up device 11 had been located prior to the search mode operation and the desired track location by a predetermined value.
FIG. 4 shows a practical circuit arrangement embodying the third embodiment of the record disc reproducing apparatus according to the present invention as shown in FIG. 3. An operation of the record disc reproducing apparatus shown in FIG. 4 will be described hereinafter with reference to the graph diagrams of FIGS. 5 and 6. An explanation of its circuit construction will be also made properly in the description.
In a reproducing mode, a tracking error signal Se from pick-up device 11 is supplied to an FET (Field Effect Transistor) Q1 which operates as first switch 13 in FIG. 3 (the same in below description) through an operational amplifier OP1. FET Q1 is rendered conductive in the reproducing mode as described later. Tracking error signal Se is then introduced to tracking actuator 16 via a series circuit of phase compensation circuit 14 comprised of an operational amplifier OP2 for its main component and amplifier 15 comprised of an operation amplifier OP3 for its main component.
When a search mode for accessing any desired track location is requested, system control circuit 12 produces a set of data NO to N7, a data NS6 and a direction signal FR. Data NO to N7 represent the number of tracks that pick-up device 11 should jump over, and they are supplied to a counter 29. Data NS6 changes the moving speed of pick-up device 11 and is supplied to a counter 30. Direction signal FR determines the direction that pick-up device 11 should move. System control circuit 12 further produces a set-up signal KST. Set-up signal KST initiates generation of kick signal Sk by actuating a flipflop circuit FF1 comprised of NAND gates NA1 and NA2, a set-up circuit comprised of a resistor R13 and a capacitor C6, an inverter NOT1, a diode D1, operational amplifiers OP4 and OP5, transistors Q2 to Q4, resistors R14 to R19 and capacitors C7 and C8. Kick signal Sk is supplied from an output side of resistor R19 to operational amplifier OP2 and is then introduced into tracking, actuator 16 via the series circuit of operational amplifiers OP2 and OP3 and differentiator circuit DF1. At the approximate time, an output signal APE of inverter NOT1 is supplied to counters 29 and 30 for starting the count operations thereof. An output signal KGC from NAND gate NA2 is also supplied to the gate terminal of FET Q1 for deactivating it through a circuit comprised of transistor Q5 and resistors R20 to R22 at the same time. Thus, the tracking servo control loop is cut off in the search mode.
Here, an example in which pick-up device 11 jumps over seven tracks will be explained using the chart shown in FIG. 5. In this case, the set of data NO to N7 is set as "1110000" in response to the number of tracks, seven, while data NS6 is set as "0". That is, data NO to N2 are H (high) levels, while data N3 to N7 and NS6 are L (low) levels. On the other hand, it is assumed that direction signal FR is L level. Where the track jumps in the outward and the inward directions relative to the record disc, the level of direction signal FR is L and H, respectively.
When a jump of pick-up device 11 has started, tracking error signal Se is supplied to wave shaping circuit 17 comprised of comparator Al through a differentiator circuit comprised of a capacitor 9 and a resistor R23. In comparator Al, tracking error signal Se is compared with a ground level signal so that it is converted to a digital tracking error signal Se-d of rectangular waveform as shown in FIG. 5.
Further, the circuit shown in FIG. 4a has another input terminal 31 for receiving a signal Srf, i.e., a recorded information signal read by pick-up device 11. Signal Srf on input terminal 31 is supplied to a level slice circuit LS comprised of operational amplifier OP6, diodes D2 to D5, capacitors C11 and C12, resistors R25 to R28, positive and negative DC sources +B and -B, and a comparator A2 through a transistor Q6. In level slice circuit LS, RF signal Srf is sliced by a signal which is automatically adjusted to a level at the center point between the maximum amplitude and minimum amplitude of the RF signal. In this manner, RF signal Srf is converted to a digital information signal Srf-d which is identical to an original digital signal before it was recorded on the record disc.
Digital tracking error signal Se-d, digital information signal Srf-d and direction signal FR are supplied to F-V converter 21 comprised of a transistor Q7, an FET Q8, resistors R32 to R35, and capacitors C16 and C17, through a direction control circuit DCC comprised of an exclusive-OR (EX-OR) gate, D-type flip-flops (D-FFs) 32 to 35, inverters NOT2 to NOT6, diodes D6 to D1O NAND gate NA5, capacitors C13 to C15, and resistors R29 to R31. In direction control circuit DCC, inverters NOT4 and NOT6 produce pulse signals S-not4 and S-not6 respectively, whose periods vary in response to the moving speed of pick-up device 11 as shown in FIG. 5. Output signal S-not6 of inverter NOT6 controls the operation of transistor Q7 so that an output signal S-q7 with a saw-tooth waveform as shown in FIG. 5 is produced on the collector terminal of transistor- Q7. The saw-toothwaveform of output signal S-q7 has a period which varies in response to the moving speed of pick-up device 11. Output signal S-q7 is supplied to operational amplifier OP4 in kick signal generator circuit 21 through FET Q8 which is controlled by output signal S-not4 of NOT4. Therefore, operational amplifier OP4 produces an output signal S-op4 with a relatively constant amplitude as shown in FIG. 5. Kick signal generator circuit 21 then generates kick signal Sk.
System control circuit 12 calculates a number of pulses to be counted in digital tracking error signal Se-d. When the count coincides with the number, seven as set in counter 29, system control circuit 12 quits generation of set-up signal KST. In other words, set-up signal KST assumes a L level at that time. Output signal KGC from NAND gate NA2 assumes a L level in response to the L level state of set-up signal KST. Therefore, FET Q1 is switched ON and the tracking servo control starts. While signal KGC is a L level, it is introduced into the base terminal of a transistor Q4 through a transistor Q1O. Transistor Q4 is switched OFF in response to the L level state signal, KGC. Therefore, the output end of resistor R19 is grounded, and the generation of kick signal Sk is prohibited.
Next, another example will be described with respect to FIG. 6 in which pick-up device 11 jumps over one hundred and fourteen tracks.
When the number of tracks to be jumped is greater than a predetermined number, e.g., sixtyfour, pick-up device 11 is moved at a rapid speed for all but the last predetermined number of tracks and is then slowed down. In this case, data NO to N7 are set to "01001100" in response to the number.. of tracks to be jumped at the highest speed, i.e., one hundred and fourteen less sixty-four. Also, data NS6 is set to "1". That is, data N1, N4, N5, and NS6 are H levels, while data NO, N2, N3, N6 and N7 are L levels. On the other hand, it is assumed that direction signal FR is also a L level.
When set-up signal KST is produced from system control circuit 12, pick-up device 11 starts the track jump for the accessed track location as set forth. Transistor Q11 becomes conductive in response to data NS6 which is a H level as described before. Kick signal generator circuit 21 is therefore given reference signal Sr of higher voltage Sr-a as set by resistors R33 and R34, corresponding to voltage reference signal Sr of higher 27 and 28 in FIG. 3. Operational amplifier OP4 produces its output signal S-op4 of higher amplitude, too. Therefore, pick-up device 11 moves at a relatively rapid speed.
When the count in counter 29, of digital tracking error signal pulses reaches the number fifty (one hundred and fourteen less sixty-four), counter 29 outputs a H level to a flip-flop FF2 comprised of NAND gates NA3 and NA4 so that the output of NAND gate NA3 is changed to a H level. Transistor Q11 is then switched OFF in response to the H level applied on its emitter terminal from NAND gate NA3. This causes pick-up device 11 to move at a slower speed as in the prior example. Simultaneously the output of NAND gate NA4 is supplied to counter 30 so that counter 30 starts its count operation for the pulses in digital tracking error signal Se-d.
When the count in counter 30 reaches a number, sixty four, the output of counter 30 becomes a H level. The H level output of counter 30 then makes signal KGC on the output of NAND gate NA2 become a L level. As a result, pick-up device 11 is stopped after the trackjump over fifty tracks plus sixty-four tracks, i.e., one hundred and fourteen tracks is performed.
According to one aspect of the present invention as shown in FIG.6, a number of tracks to be traversed is freely set by data NO to N7 and NS6.
Although only a few embodiments have been described in detail above, those skilled in the art will appreciate that many modifications are possible in the preferred embodiments without materially departing from the novel teachings and advantages of the present invention. Accordingly, all such modifications are intended to be included in the present invention as defined by the following claims.

Claims (17)

What is claimed is:
1. A record disc reproducing apparatus comprising:
a pick-up device for reading data from a disc;
means for moving said pick-up device radially across said disc, said moving means including a first phase compensation circuit with a first phase compensation characteristic for stabilizing the pick-up device in a reproducing mode;
means for producing a velocity signal corresponding to a moving velocity of said pick-up device;
kick signal generating means for comparing said velocity signal to a reference velocity signal and generating a kick signal used to control said moving means so as to cause said velocity signal to approach a value of said reference velocity signal;
a second phase compensation circuit having a second characteristic different from said first characteristic, said second phase compensation circuit being responsive to said kick signal and having an output which is connected to an input of said first phase compensation circuit in a search mode, so as to eliminate an effect of the phase compensation of said first phase compensation circuit when the pick-up device is in said search mode; and
control means for selectively applying said kick signal to said moving means during said search mode to cause said pick-up device to move at a velocity corresponding to said reference velocity signal.
2. Apparatus according to claim 1, wherein said control means includes means for determining a number of tracks crossed as said moving means moves said pick-up device and means for deenergizing said moving means when a desired number of tracks have been crossed.
3. A record disc reproducing apparatus according to claim 2, wherein said kick signal generating means comprises a reference velocity voltage supply for supplying a first reference velocity signal having a high voltage value and a second reference velocity signal having a low voltage value, respectively, and comparing means for comparing said velocity signal to said first reference velocity signal for producing a first comparison result used for generating a first kick signal which is applied to said moving means to drive said pick-up device at a high speed until said pick-up device comes within a predetermined number of tracks from a desired track, and for comparing said velocity signal to said second reference velocity signal for producing a second comparison result used for generating a second kick signal which is applied wot said moving means to drive said pick-up device at a low speed until said desired track is reached.
4. Apparatus according to claim 1 wherein said control means includes means for determining a number of tracks crossed as said moving means moves said pick-up device, and means for causing said moving means to apply a force to said pick-up device opposing movement of said pick-up device when said control means determines that said pick-up device is within a predetermined number of tracks from a desired track.
5. A record disc reproducing apparatus according to claim 1, wherein an input of said second phase compensation circuit is connected to an output of said kick signal generating means and further comprising a switch for connecting said output of said second phase compensation circuit to said input of said first phase compensation circuit, during said search mode.
6. A record disc reproducing apparatus according to claim 1, wherein an input of said second phase compensation circuit is connected to an output of said first phase compensation circuit and further comprising a switch and a subtractor, said switch for connecting an equalizing output of said second phase compensation circuit to a first input of a subtractor, said subtractor receiving said kick signal at a second input thereof during said search mode, an output of said subtractor being provided to said first phase compensation circuit so as to form, during said search mode, a feedback path comprising said first and second phase compensation circuits, said switch and said subtractor.
7. Apparatus as in claim 1, wherein said moving means further comprises tracking means, for tracking said pickup device and producing an error signal indicative of said tracking; and
means for waveshaping said error signal into a wave shaped error signal; and
wherein said producing means uses said wave shaped error signal to produce said velocity signal.
8. An apparatus as in claim 7, wherein said producing means includes frequency to voltage converting means for converting a frequency of said wave shaped error signal into said velocity signal.
9. A record disc reproducing apparatus for use in reproducing data stored thereon, comprising:
a pick-up device for reading data from a disc and which is movable in a radial direction with respect to said disc;
means for driving said pick-up device with respect to said disc, said driving means producing an output signal for driving said pick up device, said output signal including a phase stabilization for a reproducing mode;
means for detecting a moving velocity of said pick-up device and producing a velocity signal corresponding to the moving velocity;
a source for supplying a reference voltage signal;
means for comparing said velocity signal with said reference voltage signal and generating a kick signal in response to the comparison and supplying said pick-up device driving means with said kick signal so that said detected velocity signal assumes a predetermined fixed relation with respect to said reference voltage signal; and
a feedback path for subtracting an equalizing component from said kick signal to substantially remove said phase stabilization when said record disc reproducing apparatus is in a search mode.
10. A record disc reproducing apparatus according to claim 9, wherein said velocity detecting means includes means for generating a signal corresponding to the moving velocity of said pick-up device.
11. A record disc reproducing apparatus according to claim 10, wherein said generating means includes frequency generator means for generating a frequency signal corresponding to the velocity of said pick-up device.
12. A record disc reproducing apparatus according to claim 9, wherein said velocity detecting means includes means for sensing a pickedup signal read by said pick-up device.
13. A record disc reproducing apparatus according to claim 12, wherein said sensing means includes means for monitoring a ripple component of said picked-up signal.
14. A record disc reproducing apparatus according to claim 12, wherein said sensing means is responsive to a tracking error signal read by said pick-up device.
15. A record disc reproducing apparatus according to claim 12, wherein said sensing means is responsive to a ripple component and a tracking error signal read by said pick-up device.
16. A record disc reproducing apparatus for use in reproducing data stored thereon, comprising:
a pick-up device for reading data from a disc and which is movable in a radial direction with respect to said disc;
means for driving said pick-up device radially with respect to said disc;
means for detecting a moving velocity of said pick-up device and producing a velocity signal corresponding to the moving velocity;
a source for supplying a reference voltage signal;
means for generating a kick signal and supplying said pick-up device driving means with said kick signal, said kick signal generating means comparing said velocity signal with said reference voltage signal and controlling said kick signal in response to the comparison so that said detected velocity signal assumes a predetermined fixed relation with respect to said reference voltage signal;
a feedback path for subtracting an equalizing output of said pick up device driving means from said kick signal when said record disc reproducing apparatus is in a search mode;
switch means for selectively connecting one of a picked-up signal read by said pick-up device and said kick signal to said pick-up device driving means;
means for determining a distance that said pickup device should jump when said search mode is requested for accessing a desired track location;
means for detecting when said pick-up device reaches the desired track location; and
means for commanding said switch means to select a connection to said kick signal when said search mode is requested and to select a connection to said pick-up signal when said desired track location has been detected.
17. A record disc reproducing apparatus according to claim 16, wherein said reference voltage signal source selectively provides a first reference voltage signal and a second reference voltage signal higher than said first reference voltage signal and said apparatus further comprises means of controlling said reference voltage signal source so that it provides said second reference voltage signal to said kick signal generating means until the pick-up device has jumped the distance determined by said distance determining means and then provides said first refernece voltage signal to said kick signal generating means until the desired track location is reached by said pick-up device.
US07/228,844 1985-07-18 1988-08-03 Constant velocity track jump servo system for disc players Expired - Lifetime US4955010A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60159125A JPS6220183A (en) 1985-07-18 1985-07-18 Control circuit for track-jumping
JP60-159125 1985-07-18

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US06885711 Continuation 1986-07-15

Publications (1)

Publication Number Publication Date
US4955010A true US4955010A (en) 1990-09-04

Family

ID=15686780

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/228,844 Expired - Lifetime US4955010A (en) 1985-07-18 1988-08-03 Constant velocity track jump servo system for disc players

Country Status (6)

Country Link
US (1) US4955010A (en)
EP (1) EP0209853B1 (en)
JP (1) JPS6220183A (en)
KR (1) KR900003004B1 (en)
CA (1) CA1260137A (en)
DE (1) DE3684377D1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015932A (en) * 1989-06-01 1991-05-14 Sony Corporation Actuator driving circuits
US5189290A (en) * 1989-10-14 1993-02-23 Omron Corporation Optical card processing apparatus using tracking error signals to determine proper card orientation
US5216650A (en) * 1990-06-26 1993-06-01 Matsushita Graphic Communication Systems, Inc. Track jumping control apparatus
US5412637A (en) * 1992-01-13 1995-05-02 International Business Machines Corporation Method for putting an optical head in a stationary state and optical disk drive apparatus
US5602687A (en) * 1991-01-31 1997-02-11 Sony Corporation Apparatus for automatically muting the output of a recording device during recording
US6028825A (en) * 1996-09-19 2000-02-22 Lg Electronics Inc. Apparatus for automatically controlling focus and method thereof in a disc player
US6252835B1 (en) 1996-09-19 2001-06-26 L G Electronics Inc Apparatus for automatically adjusting focus offset and method thereof in a disc player
US6804176B1 (en) * 1999-02-26 2004-10-12 Sony Corporation Apparatus and method for performing track search
US7088646B1 (en) 1999-09-09 2006-08-08 Kabushiki Kaisha Toshiba Track search control circuit and optical disc drive

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171431A (en) * 1987-01-07 1988-07-15 Mitsubishi Electric Corp Optical disk driver
JPS63300470A (en) * 1987-05-29 1988-12-07 Matsushita Electric Ind Co Ltd Information reproducing device
JPS63300471A (en) * 1987-05-29 1988-12-07 Matsushita Electric Ind Co Ltd Information reproducing device
KR930007174B1 (en) * 1989-03-31 1993-07-31 가부시기가이샤 도시바 Pick-up transferring device

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4025839A (en) * 1974-05-06 1977-05-24 Compagnie Internationale Pour L'informatique Device for an accurate control of final positioning and follow-up of a displaceable member with respect to a reference
US4031443A (en) * 1975-05-22 1977-06-21 Compagnie Honeywell Bull (Societe Anonyme) Apparatus for positionally controlling a movable head assembly
US4166970A (en) * 1975-12-24 1979-09-04 Compagnie Internationale pour l'Information Cii Honeywell Bull Apparatus and method for shifting a head movable relative to a carrier for recorded information
US4200827A (en) * 1977-06-29 1980-04-29 International Business Machines Corporation Positioning system employing feedforward and feedback control
FR2513421A1 (en) * 1981-09-18 1983-03-25 Victor Company Of Japan DEVICE FOR SEARCHING THE TRACK OF AN INFORMATION SIGNAL FOR A DEVICE FOR REPRODUCING ROTATING RECORDING MEDIA
JPS58218053A (en) * 1982-06-14 1983-12-19 Nec Corp Track access device
JPS5968833A (en) * 1982-10-14 1984-04-18 Nec Corp Controller of tracking position
JPS5971139A (en) * 1982-10-14 1984-04-21 Nec Corp Optical head
JPS5971138A (en) * 1982-10-14 1984-04-21 Nec Corp Optical head
JPS5977641A (en) * 1982-10-26 1984-05-04 Nec Corp Optical head
JPS5977642A (en) * 1982-10-26 1984-05-04 Nec Corp Optical head
US4480279A (en) * 1981-05-15 1984-10-30 Tokyo Shibaura Denki Kabushiki Kaisha Magnetic disk memory track change servo
US4574227A (en) * 1983-11-14 1986-03-04 Datapoint Corporation Dual mode servo
US4607358A (en) * 1981-11-25 1986-08-19 Hitachi, Ltd. Optical memory apparatus
US4615023A (en) * 1982-06-14 1986-09-30 Nec Corporation Beam access apparatus for optical disc system
US4622604A (en) * 1983-05-23 1986-11-11 Kabushiki Kaisha Toshiba Magnetic head controlling apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1499268A (en) * 1976-06-30 1978-01-25 Ibm Servo apparatus
EP0078060B1 (en) * 1981-10-28 1988-12-28 Discovision Associates Method and apparatus for recovering information from a selected track on a record disc
JPS5891559A (en) * 1981-11-24 1983-05-31 Sanyo Electric Co Ltd Music program searching device
JPS58166567A (en) * 1982-03-26 1983-10-01 Matsushita Electric Ind Co Ltd Retrieving device of information track
JPH0812746B2 (en) * 1983-05-30 1996-02-07 パイオニア株式会社 Information reproducing apparatus having high-speed reproducing function

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4025839A (en) * 1974-05-06 1977-05-24 Compagnie Internationale Pour L'informatique Device for an accurate control of final positioning and follow-up of a displaceable member with respect to a reference
US4031443A (en) * 1975-05-22 1977-06-21 Compagnie Honeywell Bull (Societe Anonyme) Apparatus for positionally controlling a movable head assembly
US4166970A (en) * 1975-12-24 1979-09-04 Compagnie Internationale pour l'Information Cii Honeywell Bull Apparatus and method for shifting a head movable relative to a carrier for recorded information
US4200827A (en) * 1977-06-29 1980-04-29 International Business Machines Corporation Positioning system employing feedforward and feedback control
US4480279A (en) * 1981-05-15 1984-10-30 Tokyo Shibaura Denki Kabushiki Kaisha Magnetic disk memory track change servo
FR2513421A1 (en) * 1981-09-18 1983-03-25 Victor Company Of Japan DEVICE FOR SEARCHING THE TRACK OF AN INFORMATION SIGNAL FOR A DEVICE FOR REPRODUCING ROTATING RECORDING MEDIA
US4607358A (en) * 1981-11-25 1986-08-19 Hitachi, Ltd. Optical memory apparatus
JPS58218053A (en) * 1982-06-14 1983-12-19 Nec Corp Track access device
US4615023A (en) * 1982-06-14 1986-09-30 Nec Corporation Beam access apparatus for optical disc system
JPS5971138A (en) * 1982-10-14 1984-04-21 Nec Corp Optical head
JPS5971139A (en) * 1982-10-14 1984-04-21 Nec Corp Optical head
JPS5968833A (en) * 1982-10-14 1984-04-18 Nec Corp Controller of tracking position
JPS5977642A (en) * 1982-10-26 1984-05-04 Nec Corp Optical head
JPS5977641A (en) * 1982-10-26 1984-05-04 Nec Corp Optical head
US4622604A (en) * 1983-05-23 1986-11-11 Kabushiki Kaisha Toshiba Magnetic head controlling apparatus
US4574227A (en) * 1983-11-14 1986-03-04 Datapoint Corporation Dual mode servo

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Patent Abstracts of Japan, vol. 7, No. 192, (P 218) 1337 , Aug. 23rd, 1983, 58 91559, Hosokawa. *
Patent Abstracts of Japan, vol. 7, No. 192, (P-218)[1337], Aug. 23rd, 1983, 58-91559, Hosokawa.
Patent Abstracts of Japan, vol. 9, No. 97, (P 352) 1820 , Apr. 26th, 1985, 59 221877, Kashiwazaki. *
Patent Abstracts of Japan, vol. 9, No. 97, (P-352)[1820], Apr. 26th, 1985, 59-221877, Kashiwazaki.

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015932A (en) * 1989-06-01 1991-05-14 Sony Corporation Actuator driving circuits
US5189290A (en) * 1989-10-14 1993-02-23 Omron Corporation Optical card processing apparatus using tracking error signals to determine proper card orientation
US5216650A (en) * 1990-06-26 1993-06-01 Matsushita Graphic Communication Systems, Inc. Track jumping control apparatus
US5602687A (en) * 1991-01-31 1997-02-11 Sony Corporation Apparatus for automatically muting the output of a recording device during recording
US5412637A (en) * 1992-01-13 1995-05-02 International Business Machines Corporation Method for putting an optical head in a stationary state and optical disk drive apparatus
US6028825A (en) * 1996-09-19 2000-02-22 Lg Electronics Inc. Apparatus for automatically controlling focus and method thereof in a disc player
US6252835B1 (en) 1996-09-19 2001-06-26 L G Electronics Inc Apparatus for automatically adjusting focus offset and method thereof in a disc player
US6804176B1 (en) * 1999-02-26 2004-10-12 Sony Corporation Apparatus and method for performing track search
US7088646B1 (en) 1999-09-09 2006-08-08 Kabushiki Kaisha Toshiba Track search control circuit and optical disc drive

Also Published As

Publication number Publication date
EP0209853B1 (en) 1992-03-18
KR870001583A (en) 1987-03-14
EP0209853A3 (en) 1987-11-11
KR900003004B1 (en) 1990-05-04
JPS6220183A (en) 1987-01-28
EP0209853A2 (en) 1987-01-28
DE3684377D1 (en) 1992-04-23
CA1260137A (en) 1989-09-26

Similar Documents

Publication Publication Date Title
US4955010A (en) Constant velocity track jump servo system for disc players
US4539664A (en) Control system for optical information signal reproduction device
JPH05775B2 (en)
US4748607A (en) Track accessing system using an integrated velocity signal
US5442604A (en) Access control device
US4512004A (en) Apparatus for optically reproducing an information signal recorded on a record disc
US7142485B2 (en) Information storage apparatus
US5138593A (en) Vibration control for an optical pickup actuator driving device
EP0164071A2 (en) Pickup head position control device in an optical type disc reproducing device
US5124964A (en) Focus servo gain setting circuit for optical record disc reproducing apparatus
US5255249A (en) Seek control apparatus
EP0458027A1 (en) Servo-system for a disk player
JPS61177641A (en) Track access device in optical disk
EP0315470A2 (en) Focus search drive apparatus for an optical disc player
JPH0435830B2 (en)
JPH0787024B2 (en) Pickup speed controller
US4785440A (en) Method and apparatus for driving an optical pickup of an optical information recording and reproducing apparatus
JPS647428B2 (en)
JP3014779B2 (en) Light beam position control device
JPH0570229B2 (en)
JP3045225B2 (en) Disc playback / recording device
JP2652697B2 (en) Optical playback device
JP2899505B2 (en) Track jumping equipment
JP2549110B2 (en) Truck Jeep circuit
JPS58150172A (en) Reading device of disk-shaped recording medium

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12