US4942128A - Microbial cellulose modified during synthesis - Google Patents

Microbial cellulose modified during synthesis Download PDF

Info

Publication number
US4942128A
US4942128A US07/022,904 US2290487A US4942128A US 4942128 A US4942128 A US 4942128A US 2290487 A US2290487 A US 2290487A US 4942128 A US4942128 A US 4942128A
Authority
US
United States
Prior art keywords
cellulose
cmc
acetobacter
composition
matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/022,904
Inventor
R. Malcolm Brown, Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Texas System
Original Assignee
University of Texas System
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Texas System filed Critical University of Texas System
Priority to US07/022,904 priority Critical patent/US4942128A/en
Priority claimed from EP88109477A external-priority patent/EP0346507B1/en
Priority to AT88109477T priority patent/ATE123532T1/en
Priority to EP88109477A priority patent/EP0346507B1/en
Priority to DE3853946T priority patent/DE3853946D1/en
Priority to CA000569535A priority patent/CA1339913C/en
Priority to AU17700/88A priority patent/AU611159B2/en
Priority to JP63155059A priority patent/JPH01320994A/en
Publication of US4942128A publication Critical patent/US4942128A/en
Application granted granted Critical
Assigned to BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM reassignment BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BROWN, JR., R. MALCOLM
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/822Microorganisms using bacteria or actinomycetales
    • Y10S435/823Acetobacter

Definitions

  • the present invention relates to the modification of microbial cellulose during its synthesis by cellulose-producing microorganisms. This modification results from the presence of a substance which alters the formation of native cellulose structure.
  • the prototypical structure-modifying substance is carboxymethylcellulose.
  • Cellulose may be produced by microorganisms of the Acetobacterium, Rhizobium, Alcaligenes, Agrobacterium, and Pseudomonas type (see, for example Brown, Jr. et al. J. Applied Polymer Science: Polymer Symposium (1983) V.37 pp 33-78).
  • the growth of cellulose-producing microorganisms with production of cellulose may occur when said microorganisms are aerobically cultivated in an appropriate nutrient medium.
  • Appropriate nutrient media of the present invention generally include standard nutrient medium such as GYC which contains (g/liter of distilled water): yeast extract, 10.0; D-glucose, 50.0; CaCO 3 , 30.0 and agar, 25.0.
  • standard nutrient medium such as GYC which contains (g/liter of distilled water): yeast extract, 10.0; D-glucose, 50.0; CaCO 3 , 30.0 and agar, 25.0.
  • Various alternatives such as replacements for glucose or yeast extract, and omissions of agar or CaCO 3 are usable and well-known to those skilled in the art (Bergey's Manual of SYSTEMATIC BIOLOGY Vol. 1 pp 268-276, Krieg, ed. Williams and Wilkins, Baltimore/London (1984).
  • the preferred nutrient medium used directly or with modifications described herein was that first described by Schramm and Hestrin (Hestrin et al. Biochem. J.
  • the standard Schramm Hestrin (SH) medium contained (g/L): D-glucose, 20; peptone, 5; yeast extract, 5; dibasic sodium phosphate, 2.7, and citric acid monohydrate, 1.15 (pH adjusted to between about 3.5 and 5.5 with HCl).
  • SH-gluc Schramm Hestrin without glucose
  • Acetobacter xylinum (formerly known as Acetobacter aceti subsp. xylinum and reclassified by the 1984 Bergy's Manual cited above as a subspecies of Acetobacter pasteurianus and Acetobacter hansenii) has been widely studied.
  • Acetobacter xylinum the primarily studied cellulose-producing microorganism is termed "Acetobacter xylinum”. It is understood that these several names may be used to indicate the same organism.
  • Fibrillar alterations of microbially-produced cellulose by agents such as CMC have been previously shown to occur, for example, by ultrastructural studies using techniques such as electron microscopy (Haigler et al., J. Cell Biology, Vol. 94 pp 64-69 (1982) and Ben-Hayim et al. J. Cell Biology, Vol. 25 pp 191-207 (1965)).
  • electron microscopy Haigler et al., J. Cell Biology, Vol. 94 pp 64-69 (1982) and Ben-Hayim et al. J. Cell Biology, Vol. 25 pp 191-207 (1965)
  • the present invention has any substance been found or suggested to facilitate the microbial production of a cellulose with greatly improved and/or unique macroscopic properties such as resiliency, elasticity, tensile strength, degree of water absorptivity or retention of absorbtive capacity after repeated wettings.
  • Cellulose assembled by a static aerobic culture of Acetobacter xylinum may be contained in a hydrophilic membrane known as a pellicle.
  • This cellulose is quite strong when wet, but brittle when dried.
  • One of the major obstacles in using the natural absorbency of this native bacterial cellulose has been its inability to effectively retain absorbancy through cycles of wetting and drying.
  • the present invention concerns including a cellulose derivative such as carboxymethylcellulose in the culture medium during microbial synthesis of cellulose. This inclusion altered the produced cellulose to result in a product which retained most of its native absorbancy through cycles of wetting and drying.
  • One object of this invention is to significantly alter the physical properties of microbial cellulose product by cellulose derivatives or related substances in order to expand the material uses of this product. It is envisioned that there will be, for example, tremendous advantages in the uses of this product in the absorbent technology industries.
  • the present invention involves a method of producing a modified cellulose.
  • This method comprises inoculating a quantity of nutrient medium containing between about 0.1% and about 5% cellulose derivative (more preferably between about 1% and about 4%) with a cellulose-producing microorganism.
  • the inoculated medium is then aerobically incubated to facilitate the production of modified cellulose.
  • the step of substantially drying the modified cellulose may be added to result in certain cellulosic products.
  • the substantially dried cellulose resulting from this procedure is highly absorbent, tending to retain its absorbent properties during repeated wetting and drying cycles and is usable where such absorbency is desired.
  • the cellulosic gel produced in the presence of CMC may itself be usable as an optically clear soft material.
  • One object of the present invention is to produce a composition of matter consisting essentially of modified cellulose in a native or substantially dried form.
  • Modified cellulose produced in the presence of cellulose derivative may be substantially dried by many means known to those skilled in the art. This drying may be, for example, by washing with a non-aqueous hydrophilic solvent or by air-drying.
  • Preferred non-aqueous solvents include alkyl alcohols or ketones having less than about six carbon atoms. When such non-aqueous solvents are used to dry the CMC-produced cellulose, the dried modified cellulose may have a resilient structure and possibly an elastic nature.
  • the preferred cellulose-producing microorganisms of the present invention are Acetobacter although other cellulose-producing microorganisms may be used.
  • a preferred cellulose derivative is carboxymethylcellulose and is preferably present in the nutrient medium at a concentration between about 0.1 wt/vol % and about 5 wt/vol %.
  • the carboxymethylcellulose usable in the practice of the present invention has a preferred degree of substitution of between about 0.4 and about 1.2 carboxymethyl groups per monosaccharide unit.
  • FIG. 1 shows an electron micrograph of dried Acetobacter cellulose produced in the presence of 1% CMC and SH medium minus glucose.
  • the cellulose film consists of only 1-2 layers of cellulosic ribbons and is very thin.
  • FIG. 2 shows an electron micrograph of Acetobacter cellulose synthesized in the presence of 1% CMC and SH medium minus glucose. The cellulosic ribbons are partially splayed.
  • FIG. 3 shows an electron micrograph of cellulose produced by Acetobacter in the presence of SH medium with 2% glucose and 0.1% CMC.
  • Microbial cellulose may be biosynthesized in the presence of a substance which acts to decrease the order of cellulose fibrillar structure.
  • the product cellulose possesses new and useful properties. These new and useful properties may include, depending upon the particular processing steps employed: optical clarity; increased absorptive capacity; improved ability to retain absorptive capacity through cycles of wetting and drying; tensile strength; resilience, and elasticity.
  • the culture conditions of the present invention are aerobic in the classical sense. Aerobic culture involves the exposure of an inoculated nutrient medium to amounts of an oxygen-containing gas such as air sufficient to facilitate growth or metabolism. Unless otherwise indicated, Acetobacter xylinum ATCC no. 23769 or ATCC no. 53582 (strain NQ5) from the American Type Culture Collection, Rockville, Md. were used in the present studies.
  • carboxymethylcellulose is a preferred substance for production of such product cellulose
  • other substances particularly other cellulose derivatives may be used to analogously alter the cellulose produced by cellulose-producing microorganisms.
  • other polysaccharide derivatives may be substituted for CMC in the processes and compositions described herein.
  • These polysaccharide derivative substitutes for CMC include polysaccharides such as cellulose, starch or dextran having substituents groups such as alkyl, alkylcarboxy, alkylhydroxy, sulfate, sulfonic acid, or alkylphosphate.
  • These derivatives are most preferably hydrophilic although cellulose itself is so hydrophilic that minor amounts of hydrophobic substituents such as methyl may be used.
  • Microbial cellulose is generally produced in a static aerobic culture as a pellicle which is a term referring to a gelatinous formation. Modes of culture which may not result in pellicle formation involve cultures under agitation or static cultures with cellulose being continuously withdrawn.
  • a drying step maybe applied to the gelatinous microbial cellulose produced in the presence of a cellulose-altering substance.
  • the drying step may be as simple as air-drying or may involve lyophilization or the extraction of water from the altered microbial cellulose by treatment with solvent. When solvent treatment is used, the solvent is preferably a hydrophilic solvent miscible with water.
  • the drying step may be used in conjunction with one or more washing steps to remove any undesired materials from the cellulose.
  • Acetobacter xylinum was grown for three days in Schramm and Hestrin medium lacking exogenous glucose, supplemented with CMC (source: Hercules Type 7MF, lot #45816; molecular weight 250,000; degree of substitution 0.7).
  • CMC source: Hercules Type 7MF, lot #45816; molecular weight 250,000; degree of substitution 0.7.
  • the two concentrations of CMC used were 2% and 4% (W/V). About 100ml of media were placed in each Roux bottle for static aerobic culture.
  • cellulose formed in 2% CMC was air dried. When rehydrated with distilled water, this cellulose was very effective in its rehydration. For example, a dry piece weighting only 0.0134 g absorbed distilled water and constituted a total weight of 1.479 g. This particular piece was very gelatinous and fragile; however, when pulled across the surface of a piece of parafilm, the entire hydrated droplet could easily be moved.
  • 1% CMC was added to SH medium (minus glucose) and cultured in Roux bottles for four days.
  • the pellicle in the Roux bottle was very clear optically and gelatinous, and cellulose was formed throughout the bottom and surface of the liquid.
  • the pellicle of cellulose grown in 1% CMC had physical integrity and could be removed from the Roux bottle although it was much more delicate than a cellulose pellicle formed in SH medium lacking CMC. Upon removal, the interior of the pellicle contained liquid medium.
  • the pellicle was a three-dimensional object holding a liquid phase internally.
  • FIG. 1 shows an electron micrograph of the cellulosic film. Note the evenly dispersed ribbons. The individual bundles of microfibrils, and the twisting nature of the ribbon normally present with microbial cellulose were absent. This membrane appeared to be only several ribbon-equivalent layers thick, which was confirmed by the presence of the interference colors of the dried film mentioned above.
  • the wet cellulosic pellicle was transferred directly to the grid and examined by electron microscopy.
  • the electron micrograph of FIG. 2 revealed a very thin random distribution of cellulose ribbons, similar in general morphology to that produced without CMC, but with the following exceptions: 1) the individual ribbons had a very loose organization of bundles of fibrils; 2) each individual bundle of microfibrils was loosely associated to form the ribbons; 3) long aggregates of ribbons.
  • the cellulose made in the presence of CMC was not fully integrated into a ribbon. This appearance was similar to what was published earlier but using 0.1% CMC (Haigler et al., (J. Cell. Biol. 94:64-69 (1982)).
  • Haigler and Brown published the CMC cultivation procedure using 0.1 wt/vol % to 1.0 wt/vol % CMC. There are major differences in pellicle morphology when using the present high concentrations of CMC. Thus, the present invention advances and is distinguished from the observations in this earlier published paper (Haigler and Brown, J. Cell Biol. 94: 64-69, 1982). Nowhere in this earlier work were absorbancy and macroscopic physical properties of the cellulose addressed or predicted. It is significant that with the CMC particularly as used in the present invention, an integral cellulosic membrane was produced with 1% CMC, but 2% and 4% CMC yielded a non-integral cellulose structure. FIG.
  • FIG. 3 shows the ultrastructure of cellulose produced under conditions analogous to those described in Haigler and Brown (1982), i.e., in the presence of 0.1% (wt/vol) CMC. Note that most of the cellulose shown in FIG. 3 is organized into bundles of twisting ribbons. Contrast FIG. 3 with FIGS. 1 and 2.
  • the dried cellulose membrane from 1% CMC-treated cellulose had only one or two, and at most seven or eight layers of ribbons. Since the ribbon has been shown to be approximately 50 Angstroms thick at its flat side, this would support the proof of the thin, dried film which exhibited interference colors. Also, the morphology of the dried cellulose fibrillar ribbons suggests that they were not intimately bound to each other and were probably coated with carboxymethylcellulose.
  • An optically clear gel was produced by treatment with 1% CMC in SH medium (without added exogenous glucose). This film may be washed with distilled water, air-dried, and rehydrated. Celluloses produced in the absence of CMC also may be dried and rehydrated, but generally not to the same extent as the CMC-grown celluloses.
  • the control sample was absorbent cotton which was wetted, rubbed briskly between the fingers, dried, rewetted, and the wet and dry weights measured.
  • the experimental sample consisted of absorbent cotton to which CMC-microbial cellulose (i.e. cellulose synthesized in the presence of SH without glucose and containing 2% CMC as described above) was applied and worked into the cotton fibers. The material was dried, rewetted, and wet and dry weights measured. These weights are shown in Table 1.
  • the cotton to which CMC-microbial cellulose had been applied had about the same total water absorbency as the control absorbent cotton.
  • One major difference noted was that the CMC-cellulose/cotton mixture absorbed water much more rapidly than the absorbent cotton.
  • a composition of matter for avidly absorbing water which comprises cotton and modified microbial cellulose may thus be prepared.
  • a mixture of this type may have industrial applications, for example, when a more rapid absorption is desired.
  • Acetobacter cellulose synthesized in the presence of 2% CMC, as described in Example 1 was used for this example. Instead of air-drying however, the cellulose was dried by treatment with hydrophilic solvent.
  • Acetone has the capability of removing most of the water, but some tightly bound water may not be removed.
  • a cellulose pellicle was dried with acetone, the physical properties of the cellulose changed considerably. Instead of being slippery, the material took on an elastomeric or rubber-like consistency, e.g., it could be stretched, and would spontaneously return to its original state after stretching.
  • a cellulose derivative such as CMC altered the physical properties of cellulose so that novel forms of cellulose were produced.
  • water was extracted by air-drying or hydrophilic solvents. Novel physical forms of cellulose were manifested.
  • Acetobacter was grown in Roux bottles of Schramm-Hestrin Hestrin medium minus glucose which contained 2% carboxy-methylcellulose (as described in Example 1). The cultures were allow to grow to completion and pellicle samples were tested when more than one month old. A sample of the clear, highly hydrophilic pellicle was washed with tap water two or three times. Then, a small sample was twisted by hand to form a very tight thread. This procedure removed most of the water. The thread was then heated to dryness in an oven for 15 minutes at 90° C. and then weighed. The dried thread weighed 0.00078g. The dried thread was carefully rehydrated in a beaker of distilled water.
  • a Roux bottle containing Schramm-Hestrin medium without exogenously added gucose, and 2% carboxymethylcellulose (as in Example 1) was inoculated with Acetobacter and allowed to grow to completion.
  • the cellulosic material tested was produced at 28° C. and was approximately four months old.
  • the pellicle was transferred to 2% sodium chloride in distilled water and allowed to soak for 3 hrs.
  • the wet weight of the pellicle was 5.73g.
  • This pellicle was squeezed manually by twisting, and then oven-dried.
  • the dry weight of the entire pellicle was 0.007g. (Incidentally, this pellicle weight closely matched weights of pellicles from earlier experiments in which Schramm-Hestrin without exogenously added glucose was also used.)
  • the same wet pellicle was then sonicated in distilled water, and the wet weight remeasured.
  • the wet weight of this pellicle increased to 3.48 g, representing the capacity of microbial cellulose to absorb more than 497 ⁇ its weight of water.
  • This same pellicle was then oven-dried after a manual squeeze/twist for a second time and weighed. The dry weight was 0.00314 g. About half of the weight had been lost through these manipulations. The pellicle was then rewet again, this time with 2% sodium chloride in distilled water. The wet weight was 0.01 g, representing an ability to absorb only 3.3 ⁇ the equivalent weight.
  • This pellicle was transferred once again to distilled water and shaken.
  • the wet weight rose to 0.93 g, representing the ability of the cellulose to absorb 310 ⁇ its weight in water.
  • the pellicle was finally sonicated in distilled water, and the weight wet rose dramatically to 1.9 g, representing an ability to absorb more than 633X its weight in water.
  • Acetobacter was grown in Roux bottles (standing cultures) each containing 200 ml of SH medium without exogenously added glucose. The cultures were grown for four days at 28° C. Four different concentrations of CMC were used, in addition to the control which contained no CMC. The pellicles were exhaustively washed with distilled water to remove soluble CMC or other substances and then the wet weight was taken. The pellicles were dried and reweighed. The water absorptivity capacity was measured by dividing the wet weight by the dry weight. The carboxymethylcellulose used in this experiment was from Hercules, and had a degree of substitution of 1.6, and a viscosity of 250,000 cps. Table 2 shows the results of this experiment.
  • the dried cellulosic films produced from stretched 1% CMC-grown material showed interference colors (indicating that the dried pellicle films had a thickness of 1000 Angstroms or less). All dry pellicles were very fragile, except for the one produced in the presence of 4% CMC which was extremely strong and quite optically clear.
  • CMC concentration had little effect on initial absorptivity.
  • a glucose concentration less than 0.1% i.e., 0% glucose exogenously added
  • increasing the CMC concentration increased the absorptivity up to a CMC concentration of 1%, and then decreased thereafter.
  • initial wet weight yields were not always related to the glucose concentration, as most glucose controls (without CMC) weighed about the same (about 50 g); however, initial wet weight appears to be inversely related to CMC concentration. At CMC concentrations equal to or greater than 2%, initial wet weights may be less than 2/3 that of glucose controls. This effect was slightly more pronounced at higher glucose concentrations.
  • Pellicle dry weight yields decreased by 30-60% after vigorous washing in warm water, but dry weight yields did not decrease significantly after subsequent rewetting.
  • the effect of warm water washing and subsequent rewetting on pellicle dry weight yields appeared to be independent of the glucose concentration or CMC concentration; however, treatment of the pellicles with 4% sodium hydroxide reduced the dry weight yield of pellicles containing CMC by 11%, while reducing dry weight yield in CMC-free pellicles by only 4%.
  • MC methyl cellulose
  • HEC hydroxyethylcellulose
  • HPMC hydroxypropylmethylcellulose
  • Table 4 shows effects of nutrient medium on Acetobacter pellicle weights before and after washing and repeated dryings and rewettings.
  • the yields and absorbency characteristics were measured for microbial cellulose from Acetobacter-produced cellulosic pellicles formed in normal Schramm-Hestrin medium (SH), Schramm-Hestrin medium devoid of exogenously added glucose (SH-gluc), SH-gluc with 2% CMC and SH-gluc with 4% CMC. Table 5 shows weight and absorbency data obtained.
  • MC methyl cellulose
  • HEC hydroxyethylcellulose
  • HPMC hydroxypropylmethylcellulose
  • Table 7 shows the effects of these derivatives upon Acetobacter cellulose produced in Schramm-Hestrin medium (SH) without exogenously added glucose.
  • the cellulose derivatives tended to increase the weight of cellulose produced and to increase the absorbency of product cellulose, particularly after repeated rewettings and dryings.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

The present invention involves a method of producing cellulose. This method comprises inoculating a quantity of nutrient medium comprising a polysaccharide derivative such as carboxymethylcellulose (CMC) with a cellulose-producing microorganism. The inoculated medium is then aerobically incubated to facilitate the production of cellulose. The step of substantially drying the cellulose may be added for certain products. Substantially dried cellulose resulting from this procedure is highly absorbent, tending to retain its absorbent properties during repeated wetting and drying, and is usable where such absorbency is desired.
A subject of the present invention is a composition of matter consisting essentially of such cellulose in a native or substantially dried form. Microbial cellulose produced in the presence of carboxymethyl cellulose may be substantially dried by many means known to those skilled in the art. This drying may be, for example, by washing with a non-aqueous hydrophilic solvent or by air-drying. Preferred non-aqueous solvents include alkyl alcohols or ketones having less than about six carbon atoms. When such non-aqueous solvents are used to dry the CMC-produced cellulose, the dried cellulose may have a resilient structure and possibly an elastic nature.

Description

BACKGROUND OF THE INVENTION
The present invention relates to the modification of microbial cellulose during its synthesis by cellulose-producing microorganisms. This modification results from the presence of a substance which alters the formation of native cellulose structure. The prototypical structure-modifying substance is carboxymethylcellulose.
Cellulose may be produced by microorganisms of the Acetobacterium, Rhizobium, Alcaligenes, Agrobacterium, and Pseudomonas type (see, for example Brown, Jr. et al. J. Applied Polymer Science: Polymer Symposium (1983) V.37 pp 33-78). The growth of cellulose-producing microorganisms with production of cellulose may occur when said microorganisms are aerobically cultivated in an appropriate nutrient medium.
Appropriate nutrient media of the present invention generally include standard nutrient medium such as GYC which contains (g/liter of distilled water): yeast extract, 10.0; D-glucose, 50.0; CaCO3, 30.0 and agar, 25.0. Various alternatives such as replacements for glucose or yeast extract, and omissions of agar or CaCO3 are usable and well-known to those skilled in the art (Bergey's Manual of SYSTEMATIC BIOLOGY Vol. 1 pp 268-276, Krieg, ed. Williams and Wilkins, Baltimore/London (1984). The preferred nutrient medium used directly or with modifications described herein was that first described by Schramm and Hestrin (Hestrin et al. Biochem. J. Vol. 58 pp 345-352 (1954). The standard Schramm Hestrin (SH) medium contained (g/L): D-glucose, 20; peptone, 5; yeast extract, 5; dibasic sodium phosphate, 2.7, and citric acid monohydrate, 1.15 (pH adjusted to between about 3.5 and 5.5 with HCl). When Schramm Hestrin without glucose (SH-gluc) is designated, this indicates the above SH composition, but without the 10 g glucose/liter addition.
The cellulose produced by Acetobacter xylinum (formerly known as Acetobacter aceti subsp. xylinum and reclassified by the 1984 Bergy's Manual cited above as a subspecies of Acetobacter pasteurianus and Acetobacter hansenii) has been widely studied. In the present application the primarily studied cellulose-producing microorganism is termed "Acetobacter xylinum". It is understood that these several names may be used to indicate the same organism.
Fibrillar alterations of microbially-produced cellulose by agents such as CMC have been previously shown to occur, for example, by ultrastructural studies using techniques such as electron microscopy (Haigler et al., J. Cell Biology, Vol. 94 pp 64-69 (1982) and Ben-Hayim et al. J. Cell Biology, Vol. 25 pp 191-207 (1965)). However, nowhere before the present invention has any substance been found or suggested to facilitate the microbial production of a cellulose with greatly improved and/or unique macroscopic properties such as resiliency, elasticity, tensile strength, degree of water absorptivity or retention of absorbtive capacity after repeated wettings.
Cellulose assembled by a static aerobic culture of Acetobacter xylinum may be contained in a hydrophilic membrane known as a pellicle. This cellulose is quite strong when wet, but brittle when dried. One of the major obstacles in using the natural absorbency of this native bacterial cellulose has been its inability to effectively retain absorbancy through cycles of wetting and drying. In an effort to improve the physical properties of the cellulose, the present invention concerns including a cellulose derivative such as carboxymethylcellulose in the culture medium during microbial synthesis of cellulose. This inclusion altered the produced cellulose to result in a product which retained most of its native absorbancy through cycles of wetting and drying. One object of this invention is to significantly alter the physical properties of microbial cellulose product by cellulose derivatives or related substances in order to expand the material uses of this product. It is envisioned that there will be, for example, tremendous advantages in the uses of this product in the absorbent technology industries.
SUMMARY OF THE INVENTION
The present invention involves a method of producing a modified cellulose. This method comprises inoculating a quantity of nutrient medium containing between about 0.1% and about 5% cellulose derivative (more preferably between about 1% and about 4%) with a cellulose-producing microorganism. The inoculated medium is then aerobically incubated to facilitate the production of modified cellulose. The step of substantially drying the modified cellulose may be added to result in certain cellulosic products. The substantially dried cellulose resulting from this procedure is highly absorbent, tending to retain its absorbent properties during repeated wetting and drying cycles and is usable where such absorbency is desired. The cellulosic gel produced in the presence of CMC may itself be usable as an optically clear soft material.
One object of the present invention is to produce a composition of matter consisting essentially of modified cellulose in a native or substantially dried form. Modified cellulose produced in the presence of cellulose derivative may be substantially dried by many means known to those skilled in the art. This drying may be, for example, by washing with a non-aqueous hydrophilic solvent or by air-drying. Preferred non-aqueous solvents include alkyl alcohols or ketones having less than about six carbon atoms. When such non-aqueous solvents are used to dry the CMC-produced cellulose, the dried modified cellulose may have a resilient structure and possibly an elastic nature.
The preferred cellulose-producing microorganisms of the present invention are Acetobacter although other cellulose-producing microorganisms may be used.
In the practice of the present invention a preferred cellulose derivative is carboxymethylcellulose and is preferably present in the nutrient medium at a concentration between about 0.1 wt/vol % and about 5 wt/vol %. The carboxymethylcellulose usable in the practice of the present invention has a preferred degree of substitution of between about 0.4 and about 1.2 carboxymethyl groups per monosaccharide unit.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows an electron micrograph of dried Acetobacter cellulose produced in the presence of 1% CMC and SH medium minus glucose. The cellulose film consists of only 1-2 layers of cellulosic ribbons and is very thin.
FIG. 2 shows an electron micrograph of Acetobacter cellulose synthesized in the presence of 1% CMC and SH medium minus glucose. The cellulosic ribbons are partially splayed.
FIG. 3 shows an electron micrograph of cellulose produced by Acetobacter in the presence of SH medium with 2% glucose and 0.1% CMC.
BRIEF DESCRIPTION OF THE PREFERRED EMBODIMENT
Microbial cellulose may be biosynthesized in the presence of a substance which acts to decrease the order of cellulose fibrillar structure. When such biosynthesis occurs, the product cellulose possesses new and useful properties. These new and useful properties may include, depending upon the particular processing steps employed: optical clarity; increased absorptive capacity; improved ability to retain absorptive capacity through cycles of wetting and drying; tensile strength; resilience, and elasticity.
The culture conditions of the present invention are aerobic in the classical sense. Aerobic culture involves the exposure of an inoculated nutrient medium to amounts of an oxygen-containing gas such as air sufficient to facilitate growth or metabolism. Unless otherwise indicated, Acetobacter xylinum ATCC no. 23769 or ATCC no. 53582 (strain NQ5) from the American Type Culture Collection, Rockville, Md. were used in the present studies.
Although carboxymethylcellulose is a preferred substance for production of such product cellulose, other substances, particularly other cellulose derivatives may be used to analogously alter the cellulose produced by cellulose-producing microorganisms. For example, other polysaccharide derivatives may be substituted for CMC in the processes and compositions described herein. These polysaccharide derivative substitutes for CMC include polysaccharides such as cellulose, starch or dextran having substituents groups such as alkyl, alkylcarboxy, alkylhydroxy, sulfate, sulfonic acid, or alkylphosphate. These derivatives are most preferably hydrophilic although cellulose itself is so hydrophilic that minor amounts of hydrophobic substituents such as methyl may be used.
Among the steps most commonly used to process microbial cellulose produced in the presence of substances altering fibrillar formation is one or more drying steps. Microbial cellulose is generally produced in a static aerobic culture as a pellicle which is a term referring to a gelatinous formation. Modes of culture which may not result in pellicle formation involve cultures under agitation or static cultures with cellulose being continuously withdrawn. A drying step maybe applied to the gelatinous microbial cellulose produced in the presence of a cellulose-altering substance. The drying step may be as simple as air-drying or may involve lyophilization or the extraction of water from the altered microbial cellulose by treatment with solvent. When solvent treatment is used, the solvent is preferably a hydrophilic solvent miscible with water. The drying step may be used in conjunction with one or more washing steps to remove any undesired materials from the cellulose.
The following examples are presented to describe preferred embodiments and utilities of the present invention and are not meant to limit this invention unless otherwise stated in the claims appended hereto.
EXAMPLE 1 Production of an Altered, Non-integrated Cellulose Gel using CMC
Acetobacter xylinum was grown for three days in Schramm and Hestrin medium lacking exogenous glucose, supplemented with CMC (source: Hercules Type 7MF, lot #45816; molecular weight 250,000; degree of substitution 0.7). The two concentrations of CMC used were 2% and 4% (W/V). About 100ml of media were placed in each Roux bottle for static aerobic culture.
At the end of the third day, a completely clear cellulosic gel had been synthesized throughout the entire liquid at both 2 and 4% concentrations of CMC. The pellicle was not an integral structure and fell apart during an attempt to remove the pellicle from the Roux bottle. The viscous pellicle of cellulose was examined with a polarizing microscope. When nutrient medium was wicked from the cover slip off to one side, a remarkable flow birefringence was observed. When examining the material with darkfield microscopy, it was possible to see individual ribbons of cellulose. These ribbons were not permanently interconnected, but easily slid past each other. Thus, the long cellulose ribbons behaved as a nematic liquid crystal.
One piece of cellulose formed in 2% CMC was air dried. When rehydrated with distilled water, this cellulose was very effective in its rehydration. For example, a dry piece weighting only 0.0134 g absorbed distilled water and constituted a total weight of 1.479 g. This particular piece was very gelatinous and fragile; however, when pulled across the surface of a piece of parafilm, the entire hydrated droplet could easily be moved.
EXAMPLE 2 Production of Optically Clear Cellulose Gel Using CMC
Conditions were similar to those described in Example 1, except that 1% CMC was added to SH medium (minus glucose) and cultured in Roux bottles for four days. The pellicle in the Roux bottle was very clear optically and gelatinous, and cellulose was formed throughout the bottom and surface of the liquid. The pellicle of cellulose grown in 1% CMC had physical integrity and could be removed from the Roux bottle although it was much more delicate than a cellulose pellicle formed in SH medium lacking CMC. Upon removal, the interior of the pellicle contained liquid medium. Thus, the pellicle was a three-dimensional object holding a liquid phase internally.
A small piece of this optically clear gelatinous cellulose was washed in distilled water briefly and then gently stretched across the mouth of a 150 ml Erhlenmeyer flask and allowed to air dry. Upon drying, a thin membrane film was produced which exhibited interference colors, suggesting that it was less than 1,000 Angstroms thick. A droplet of water was placed on the surface of a Formvar-coated electron microscope grid and part of the dried pellicle transferred to the grid for examination. FIG. 1 shows an electron micrograph of the cellulosic film. Note the evenly dispersed ribbons. The individual bundles of microfibrils, and the twisting nature of the ribbon normally present with microbial cellulose were absent. This membrane appeared to be only several ribbon-equivalent layers thick, which was confirmed by the presence of the interference colors of the dried film mentioned above.
The wet cellulosic pellicle was transferred directly to the grid and examined by electron microscopy. The electron micrograph of FIG. 2 revealed a very thin random distribution of cellulose ribbons, similar in general morphology to that produced without CMC, but with the following exceptions: 1) the individual ribbons had a very loose organization of bundles of fibrils; 2) each individual bundle of microfibrils was loosely associated to form the ribbons; 3) long aggregates of ribbons. Thus, the cellulose made in the presence of CMC was not fully integrated into a ribbon. This appearance was similar to what was published earlier but using 0.1% CMC (Haigler et al., (J. Cell. Biol. 94:64-69 (1982)).
Haigler and Brown published the CMC cultivation procedure using 0.1 wt/vol % to 1.0 wt/vol % CMC. There are major differences in pellicle morphology when using the present high concentrations of CMC. Thus, the present invention advances and is distinguished from the observations in this earlier published paper (Haigler and Brown, J. Cell Biol. 94: 64-69, 1982). Nowhere in this earlier work were absorbancy and macroscopic physical properties of the cellulose addressed or predicted. It is significant that with the CMC particularly as used in the present invention, an integral cellulosic membrane was produced with 1% CMC, but 2% and 4% CMC yielded a non-integral cellulose structure. FIG. 3 shows the ultrastructure of cellulose produced under conditions analogous to those described in Haigler and Brown (1982), i.e., in the presence of 0.1% (wt/vol) CMC. Note that most of the cellulose shown in FIG. 3 is organized into bundles of twisting ribbons. Contrast FIG. 3 with FIGS. 1 and 2.
The dried cellulose membrane from 1% CMC-treated cellulose had only one or two, and at most seven or eight layers of ribbons. Since the ribbon has been shown to be approximately 50 Angstroms thick at its flat side, this would support the proof of the thin, dried film which exhibited interference colors. Also, the morphology of the dried cellulose fibrillar ribbons suggests that they were not intimately bound to each other and were probably coated with carboxymethylcellulose.
An optically clear gel was produced by treatment with 1% CMC in SH medium (without added exogenous glucose). This film may be washed with distilled water, air-dried, and rehydrated. Celluloses produced in the absence of CMC also may be dried and rehydrated, but generally not to the same extent as the CMC-grown celluloses.
EXAMPLE 3 Effects of Carboxymethylcellulose-produced Microbial Cellulose Upon the Water-Absorbency of Cotton
The control sample was absorbent cotton which was wetted, rubbed briskly between the fingers, dried, rewetted, and the wet and dry weights measured. The experimental sample consisted of absorbent cotton to which CMC-microbial cellulose (i.e. cellulose synthesized in the presence of SH without glucose and containing 2% CMC as described above) was applied and worked into the cotton fibers. The material was dried, rewetted, and wet and dry weights measured. These weights are shown in Table 1.
              TABLE 1                                                     
______________________________________                                    
Sample                 Weight                                             
______________________________________                                    
Control:               dry weight                                         
                                 0.21 g                                   
                       wet weight                                         
                                 3.75 g                                   
Experimental:          dry weight                                         
                                 0.25 g                                   
                       wet weight                                         
                                 3.95 g                                   
______________________________________                                    
The cotton to which CMC-microbial cellulose had been applied had about the same total water absorbency as the control absorbent cotton. One major difference noted was that the CMC-cellulose/cotton mixture absorbed water much more rapidly than the absorbent cotton. A composition of matter for avidly absorbing water which comprises cotton and modified microbial cellulose may thus be prepared. A mixture of this type may have industrial applications, for example, when a more rapid absorption is desired.
EXAMPLE 4 Elastomeric Properties of CMC-produced Microbial Cellulose
Acetobacter cellulose synthesized in the presence of 2% CMC, as described in Example 1 was used for this example. Instead of air-drying however, the cellulose was dried by treatment with hydrophilic solvent.
Acetone has the capability of removing most of the water, but some tightly bound water may not be removed. When a cellulose pellicle was dried with acetone, the physical properties of the cellulose changed considerably. Instead of being slippery, the material took on an elastomeric or rubber-like consistency, e.g., it could be stretched, and would spontaneously return to its original state after stretching.
When the CMC-produced cellulose was dried in absolute ethanol, the dried material had no elasticity or elastomeric properties but was very tough and resilient or leather-like. When water is added to samples dried with either hydrophilic solvent, immediate absorption of the water occurred, and the material returned to its original gel-like state.
The presence, during microbial cellulose synthesis, of a cellulose derivative such as CMC altered the physical properties of cellulose so that novel forms of cellulose were produced. When water was extracted by air-drying or hydrophilic solvents. Novel physical forms of cellulose were manifested.
EXAMPLE 5 Preliminary Absorption, Redrying, and Rewetting Studies With CMC-Modified Microbial Cellulose
Acetobacter was grown in Roux bottles of Schramm-Hestrin Hestrin medium minus glucose which contained 2% carboxy-methylcellulose (as described in Example 1). The cultures were allow to grow to completion and pellicle samples were tested when more than one month old. A sample of the clear, highly hydrophilic pellicle was washed with tap water two or three times. Then, a small sample was twisted by hand to form a very tight thread. This procedure removed most of the water. The thread was then heated to dryness in an oven for 15 minutes at 90° C. and then weighed. The dried thread weighed 0.00078g. The dried thread was carefully rehydrated in a beaker of distilled water. Immediately after the thread touched the water, it underwent a violent uncoiling reaction as water was being absorbed. After the uncoiling was complete, the sample was found to weigh 0.09g. The same sample was then gently sonicated and then reweighed. The wet weight now increased to 0.13g. Thus, dividing the wet weight by the dry weight, the cellulose produced in this manner had the ability to absorb more than 177× its weight in water.
The same sample was twisted once again into a fine thread and dried in the manner described above. Its second dry weight was 0.00073 g. Thus, little measurable amount of the microbial cellulose product had been lost, nor had any other major component been lost during the rewetting procedure. This same sample was rewet for a second time, and the wet weight obtained was 0.11 g. This weight gain illustrated the ability of the CMC-cellulose to absorb more than 150X its weight in water following a second rewetting. These observations confirmed that any residual CMC present was tightly bound to the cellulosic structure and did not wash out during the sonication or washing processes.
These observations had interesting implications regarding the interactions of cellulose with bound micellar water, or unbound water. In addition, the tenacity of CMC to the cellulosic product was implicated.
EXAMPLE 6 Determination of Absorptivity of CMC-grown Microbial Cellulose
A Roux bottle containing Schramm-Hestrin medium without exogenously added gucose, and 2% carboxymethylcellulose (as in Example 1) was inoculated with Acetobacter and allowed to grow to completion. The cellulosic material tested was produced at 28° C. and was approximately four months old.
The pellicle was transferred to 2% sodium chloride in distilled water and allowed to soak for 3 hrs. The wet weight of the pellicle was 5.73g. This pellicle was squeezed manually by twisting, and then oven-dried. The dry weight of the entire pellicle was 0.007g. (Incidentally, this pellicle weight closely matched weights of pellicles from earlier experiments in which Schramm-Hestrin without exogenously added glucose was also used.)
This entire pellicle then was rewet with 2% sodium chloride, and the wet weight measured. The wet weight was 0.10g. Using 2% sodium chloride in the water, the CMC-produced cellulose absorbed only 14.2X its weight in water. This was quite low in comparison with distilled water, but was expected in the presence of salt solutions.
When the sodium chloride-treated wet pellicle was transferred to a large beaker of distilled water and shaken, the pellicle immediately started swelling. The wet weight of the pellicle now rose to 1.44 g. Thus, in distilled water, this cellulose absorbed more than 205× its weight in water.
The same wet pellicle was then sonicated in distilled water, and the wet weight remeasured. The wet weight of this pellicle increased to 3.48 g, representing the capacity of microbial cellulose to absorb more than 497× its weight of water.
This same pellicle was then oven-dried after a manual squeeze/twist for a second time and weighed. The dry weight was 0.00314 g. About half of the weight had been lost through these manipulations. The pellicle was then rewet again, this time with 2% sodium chloride in distilled water. The wet weight was 0.01 g, representing an ability to absorb only 3.3× the equivalent weight.
This pellicle was transferred once again to distilled water and shaken. The wet weight rose to 0.93 g, representing the ability of the cellulose to absorb 310× its weight in water.
The pellicle was finally sonicated in distilled water, and the weight wet rose dramatically to 1.9 g, representing an ability to absorb more than 633X its weight in water.
The ability of CMC-grown cellulose to absorb distilled water was very great. In this experiment, the dry cellulose weight absorbed up to 633X its weight in water. Although 2% sodium chloride seriously inhibited water absorption, this was reversible when the sodium chloride was removed. Repeated air-drying of the CMC-cellulose did not diminish the absorption capacity, in contrast to cellulose produced only in the presence of Schramm-Hestrin medium alone. Sonication allowed more complete access of water to the cellulose matrices.
EXAMPLE 7 Absorptivity and Yields With CMC-produced cellulose
Acetobacter was grown in Roux bottles (standing cultures) each containing 200 ml of SH medium without exogenously added glucose. The cultures were grown for four days at 28° C. Four different concentrations of CMC were used, in addition to the control which contained no CMC. The pellicles were exhaustively washed with distilled water to remove soluble CMC or other substances and then the wet weight was taken. The pellicles were dried and reweighed. The water absorptivity capacity was measured by dividing the wet weight by the dry weight. The carboxymethylcellulose used in this experiment was from Hercules, and had a degree of substitution of 1.6, and a viscosity of 250,000 cps. Table 2 shows the results of this experiment.
              TABLE 2                                                     
______________________________________                                    
CMC Added  Wet Weight    Dry Wet  Wet/Dry                                 
______________________________________                                    
0% CMC     17.45 g       0.025 g  698 X                                   
0.5% CMC   23.17 g       0.027 g  858 X                                   
1.0% CMC   40.39 g       0.033 g  1223 X                                  
2.0% CMC   55.13 g       0.055 g  1002 X                                  
4.0% CMC   80.0 g        0.753 g  106 X                                   
______________________________________                                    
The dried cellulosic films produced from stretched 1% CMC-grown material showed interference colors (indicating that the dried pellicle films had a thickness of 1000 Angstroms or less). All dry pellicles were very fragile, except for the one produced in the presence of 4% CMC which was extremely strong and quite optically clear.
The birefringence of the dried celluloses was measured using polarization optics on a stereo microscope, and the degree of birefringence estimated. Table 3 gives qualitative results from the birefringence studies.
              TABLE 3                                                     
______________________________________                                    
Birefringence of CMC-cellulose                                            
______________________________________                                    
0% CMC            ++++ birefringence                                      
0.5% CMC          +++ birefringence                                       
1% CMC            ++ birefringence                                        
2% CMC            ++++ birefringence                                      
4% CMC            ++ birefringence                                        
______________________________________                                    
The results of birefringence studies were somewhat variable, but basically all of the dried celluloses exhibited a considerable degree of birefringence, thus implying that the cellulose was quite highly ordered. Depending upon the concentration of CMC used, the absorptivity varied, with a maximum of absorptivity being reached when 1% CMC was used. In this case, the cellulose absorbed over 1223X its weight of water. This process was also reversible. A second tentative conclusion from these observations related to the molecular order of dried cellulose made in the presence of CMC. This cellulose was highly birefringent and exhibited considerable molecular order.
EXAMPLE 8 Effect of Glucose and CMC Concentration on The Mass and Absorptive Characteristics of Acetobacter xylinum Pellicles Produced in Examples 1-7
There was a generally inverse relationship between glucose concentration in the medium and initial absorptivity. Pellicles formed on SH with 0% glucose exogenously added and no CMC had an approximately 700× absorptive ratio (absorptive ratio =wet weight/dry weight) compared to 40× for pellicles derived from SH with 2% glucose (no CMC). The negative effect of the glucose concentration on initial absorptivity of cellulose was statistically significant between 0% and 0.1% glucose concentrations, the difference in absorptivity being a factor greated than 7 fold. In contrast, the difference in cellulose absorptivity between 0.1% and 2% glucose concentration was less than 2.5 fold.
At a glucose concentration greater than 0.1%, CMC concentration had little effect on initial absorptivity. At a glucose concentration less than 0.1% (i.e., 0% glucose exogenously added), increasing the CMC concentration increased the absorptivity up to a CMC concentration of 1%, and then decreased thereafter.
Repeated wetting and drying of pellicles not grown in the presence of CMC showed a sharp and significant drop in absorptivity. The observation was consistent for pellicles grown at all glucose concentrations, but appeared to be more pronounced at the lower glucose concentrations.
Repeated wetting and drying and weighing of pellicles grown in the presence of CMC and at low glucose concentrations (i.e., 0-0.1% glucose concentration) showed an increasing absorptivity through two wet/dry cycles. The initial absorptive ratio of 0.1% glucose/0.5-1% CMC produced pellicles was approximately 58×. The absorptive ratio rose to approximately 180× after two wet/dry cycles.
For pellicles grown in a medium containing more than 0.1% glucose, absorptivity was observed to rise slightly upon the first rewetting and fall to levels at or below the initial absorptivity on the third rewetting. A rise in absorptivity upon rewetting was found with pellicles grown in 0.5-0.75% glucose concentration, as was a fall in absorptivity upon rewetting. For pellicles formed in glucose concentrations equal to or greater than 1%, absorptivity rose upon rewetting only when the CMC concentrations was equal to or greater than 1%. At less than 1% CMC concentration, absorptivity either did not change or declined very slightly in wetting/drying cycles. Upon the second rewetting, absorptivity declined in nearly all samples in an inverse relation to the CMC concentration in which they were produced. Pellicles from in high glucose and high CMC concentrations seemed to maintain their absorptivity upon repeated wetting/drying, whereas with pellicles grown in intermediate levels of glucose, the absorptivity first rose and then fell below the initial absorptivity value.
An interrelationship between the glucose medium, CMC concentration, and the initial and subsequent absorptive capacity of A. xylinum pellicles was apparent. Initial absorptivity was highest at the lowest glucose concentration, but repeated absorptive capacity was best maintained at high glucose concentrations Increasing CMC concentration tended to sometimes retard initial absorptivity, but resulted in a maintained or enhanced absorbence after repeated wetting and drying.
Initial wet weight yields were not always related to the glucose concentration, as most glucose controls (without CMC) weighed about the same (about 50 g); however, initial wet weight appears to be inversely related to CMC concentration. At CMC concentrations equal to or greater than 2%, initial wet weights may be less than 2/3 that of glucose controls. This effect was slightly more pronounced at higher glucose concentrations.
Wet weights after repeated wetting cycles did not appear to be related to the glucose concentration; however, they were affected by the CMC concentration. Increasing CMC concentrations reduced the loss in wet weight observed after repeated rewetting. Typically, the samples with the highest CMC concentrations had the lowest initial wet weight, but had the highest wet weight after two rewettings. Nevertheless, even at the highest CMC concentration there was significant wet weight loss after two rewettings. The data suggested that the CMC was leaching out of the pellicle upon repeated rewetting, and pellicles which contained the most CMC most effectively retained their wet weight.
Initial dry weight yields were directly related to the glucose concentration in the nutrient medium. These weight yields ranged from as low as 0.025 g in 0% exogenously added glucose medium-derived pellicles, to as high as 1.21 g for those from 2% glucose medium, a 48 fold difference in yield. However, the carbon utilization efficiency with respect to glucose was inversely related to the medium glucose concentration. Carbon utilization efficiencies with respect to glucose ranged from theoretically almost 100% for 0% exogenously added glucose derived pellicles to 30% for 2% glucose derived pellicles. This effect was evident in the tapering off of the increase in initial dry weight yields as the glucose concentration increased. There appeared to be no discernable relationship between CMC concentration in the medium and initial dry weight yield. At low glucose concentrations (equal to or less than 0.5%), and at high glucose concentrations (2%), increasing CMC concentration increased initial dry weight yields, but at intermediate glucose concentrations (0.75-1%), initial dry weight yields decreased with increasing CMC concentration.
Pellicle dry weight yields decreased by 30-60% after vigorous washing in warm water, but dry weight yields did not decrease significantly after subsequent rewetting. The effect of warm water washing and subsequent rewetting on pellicle dry weight yields appeared to be independent of the glucose concentration or CMC concentration; however, treatment of the pellicles with 4% sodium hydroxide reduced the dry weight yield of pellicles containing CMC by 11%, while reducing dry weight yield in CMC-free pellicles by only 4%.
Initial and subsequent wet weights were not invariably related to the glucose concentration. CMC concentration, however, had a significant effect on pellicle wet weight. CMC reduced initial wet weight values, but improved wet weight retention after repeated drying and wetting. Optimizing CMC concentration and incorporation may improve pellicle "rewettability". Initial pellicle dry weight yields were often directly related to the glucose concentration, but not to the CMC concentration. Carbon utilization efficiency with respect to glucose concentration was extremely high at lower glucose concentration, but decreased significantly with increasing glucose concentrations. This latter effect suggested that cellulose synthesis may be repressed by high glucose concentrations. Pellicle dry weight yields were significantly reduced by warm water washing, but appeared to be relatively unaffected by rewetting. These observations were independent of initial glucose concentrations or CMC concentrations. Treatment of pellicles with 4% sodium hydroxide reduced the dry weight yields of pellicles grown in the medium containing CMC slightly more than it did in the dry weight yields of pellicles grown in CMC-free medium.
Higher initial absorptivity observed in pellicles derived from low glucose concentration medium may be attributed to their lower initial dry weight rather than to a difference in relative wet weight yield values.
EXAMPLE 9 Effects of Nutrient Medium, Cellulose Derivative Type and Concentration upon the Amount and Characteristics of Microbial Cellulose
Utilizing the conditions and methods generally described in Examples 1-8, the effects of other nutrient media and cellulose derivatives upon microbial cellulose production and absorbency were studied.
Nutrient media studied included: normal Schramm-Hestrin medium having 2% glucose (SH or SH (normal)); Schramm-Hestrin medium without exogenously added glucose (SH-gluc or 0% gluc); Schramm-Hestrin medium with various glucose concentrations instead of the normal 2% (SH 0.1% gluc, 0.5% gluc, 0.75% gluc or 1.0% gluc); Schramm-Hestrin medium at double strength (2 SH); Schramm-Hestrin medium at half strength (1/2 SH ; Schramm-Hestrin medium with additional peptone protein (SH +2% protein); Schramm-Hestrin medium with 1% glucose and additional peptone protein (SH +1% gluc +2% protein); and corn steep liquor.
Additional cellulose derivatives studied included: methyl cellulose (MC); hydroxyethylcellulose (HEC); hydroxypropylcellulose (HPC); and hydroxypropylmethylcellulose (HPMC).
Table 4 shows effects of nutrient medium on Acetobacter pellicle weights before and after washing and repeated dryings and rewettings.
                                  TABLE 4                                 
__________________________________________________________________________
EFFECT OF MEDIUM ON ACETOBACTER PELLICLE WEIGHTS AND ABSORBENCY           
                                             Wet Wt.                      
                                                  Rewet Wt.               
                                             #1   #1                      
          Original                                                        
               Wet Wt.                                                    
                    Dry Wt.                                               
                         Wet Wt.                                          
                              Dry Wt.                                     
                                   Wet Wt.                                
                                        Dry Wt.                           
                                             Dry Wt.                      
                                                  Redry                   
                                                        Rewet wt. #2      
Nutrient Medium                                                           
          Wet Wt.                                                         
               #1.sup.a                                                   
                    #1.sup.a                                              
                         #2.sup.a                                         
                              #2.sup.a                                    
                                   #3   Final                             
                                             #1   #1    Final Dry         
__________________________________________________________________________
                                                        Wt.               
Corn Steep Liquor                                                         
          37.9 39.14.sup.b                                                
                    0.44 1.85 0.39 2.0  0.39  61.sup.b                    
                                                  5    5                  
2 SH           55.34.sup.b                                                
                    0.71 3.13 0.63 2.77 0.62 .sup. 86.sup.b               
                                                  5    4.5                
1/2 SH    33.76.sup.c                                                     
               30.62.sup.d                                                
                    0.42.sup.e                                            
                         3.68 0.31 2.01 0.31 51   12   6.5                
SH + 2% Protein                                                           
          41.15                                                           
               46.19                                                      
                    1.13 11.39                                            
                              0.63 3.53 0.60 41   18   6                  
SH + 1% Gluc +                                                            
          26.13                                                           
               17.16                                                      
                    0.40 2.42 0.26 1.02 0.25 43   9    4                  
2% Protein                                                                
__________________________________________________________________________
 .sup.a = Mean sample weight in grams                                     
 .sup.b = Derived from 2 samples                                          
 .sup.c = Derived from 6 samples                                          
 .sup.d = Derived from 5 samples                                          
 .sup.e = Derived from 8 samples                                          
The yields and absorbency characteristics were measured for microbial cellulose from Acetobacter-produced cellulosic pellicles formed in normal Schramm-Hestrin medium (SH), Schramm-Hestrin medium devoid of exogenously added glucose (SH-gluc), SH-gluc with 2% CMC and SH-gluc with 4% CMC. Table 5 shows weight and absorbency data obtained.
                                  TABLE 5                                 
__________________________________________________________________________
EFFECT OF NUTRIENT AND CMC                                                
           Original.sup.a   Absorp-        Absorp-        Absorp-         
Nutrient Medium                                                           
           Wet  Washed.sup.a                                              
                       Dry  tive Rewet                                    
                                      Redry                               
                                           tive Rewet                     
                                                     Redry                
                                                          tive            
and Additions                                                             
           Wt. #1                                                         
                Wet Wt. #2                                                
                       Wt. #1.sup.a                                       
                            Ratio #1                                      
                                 Wt. #1                                   
                                      Wt. #1                              
                                           Ratio #2                       
                                                Wt. #2.sup.a              
                                                     Wt.                  
                                                          Ratio           
__________________________________________________________________________
                                                          #3              
SH-Gluc    20.28                                                          
                19.07  0.14 136.2                                         
                                 4.82 0.04 120.5                          
                                                3.37 0.02 169.0           
           24.76                                                          
                20.62  0.14 147.3                                         
                                 6.00 0.03 200.0                          
                                                2.36 0.012                
                                                          191.9           
           22.42                                                          
                17.20  0.13 132.3                                         
                                 10.08                                    
                                      0.05 201.6                          
                                                6.74 0.02 337.0           
           23.06                                                          
                21.13  0.16 132.1                                         
                                 9.62 0.07 137.4                          
                                                4.76 0.02 238.8           
Average    22.63                                                          
                19.51  0.14 139.3.sup.b                                   
                                 7.63 0.05 160.6.sup.b                    
                                                4.31 0.018                
                                                          238.5.sup.b     
SH (normal)                                                               
           71.75                                                          
                86.26  2.35 36.7 18.52                                    
                                      1.29 14.4 5.43 1.22 4.5             
           71.60                                                          
                85.48  2.42 35.3 19.73                                    
                                      1.35 14.6 5.59 1.24 4.5             
           70.29                                                          
                87.91  2.36 37.3 19.56                                    
                                      1.30 15.1 5.16 1.25 4.1             
           72.19                                                          
                85.10  2.32 36.7 17.91                                    
                                      1.28 14.0 4.78 1.26 3.8             
Average    71.46                                                          
                86.19  2.36 36.5.sup.b                                    
                                 18.93                                    
                                      1.31 14.5.sup.b                     
                                                5.24 1.24 4.2.sup.b       
2% CMC + SH-Gluc                                                          
           81.10                                                          
                32.80  0.87 37.7 28.57                                    
                                      0.48 59.5 26.85                     
                                                     0.22 122.0           
           92.01                                                          
                47.30  0.85 55.7 41.79                                    
                                      0.64 65.3 25.55                     
                                                     0.22 116.0           
           70.61                                                          
                30.83  0.44 70.1 18.50                                    
                                      0.16 115.6                          
                                                17.17                     
                                                     0.04 429.0           
Average    81.24                                                          
                36.98  0.72 51.4.sup.b                                    
                                 29.62                                    
                                      0.43 69.4.sup.b                     
                                                23.19                     
                                                     0.16 145.0.sup.b     
4% CMC + SH-Gluc                                                          
           109.83                                                         
                103.83 4.38 23.7 84.31                                    
                                      3.43 24.6 41.77                     
                                                     2.30 18.2            
           120.56                                                         
                114.90 5.07 22.7 69.36                                    
                                      3.90 17.8 37.24                     
                                                     2.75 13.5            
           118.70                                                         
                111.47 5.28 21.1 64.67                                    
                                      3.89 16.6 40.44                     
                                                     2.73 14.8            
Average    116.36                                                         
                110.07 4.91 22.4.sup.b                                    
                                 72.78                                    
                                      3.79 19.5.sup.b                     
                                                39.82                     
                                                     2.59 15.35.sup.b     
__________________________________________________________________________
 .sup.a = All weights in grams                                            
 .sup.b = The mean absorptive ratio is calculated by dividing the average 
 wet weight by the corresponding average dry weight.                      
As seen in Table 5, the CMC appeared to enhance both the yield of cellulose and the amount of cellulose remaining after repeated washings.
In a further test, the effects upon microbial cellulose of Acetobacter growth in several CMC concentrations in Schramm-Hestrin medium with various amounts of glucose were determined. Table 6 shows the data resulting from such manipulations.
                                  TABLE 6                                 
__________________________________________________________________________
EFFECTS OF GLUCOSE AND CMC CONCENTRATIONS ON                              
ACETOBACTER PELLICLE WEIGHTS AND ABSORPTIVE RATIOS                        
                            Avg..sup.b     Avg.sup.b      Avg..sup.b      
                            Wet            Wet            Wet             
           Avg..sup.a                                                     
                  Avg..sup.a                                              
                       Avg..sup.a                                         
                            Wt. #1                                        
                                 Avg. Avg..sup.1                          
                                           Wt. #2                         
                                                Avg..sup.a                
                                                     Avg..sup.a           
                                                          Wt. #3          
Nutrient Medium                                                           
           Original                                                       
                  Wet  Dry  Dry  Wet  Dry  Dry  Wet  Final                
                                                          Final           
and Additions                                                             
           Wet Wt. #1                                                     
                  Wt. #2                                                  
                       Wt. #1                                             
                            Wt. #1                                        
                                 Wt. #2                                   
                                      Wt. #2                              
                                           Wt. #2                         
                                                Wt. #3                    
                                                     Dry                  
                                                          Dry             
__________________________________________________________________________
                                                          Wt.             
SH-Gluc           17.25                                                   
                       0.025                                              
                            690                                           
SH-Gluc + 0.5% CMC                                                        
                  23.17                                                   
                       0.027                                              
                            858                                           
SH-Gluc + 1.0% CMC                                                        
                  40.39                                                   
                       0.033                                              
                            1,234                                         
SH-Gluc + 2.0% CMC                                                        
                  55.13                                                   
                       0.055                                              
                            1,002                                         
SH-Gluc + 4.0% CMC                                                        
                  80.0 0.753                                              
                            106                                           
SH-Gluc           10.02                                                   
                       0.0533                                             
                            188  0.77.sup.c                               
                                      0.012.sup.c                         
                                            64.sup.d                      
                                                0.06112.sup.c             
                                                     0.01198.sup.c        
                                                           510.sup.d      
SH-Gluc +  0.5% CMC                                                       
                  11.40                                                   
                       0.0885                                             
                            129  5.90.sup.c                               
                                      0.016.sup.c                         
                                           369.sup.d                      
                                                1.39.sup.c                
                                                     0.0136.sup.c         
                                                          102.sup.d       
SH-Gluc + 4.0% CMC                                                        
                  20.57                                                   
                       0.753                                              
                            27   10.21.sup.c                              
                                      0.349.sup.c                         
                                            29.sup.d                      
                                                12.27.sup.c               
                                                     0.139.sup.c          
                                                           88.sup.d       
SH + 0.1% Gluc    15.04                                                   
                       0.17 88   1.90 0.054                               
                                           35   0.23.sup.c                
                                                     0.0336.sup.c         
                                                           68.sup.d       
SH + 0.1% Gluc +  27.15                                                   
                       0.47 58   15.15                                    
                                      0.215                               
                                           70   9.94.sup.c                
                                                     0.0560.sup.c         
                                                          178.sup.d       
0.5% CMC                                                                  
SH + 0.1% Gluc +  26.52                                                   
                       0.49 54   21.18                                    
                                      0.311                               
                                           68   12.34.sup.c               
                                                     0.0648.sup.c         
                                                          190.sup.d       
1.0% CMC                                                                  
SH + 0.1% Gluc +  29.28                                                   
                       0.71 41   23.51                                    
                                      0.420                               
                                           56   13.20.sup.c               
                                                     0.410.sup.c          
                                                           32.sup.d       
2.0% CMC                                                                  
SH + 0.5% Gluc                                                            
           49.0   40.44                                                   
                       0.76 54   14.0 0.39 35   2.77 0.30-0.41            
                                                           7-9            
SH + 0.5% Gluc +                                                          
           67.29  40.99                                                   
                       0.88 47   25.27                                    
                                      0.44 58   8.07 "    20-27           
0.5% CMC                                                                  
SH + 0.5% Gluc +                                                          
           45.63  34.24                                                   
                       0.87 39   27.44                                    
                                      0.42 66   10.90                     
                                                     "    27-36           
1.0% CMC                                                                  
SH + 0.5% Gluc +                                                          
           53.01  35.65                                                   
                       1.12 32   30.93                                    
                                      0.44 70   16.23                     
                                                     "    40-54           
2.0% CMC                                                                  
SH + 0.75% Gluc                                                           
           50.74  54.75                                                   
                       1.16 47   10.55                                    
                                      0.61 17   2.90 0.60  5              
SH + 0.75% Gluc +                                                         
           45.79  47.62                                                   
                       1.19 40   25.50                                    
                                      0.65 39   9.67 0.60 16              
0.5% CMC                                                                  
SH + 0.75% Gluc +                                                         
           46.99  40.21                                                   
                       1.13 36   26.55                                    
                                      0.68 39   11.57                     
                                                     0.61 19              
1.0% CMC                                                                  
SH + 0.75% Gluc +                                                         
           32.78  26.11                                                   
                       1.01 26   23.64                                    
                                      0.56 42   13.07                     
                                                     0.51 26              
2.0% CMC                                                                  
SH + 0.75% Gluc +                                                         
           33.28  27.20                                                   
                       0.98 28   21.81                                    
                                      0.54 40   14.67                     
                                                     0.49 30              
4.0% CMC                                                                  
SH + 1% Gluc +                                                            
           53.74  54.67                                                   
                       1.55 35   27.41                                    
                                      0.91 30   11.72                     
                                                     0.80 15              
0.5% CMC                                                                  
SH + 1% Gluc +                                                            
           47.04  44.38                                                   
                       1.50 30   29.43                                    
                                      0.89 33   13.21                     
                                                     0.74 18              
1.0% CMC                                                                  
SH + 1% Gluc +                                                            
           38.40  30.70                                                   
                       1.21 25   25.01                                    
                                      0.74 34   13.18                     
                                                     0.68 19              
2.0% CMC                                                                  
SH + 1% Gluc +                                                            
           29.25  27.41                                                   
                       1.24 22   23.38                                    
                                      0.75 31   17.85                     
                                                     0.67 27              
4.0% CMC                                                                  
SH         47.61  48.65                                                   
                       1.21 40   12.09                                    
                                      0.63 19   5.34 0.59  9              
SH + 0.5 CMC                                                              
           51.28  49.75                                                   
                       1.52 33   31.21                                    
                                      0.87 36   14.69                     
                                                     0.77 19              
SH + 1.0 CMC                                                              
           36.82  39.75                                                   
                       1.47 27   32.28                                    
                                      0.83 39   14.87                     
                                                     0.71 21              
2% CMC            35.80                                                   
                       1.36 26   30.25                                    
                                      0.95 32   12.16                     
                                                     0.92 13              
__________________________________________________________________________
 .sup.a = All weights in grams                                            
 .sup.b = Mean absorptive ratio is calculated from the average wet weight 
 divided by the corresponding dry weight                                  
 .sup.c = Weight based on partial pellicle recovery                       
 .sup.d = Calculation based on average weight of pellicle recovered       
The data in Table 6 indicated that the CMC tended to increase both the weight of cellulose produced, even after extensive washing, and to increase the absorbency of the product microbial cellulose.
The effects of other cellulose derivatives upon microbial cellulose production and characteristics thereof were studied. The additional cellulose derivatives studied were: methyl cellulose (MC); hydroxyethylcellulose (HEC); hydroxypropylcellulose (HPC); and hydroxypropylmethylcellulose (HPMC). Table 7 shows the effects of these derivatives upon Acetobacter cellulose produced in Schramm-Hestrin medium (SH) without exogenously added glucose.
                                  TABLE 7                                 
__________________________________________________________________________
WEIGHTS AND ABSORPTIVE RATIOS OF ACETOBACTER CELLULOSE                    
PRODUCED IN THE PRESENCE OF CELLULOSE DERIVATIVES                         
      Original.sup.a                                                      
             Washed.sup.a                                                 
                    Dry  Absorptive                                       
                               Rewet                                      
                                    Redry                                 
                                         Absorptive                       
                                               Rewet                      
                                                    Redry                 
                                                         Absorptive       
Sample                                                                    
      Wet Wt. #1                                                          
             Wet Wt. #2                                                   
                    Wt. #1.sup.a                                          
                         Ratio #1                                         
                               Wt. #1.sup.a                               
                                    Wt. #1.sup.a                          
                                         Ratio #2                         
                                               Wt. #2.sup.a               
                                                    Wt.                   
                                                         Ratio            
__________________________________________________________________________
                                                         #3               
2% MC 84.57  30.19  0.44 68.6  15.26                                      
                                    0.13 117.4 14.37                      
                                                    0.04 359              
      99.68  29.71  0.56 53.05 21.86                                      
                                    0.26 84.1  16.97                      
                                                    0.09 189              
      58.49  19.26  0.32 60.19 17.10                                      
                                    0.12 142.5 12.11                      
                                                    0.03 404              
Average                                                                   
      80.91  26.39  0.44 60.0.sup.b                                       
                               18.07                                      
                                    0.17 106.3.sup.b                      
                                               14.48                      
                                                    0.05 272.sup.b        
2% HEC                                                                    
      67.27  18.61  0.22 84.6  17.60                                      
                                    0.12 146.7 17.78                      
                                                    0.05 356              
      58.30  20.73  0.31 66.9  17.50                                      
                                    0.15 116.7 18.98                      
                                                    0.09 211              
      84.67  28.82  0.39 73.9  16.54                                      
                                    0.25 66.2  23.85                      
                                                    0.16 149              
Average                                                                   
      70.08  22.72  0.31 74.10.sup.b                                      
                               17.21                                      
                                    0.17 99.3.sup.b                       
                                               20.2 0.10 202.sup.b        
2% HPC                                                                    
      68.68  42.48  0.75 56.6  26.19                                      
                                    0.42 62.4  18.72                      
                                                    0.18 104              
      54.54  31.03  0.72 43.1  26.38                                      
                                    0.46 57.4  19.57                      
                                                    0.26 75.3             
      64.48  33.12  0.88 37.6  27.76                                      
                                    0.60 46.3  19.43                      
                                                    0.25 77.7             
Average                                                                   
      62.57  35.54  0.78 45.4.sup.b                                       
                               26.78                                      
                                    0.49 54.3.sup.b                       
                                               19.24                      
                                                    0.23 83.7.sup.b       
2%    91.88  39.92  0.86 46.0  31.93                                      
                                    0.42 76.0  20.44                      
                                                    0.19 107.6            
HPMC  77.56  11.07  0.20 55.4  9.50 0.03 316.7 4.49 0.0045                
                                                         993.4            
      111.26 44.89  1.04 43.2  32.17                                      
                                    0.59 54.53 22.12                      
                                                    0.28 79.0             
Average                                                                   
      93.6   31.83  0.70 45.5.sup.b                                       
                               24.53                                      
                                    0.35 70.1.sup.b                       
                                               15.68                      
                                                    0.16 99.0.sup.b       
__________________________________________________________________________
 .sup.a = All weights in grams                                            
 .sup.b = Average absorptive ratio was calculated by dividing the average 
 wet weight by the corresponding averaged dry weight                      
As may be seen in the data of Table 7, the cellulose derivatives tended to increase the weight of cellulose produced and to increase the absorbency of product cellulose, particularly after repeated rewettings and dryings.
Changes may be made in the cellulose-producing microorganisms, mutrient media, steps and procedures described herein without departing from the concept and scope of the invention as defined in the following claims.

Claims (49)

What is claimed is:
1. A process for producing modified cellulose, the process comprising:
inoculating a quantity of nutrient medium comprising between about 1.0% and about 5.0% polysaccharide derivative with a cellulose-producing microorganism;
aerobically incubating the inoculated medium to produce modified cellulose therein; and
collecting the cellulose.
2. A process for producing a water absorbent, the process comprising:
inoculating a quantity of nutrient medium comprising between about 0.1% and about 5.0% polysaccharide derivative with a cellulose-producing microorganism;
aerobically incubating the inoculated medium to produce modified cellulose therein;
collecting the cellulose; and
drying the cellulose.
3. The process of claim 1 or 2 wherein the cellulose-producing microorganism is an Acetobacter.
4. The process of claim 1 or 2 wherein the polysaccharide derivative is a cellulose derivative.
5. The process of claim 4 wherein the cellulose derivative is at least one of carboxymethylcellulose, methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose and hydroxypropylmethylcellulose.
6. The process of claim 4 wherein the cellulose derivative is carboxymethylcellulose.
7. The process of claim 4 wherein the cellulose derivative is at a concentration between about 2 wt/vol % and about 4 wt/vol %.
8. The process of claim 6 wherein the carboxymethylcellulose is at a concentration between about 2 wt/vol % and about 4 wt/vol %.
9. The process of claim 6 wherein the carboxymethylcellulose has a degree of substitution between about 0.4 and about 1.2 carboxymethyl groups per monosaccharide unit.
10. The process of claim 2 wherein the cellulose is dried with a non-aqueous hydrophilic solvent.
11. The process of claim 10 wherein the non-aqueous hydrophilic solvent is an alkyl alcohol or ketone having less than about six carbon atoms.
12. The process of claim 10 wherein the drying step results in a cellulose with a resilient structure.
13. The process of claim 1 or 2 wherein the modified cellulose is optically transparent.
14. The process of claim 2 wherein the modified cellulose is characterized further as being highly absorbent.
15. The process of claim 2 wherein the modified cellulose is defined further as being highly absorbent and retaining high absorptivity through at least several cycles of wetting and drying.
16. The process of claim 1 or 2 wherein the polysaccharide derivative has substituents selected from the group consisting of alkyl, alkylhydroxy, alkylcarboxy, sulfate and phosphate.
17. The process of claim 1 or 2 wherein the polysaccharide derivative is hydrophilic.
18. A composition of matter comprising cellulose formed by a cellulose-producing microorganism in a nutrient medium comprising between about 0.1% and about 5.0% polysaccharide derivative said cellulose being dried.
19. The composition of matter of claim 18 defined further as being dried by air drying or washing with a non-aqueous hydrophilic solvent.
20. The composition of matter of claim 18 or 19 wherein the cellulose-producing microorganism is an acetobacter.
21. The composition of matter of claim 18 or 19 wherein the polysaccharide derivative is a cellulose derivative.
22. The composition of matter of claim 21 wherein the cellulose derivative is at least one of carboxymethylcellulose methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose or hydroxypropylmethylcellulose.
23. The composition of matter of claim 21 wherein the cellulose derivative is at a concentration between about 1 wt/vol % and about 4 wt/vol %.
24. The composition of matter of claim 21 wherein the cellulose derivative is carboxymethylcellulose.
25. The composition of matter of claim 24 wherein the carboxymethylcellulose is at a concentration between about 1 wt/vol % and about 4 wt/vol %.
26. The composition of matter of claim 24 wherein the carboxymethylcellulose has a degree of substitution between about 0.4 and about 1.2 carboxymethyl groups per monosaccharide unit.
27. The composition of matter of claim 19 wherein the non-aqueous hydrophilic solvent is an alkyl alcohol or ketone having less than about six carbon atoms.
28. The composition of matter of claim 19 defined further as having a resilient structure.
29. The composition of matter of claim 18 or 19 wherein the modified cellulose is optically clear.
30. The composition of matter of claim 18 or 19 wherein the modified cellulose is characterized further as being highly absorbent.
31. The composition of matter of claim 18 or 19 wherein the modified cellulose is defined further as being highly absorbent and retaining high absorptivity through at least several cycles of wetting and drying.
32. The composition of matter of claim 18 or 19 wherein the polysaccharide derivative has substituents selected from the group consisting of alkyl, alkylhydroxy, alkylcarboxy, sulfate and phosphate.
33. The composition of matter of claim 18 or 19 wherein the polysaccharide derivative is hydrophilic.
34. A composition of matter avidly absorbing water and comprising cotton and modified cellulose produced by a cellulose-producing microorganism in the presence of a nutrient medium comprising between about 0.1% and about 5% polysaccharide derivative.
35. The composition of matter of claim 34 wherein the polysaccharide derivative is methylcellulose, hydroxyethylcellulose, hydroxypropylecellulose or hydroxypropylmethylcellulose.
36. A process for preparing an absorbent, the process comprising the steps of:
cultivating cellulose-producing Acetobacter in a nutrient medium comprising at least 0.1% hydrophilic polysaccharide derivative;
collecting cellulose produced by the Acetobacter; and
drying said collected cellulose to produce an absorbent.
37. A process for absorbing water, the process comprising the steps of:
cultivating cellulose-producing Acetobacter in a nutrient medium comprising at least 0.1% hydrophilic polysaccharide derivative;
collecting cellulose produced by the Acetobacter;
drying said collected cellulose to produce an absorbent material; and
contacting said absorbing material with water.
38. A process for repeatedly absorbing water with the same absorbent, the process comprising the steps of:
cultivating cellulose-producing Acetobacter in a nutrient medium comprising at least 0.1% hydrophilic polysaccharide derivative;
collecting cellulose produced by the Acetobacter;
drying said collected cellulose to produce an absorbent material;
contacting said absorbing material with water to produce a wetted material;
redrying the wetted material; and
recontacting the redryed material with water.
39. A process for producing a membrane comprising cellulose, the process comprising the steps of:
cultivating cellulose-producing Acetobacter in a nutrient medium comprising at least 0.1% hydrophilic polysaccharide derivative to produce a pellicle; stretching said pellicle to produce a membrane; and drying said membrane.
40. The process of claim 39 wherein the membrane has a thickness of less than 1000 Angstroms.
41. The process of claim 36, 37, 38, 39 or 40 wherein the hydrophilic polysaccharide derivative is carboxymethylcellulose.
42. The process of claim 41 wherein the carboxymethylcellulose is at a concentration of between about 2 wt/vol % and about 5 wt/vol %.
43. A process for producing a cotton-based absorbent, the process comprising:
cultivating cellulose-producing Acetobacter in a nutrient medium comprising at least about 2.0% hydrophilic polysaccharide derivative;
collecting cellulose produced by the Acetobacter; and
applying said collected cellulose to cotton.
44. A process for preparing a cellulosic item having an elastomeric, rubber-like consistency, the process comprising the steps of:
cultivating cellulose-producing Acetobacter in a nutrient medium comprising at least 0.1% hydrophilic polysaccharide derivative;
collecting cellulose produced by the Acetobacter; and
drying said collected cellulose with a hydrophilic organic solvent.
45. The process of claim 44 wherein the hydrophilic organic solvent is acetone.
46. A process for preparing a cellulosic item having a non-elastic, tough and resilient consistency, the process comprising the steps of:
cultivating cellulose-producing Acetobacter in a nutrient medium comprising at least 0.1% hydrophilic polysaccharide derivative;
collecting cellulose produced by the Acetobacter; and
drying said collected cellulose with an anhydrous hydrophilic organic solvent.
47. The process of claim 46 wherein the anhydrous hydrophilic organic solvent is absolute ethanol.
48. A process for preparing an optically clear cellulosic gel, the process comprising the steps of:
cultivating cellulose-producing Acetobacter in a nutrient medium without exogenous glucose and comprising from about 2 wt/vol % to about 4 wt/vol % hydrophilic polysaccharide derivative; and
collecting cellulose gel produced by the Acetobacter.
49. The process of claim 48 wherein the hydrophilic polysaccharide is caraboxymethylcellulose.
US07/022,904 1977-12-22 1987-03-06 Microbial cellulose modified during synthesis Expired - Lifetime US4942128A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US07/022,904 US4942128A (en) 1987-03-06 1987-03-06 Microbial cellulose modified during synthesis
AT88109477T ATE123532T1 (en) 1987-03-06 1988-06-14 BACTERIAL CELLULOSE, MODIFIED DURING EXTRACTION.
EP88109477A EP0346507B1 (en) 1987-03-06 1988-06-14 Microbial cellulose modified during synthesis
DE3853946T DE3853946D1 (en) 1977-12-22 1988-06-14 Bacterial cellulose, modified when harvesting.
CA000569535A CA1339913C (en) 1987-03-06 1988-06-15 Microbial cellulose modified during synthesis
AU17700/88A AU611159B2 (en) 1987-03-06 1988-06-15 Microbial cellulose modified during synthesis
JP63155059A JPH01320994A (en) 1987-03-06 1988-06-24 Bacterial cellulose modified during synthesis

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US07/022,904 US4942128A (en) 1987-03-06 1987-03-06 Microbial cellulose modified during synthesis
EP88109477A EP0346507B1 (en) 1987-03-06 1988-06-14 Microbial cellulose modified during synthesis
CA000569535A CA1339913C (en) 1987-03-06 1988-06-15 Microbial cellulose modified during synthesis
JP63155059A JPH01320994A (en) 1987-03-06 1988-06-24 Bacterial cellulose modified during synthesis

Publications (1)

Publication Number Publication Date
US4942128A true US4942128A (en) 1990-07-17

Family

ID=27426550

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/022,904 Expired - Lifetime US4942128A (en) 1977-12-22 1987-03-06 Microbial cellulose modified during synthesis

Country Status (4)

Country Link
US (1) US4942128A (en)
JP (1) JPH01320994A (en)
AT (1) ATE123532T1 (en)
CA (1) CA1339913C (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5268274A (en) * 1989-04-12 1993-12-07 Cetus Corporation Methods and nucleic acid sequences for the expression of the cellulose synthase operon
US5360723A (en) * 1993-05-07 1994-11-01 Eastman Chemical Company Method for lowering molecular weight of microbial celluloses
US5580348A (en) * 1994-05-10 1996-12-03 Kimberly-Clark Corporation Absorbent structure comprising a microbial polysaccharide and a process of making the same
EP0850314A1 (en) * 1995-08-01 1998-07-01 Rensselaer Polytechnic Institute Production of microbial cellulose using a rotating disk film bioreactor
US5846213A (en) * 1997-06-16 1998-12-08 The University Of Western Ontario Cellulose membrane and method for manufacture thereof
US6433161B1 (en) 1997-04-29 2002-08-13 Hercules Incorporated Galactosylated hydroxyalkyl polysaccharides
US20030203012A1 (en) * 2002-04-26 2003-10-30 Xylos Corporation Microbial cellulose wound dressing for treating chronic wounds
US20030203013A1 (en) * 2002-04-26 2003-10-30 Xylos Corporation Microbial cellulose wound dressing for treating chronic wounds
US20040028722A1 (en) * 2002-04-26 2004-02-12 Xylos Corporation Microbial cellulose wound dressing for treating chronic wounds
WO2004050986A1 (en) * 2002-12-05 2004-06-17 Nelson Luiz Ferreira Levy A process for obtaining a cellulosic wet sheet and a membrane the equipment used to obtain the membrane and the membrane obtained.
US20050019380A1 (en) * 2002-04-26 2005-01-27 Xylos Corporation Microbial cellulose wound dressing for treating chronic wounds
US20050042263A1 (en) * 2003-08-22 2005-02-24 Xylos Corporation Dura substitute and a process for producing the same
WO2005034070A2 (en) * 2003-10-01 2005-04-14 Board Of Regents The University Of Texas System Compositions, methods and systems for making and using electronic paper
US6986963B2 (en) 2001-12-14 2006-01-17 Ut-Battelle Llc Metallization of bacterial cellulose for electrical and electronic device manufacture
US20060134758A1 (en) * 2002-12-05 2006-06-22 Levy Nelson L F Process for obtaining a ccellulosic wet sheet and a membrane, the equipment used to obtain the membrane and the membrane obtained
US20070286884A1 (en) * 2006-06-13 2007-12-13 Xylos Corporation Implantable microbial cellulose materials for hard tissue repair and regeneration
US20080297878A1 (en) * 2003-10-01 2008-12-04 Board Of Regents, The University Of Texas System Compositions, methods and systems for making and using electronic paper
US20090220560A1 (en) * 2006-04-24 2009-09-03 Axcelon Biopolymers Corporation Nanosilver Coated Bacterial Cellulose
US20100039612A1 (en) * 2008-08-18 2010-02-18 Levinson Dennis J Microbial cellulose contact lens
US7709631B2 (en) 2006-03-13 2010-05-04 Xylos Corporation Oxidized microbial cellulose and use thereof
US20100218489A1 (en) * 2006-11-23 2010-09-02 Robert Bosch Gmbh Method for checking the completeness of a regeneration of a particle fileter in the exhaust gas of an internal combustion engine
CN101845226A (en) * 2010-04-15 2010-09-29 四川大学 Dialdehyde carboxymethyl cellulose-collagen frozen gel and preparation method thereof
WO2017100771A1 (en) 2015-12-11 2017-06-15 The University Of Iowa Research Foundation Methods of producing biosynthetic bacterial cellulose membranes
CN111661933A (en) * 2020-06-30 2020-09-15 武汉合缘绿色生物股份有限公司 Biological agent for adjusting water body nutrition and preventing diseases and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB580595A (en) * 1944-12-29 1946-09-12 John Cruickshank Improvements in and relating to high grade cellulose film
GB1570487A (en) * 1975-10-17 1980-07-02 Takeda Chemical Industries Ltd Mucilaginous polysaccharide ax
US4378431A (en) * 1980-09-02 1983-03-29 The University Of N.C. At Chapel Hill Production of a cellulose-synthetic polymer composite fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB580595A (en) * 1944-12-29 1946-09-12 John Cruickshank Improvements in and relating to high grade cellulose film
GB1570487A (en) * 1975-10-17 1980-07-02 Takeda Chemical Industries Ltd Mucilaginous polysaccharide ax
US4378431A (en) * 1980-09-02 1983-03-29 The University Of N.C. At Chapel Hill Production of a cellulose-synthetic polymer composite fiber

Non-Patent Citations (40)

* Cited by examiner, † Cited by third party
Title
Barman, Enzyme Handbook, Springer Verlag, New York, p. 565 (1969). *
Barman, Enzyme Handbook, Springer-Verlag, New York, p. 565 (1969).
Ben Hayim et al., J. Cell Biol., 25:191 207 (1965). *
Ben-Hayim et al., J. Cell Biol., 25:191-207 (1965).
Bergey s Manual of Systematic Biology, 1:268 276 (1984). *
Bergey's Manual of Systematic Biology, 1:268-276 (1984).
Brown et al., J. App. Polymer Sci., Applied Polymer Symposium 37:33 78 (1983). *
Brown et al., J. App. Polymer Sci., Applied Polymer Symposium 37:33-78 (1983).
Brown et al., Proc. Natl. Acad. Sci. USA, 73:4565 4569 (1976). *
Brown et al., Proc. Natl. Acad. Sci. USA, 73:4565-4569 (1976).
Brown et al., Science, 218:1141 1142 (1982). *
Brown et al., Science, 218:1141-1142 (1982).
Brown, The Ekman Days, 3:1 15 (1981). *
Brown, The Ekman Days, 3:1-15 (1981).
Bureau, 1987, Proc. Nat. Acad. Sci. USA, 84:6985 6989. *
Bureau, 1987, Proc. Nat. Acad. Sci. USA, 84:6985-6989.
C. H. Haigler et al., Journal of Cellular Biology, vol. 94, pp. 64 69. *
C. H. Haigler et al., Journal of Cellular Biology, vol. 94, pp. 64-69.
Chemical Abstracts, vol. 91, Aug. 27, 1979, p. 474, Abstract No. 73152q, Columbus, OH, USA and JP A 79 37 889 (AJINOMOTO CO., INC.) 20 03 1979, Abstract. *
Chemical Abstracts, vol. 91, Aug. 27, 1979, p. 474, Abstract No. 73152q, Columbus, OH, USA and JP-A-79 37 889 (AJINOMOTO CO., INC.) 20-03-1979, Abstract.
E. Correns et al.: "Zur Bildung und zum Ubermolekularen Aufbau von Bakteriencellulose", Cellular Chem. and Tech., vol. 9, 1975, pp. 449-469.
E. Correns et al.: Zur Bildung und zum Ubermolekularen Aufbau von Bakteriencellulose , Cellular Chem. and Tech., vol. 9, 1975, pp. 449 469. *
Haigler et al., Cellulose and Other Natural Polymer Systems, Brown, ed., pp. 273 297 (1982). *
Haigler et al., Cellulose and Other Natural Polymer Systems, Brown, ed., pp. 273-297 (1982).
Haigler et al., J. Cell Biol., 94:64 69 (1982). *
Haigler et al., J. Cell Biol., 94:64-69 (1982).
Haigler et al., Science, 210:903 906 (1980) and Haigler and Brown, J. Cell Biol., 83:70 Abstract No. CS268. *
Haigler et al., Science, 210:903-906 (1980) and Haigler and Brown, J. Cell Biol., 83:70 Abstract No. CS268.
Hestrin et al., Biochem. J., 5 8:345 352. *
Hestrin et al., Biochem. J., 5-8:345-352.
International Search Report, Mar. 16, 1989. *
Lin et al., Science, 230:822 825 (1985). *
Lin et al., Science, 230:822-825 (1985).
Sarko, 1978, TAPPI, 61:59 61. *
Sarko, 1978, TAPPI, 61:59-61.
Search Report of the Scientific and Patent Literature. *
Shimwell, 1956, J. Inst. Brew., 62:339 343. *
Shimwell, 1956, J. Inst. Brew., 62:339-343.
White and Brown, Proc. Natl. Acad. Sci. USA, 78:1047 1051 (1981). *
White and Brown, Proc. Natl. Acad. Sci. USA, 78:1047-1051 (1981).

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5268274A (en) * 1989-04-12 1993-12-07 Cetus Corporation Methods and nucleic acid sequences for the expression of the cellulose synthase operon
US5360723A (en) * 1993-05-07 1994-11-01 Eastman Chemical Company Method for lowering molecular weight of microbial celluloses
US5580348A (en) * 1994-05-10 1996-12-03 Kimberly-Clark Corporation Absorbent structure comprising a microbial polysaccharide and a process of making the same
US5772646A (en) * 1994-05-10 1998-06-30 Kimberly-Clark Worldwide, Inc. Absorbent structure comprising a microbial polysaccharide and a process of making the same
EP0850314A1 (en) * 1995-08-01 1998-07-01 Rensselaer Polytechnic Institute Production of microbial cellulose using a rotating disk film bioreactor
US5955326A (en) * 1995-08-01 1999-09-21 Rensselaer Polytechnic Institute Production of microbial cellulose using a rotating disk film bioreactor
US6071727A (en) * 1995-08-01 2000-06-06 Rensselaer Polytechnic Institute Production of microbial cellulose
EP0850314A4 (en) * 1995-08-01 2000-12-06 Rensselaer Polytech Inst Production of microbial cellulose using a rotating disk film bioreactor
US6433161B1 (en) 1997-04-29 2002-08-13 Hercules Incorporated Galactosylated hydroxyalkyl polysaccharides
US5846213A (en) * 1997-06-16 1998-12-08 The University Of Western Ontario Cellulose membrane and method for manufacture thereof
US7803477B2 (en) 2001-12-14 2010-09-28 Ut-Battelle Llc Metallization of bacterial cellulose for electrical and electronic device manufacture
US6986963B2 (en) 2001-12-14 2006-01-17 Ut-Battelle Llc Metallization of bacterial cellulose for electrical and electronic device manufacture
US20110014525A1 (en) * 2001-12-14 2011-01-20 Evans Barbara R Metallization of Bacterial Cellulose for Electrical and Electronic Device Manufacture
US7955759B2 (en) 2001-12-14 2011-06-07 Ut-Battelle Llc Metallization of bacterial cellulose for electrical and electronic device manufacture
WO2003090640A2 (en) * 2002-04-26 2003-11-06 Xylos Corporation Microbial cellulose wound dressing for treating chronic wounds
US7704523B2 (en) 2002-04-26 2010-04-27 Lohmann & Rauscher Gmbh Microbial cellulose wound dressing for treating chronic wounds
US20040161453A1 (en) * 2002-04-26 2004-08-19 Xylos Corporation Microbial cellulose wound dressing for treating chronic wounds
US20050019380A1 (en) * 2002-04-26 2005-01-27 Xylos Corporation Microbial cellulose wound dressing for treating chronic wounds
US7390499B2 (en) 2002-04-26 2008-06-24 Lohmann & Rauscher Gmbh Microbial cellulose wound dressing for treating chronic wounds
US20040028722A1 (en) * 2002-04-26 2004-02-12 Xylos Corporation Microbial cellulose wound dressing for treating chronic wounds
WO2003090640A3 (en) * 2002-04-26 2004-07-29 Xylos Corp Microbial cellulose wound dressing for treating chronic wounds
US20030203012A1 (en) * 2002-04-26 2003-10-30 Xylos Corporation Microbial cellulose wound dressing for treating chronic wounds
US20030203013A1 (en) * 2002-04-26 2003-10-30 Xylos Corporation Microbial cellulose wound dressing for treating chronic wounds
US7709021B2 (en) 2002-04-26 2010-05-04 Lohmann & Rauscher Gmbh Microbial cellulose wound dressing for treating chronic wounds
WO2004050986A1 (en) * 2002-12-05 2004-06-17 Nelson Luiz Ferreira Levy A process for obtaining a cellulosic wet sheet and a membrane the equipment used to obtain the membrane and the membrane obtained.
US20060134758A1 (en) * 2002-12-05 2006-06-22 Levy Nelson L F Process for obtaining a ccellulosic wet sheet and a membrane, the equipment used to obtain the membrane and the membrane obtained
WO2005009276A2 (en) * 2003-04-30 2005-02-03 Xylos Corporation Microbial cellulose wound dressing
WO2005009276A3 (en) * 2003-04-30 2005-06-09 Xylos Corp Microbial cellulose wound dressing
EA010316B1 (en) * 2003-04-30 2008-08-29 Ломанн Унд Раушер Гмбх Wound dressing based on microbial-derived cellulose, use thereof and kit containing thereof
US7374775B2 (en) 2003-08-22 2008-05-20 Synthes (Usa) Dura substitute and a process for producing the same
US7510725B2 (en) 2003-08-22 2009-03-31 Synthes Usa, Llc Process for producing a dura substitute
US20080213844A1 (en) * 2003-08-22 2008-09-04 Xlos Corporation Dura substitute and a process for producing the same
WO2005018492A3 (en) * 2003-08-22 2006-05-04 Xylos Corp Dura substiture and a process for producing the same
US20050042263A1 (en) * 2003-08-22 2005-02-24 Xylos Corporation Dura substitute and a process for producing the same
WO2005034070A3 (en) * 2003-10-01 2008-10-30 Univ Texas Compositions, methods and systems for making and using electronic paper
US20080297878A1 (en) * 2003-10-01 2008-12-04 Board Of Regents, The University Of Texas System Compositions, methods and systems for making and using electronic paper
WO2005034070A2 (en) * 2003-10-01 2005-04-14 Board Of Regents The University Of Texas System Compositions, methods and systems for making and using electronic paper
US20050079386A1 (en) * 2003-10-01 2005-04-14 Board Of Regents, The University Of Texas System Compositions, methods and systems for making and using electronic paper
US7709631B2 (en) 2006-03-13 2010-05-04 Xylos Corporation Oxidized microbial cellulose and use thereof
US8367089B2 (en) 2006-04-24 2013-02-05 Axcelon Biopolymers Corporation Nanosilver coated bacterial cellulose
US20090220560A1 (en) * 2006-04-24 2009-09-03 Axcelon Biopolymers Corporation Nanosilver Coated Bacterial Cellulose
US20070286884A1 (en) * 2006-06-13 2007-12-13 Xylos Corporation Implantable microbial cellulose materials for hard tissue repair and regeneration
US20100218489A1 (en) * 2006-11-23 2010-09-02 Robert Bosch Gmbh Method for checking the completeness of a regeneration of a particle fileter in the exhaust gas of an internal combustion engine
US20100039612A1 (en) * 2008-08-18 2010-02-18 Levinson Dennis J Microbial cellulose contact lens
US7832857B2 (en) 2008-08-18 2010-11-16 Levinson Dennis J Microbial cellulose contact lens
CN101845226B (en) * 2010-04-15 2011-12-07 四川大学 Dialdehyde carboxymethyl cellulose-collagen frozen gel and preparation method thereof
CN101845226A (en) * 2010-04-15 2010-09-29 四川大学 Dialdehyde carboxymethyl cellulose-collagen frozen gel and preparation method thereof
WO2017100771A1 (en) 2015-12-11 2017-06-15 The University Of Iowa Research Foundation Methods of producing biosynthetic bacterial cellulose membranes
EP3386554A4 (en) * 2015-12-11 2019-08-21 University Of Iowa Research Foundation Methods of producing biosynthetic bacterial cellulose membranes
US10954540B2 (en) 2015-12-11 2021-03-23 University Of Iowa Research Foundation Methods of producing biosynthetic bacterial cellulose membranes
AU2016366783B2 (en) * 2015-12-11 2021-04-01 Medical 21, Inc. Methods of producing biosynthetic bacterial cellulose membranes
CN111661933A (en) * 2020-06-30 2020-09-15 武汉合缘绿色生物股份有限公司 Biological agent for adjusting water body nutrition and preventing diseases and preparation method thereof

Also Published As

Publication number Publication date
ATE123532T1 (en) 1995-06-15
CA1339913C (en) 1998-06-16
JPH01320994A (en) 1989-12-27

Similar Documents

Publication Publication Date Title
US4942128A (en) Microbial cellulose modified during synthesis
Zhong Industrial-scale production and applications of bacterial cellulose
Andriani et al. The optimization of bacterial cellulose production and its applications: a review
US4378431A (en) Production of a cellulose-synthetic polymer composite fiber
Mohite et al. Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529
Tang et al. The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane
Huang et al. In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation
Dinand et al. Suspensions of cellulose microfibrils from sugar beet pulp
US7968646B2 (en) Method of in situ bioproduction and composition of bacterial cellulose nanocomposites
EP0186495B1 (en) Production of microbial cellulose
Mohammad et al. An overview of biocellulose production using Acetobacter xylinum culture
WO2005003366A1 (en) A method for the production of bacterial cellulose
EP0346507B1 (en) Microbial cellulose modified during synthesis
JP2008061532A (en) Hydrous gel sheet, method for producing the same and applications thereof
US4891317A (en) Magnetic alternation of cellulose during its biosynthesis
Amr et al. Bacterial Cellulose: Biosynthesis and Applications
Chen et al. Modifying bacterial cellulose with gelatin peptides for improved rehydration
KR100405776B1 (en) The preparation method of wet sheet including the microbial cellulose as a main component and it's use
AU611159B2 (en) Microbial cellulose modified during synthesis
US4950597A (en) Modification of cellulose normally synthesizied by cellulose-producing microorganisms
IE68589B1 (en) Microbial cellulose modified during synthesis
PH26342A (en) Microbial cellulose modified during synthesis
JPS63199201A (en) Modified cellulose produced by bacterium
JP3179563B2 (en) Biodegradable composition
US2786786A (en) Moisture resistant paper

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FEPP Fee payment procedure

Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS - SMALL BUSINESS (ORIGINAL EVENT CODE: SM02); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 8

SULP Surcharge for late payment
AS Assignment

Owner name: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BROWN, JR., R. MALCOLM;REEL/FRAME:012083/0859

Effective date: 20010730

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 12

SULP Surcharge for late payment

Year of fee payment: 11