US4876376A - Process for the halogenation, nitration and fluorination of aromatic derivatives - Google Patents

Process for the halogenation, nitration and fluorination of aromatic derivatives Download PDF

Info

Publication number
US4876376A
US4876376A US07/134,539 US13453987A US4876376A US 4876376 A US4876376 A US 4876376A US 13453987 A US13453987 A US 13453987A US 4876376 A US4876376 A US 4876376A
Authority
US
United States
Prior art keywords
halogen
group
aromatic compound
nitration
halogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/134,539
Inventor
Michael Desbois
Camille Disdier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhone Poulenc Specialites Chimiques
Original Assignee
Rhone Poulenc Specialites Chimiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhone Poulenc Specialites Chimiques filed Critical Rhone Poulenc Specialites Chimiques
Application granted granted Critical
Publication of US4876376A publication Critical patent/US4876376A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/08Preparation of nitro compounds by substitution of hydrogen atoms by nitro groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/02Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups from isocyanates with formation of carbamate groups

Definitions

  • the present invention relates to a process for the halogenation, nitration and fluorination of aromatic derivatives substituted by at least one group containing a halogenoalkyl unit. It relates more particularly to a process for the halogenation and nitration of the aromatic nucleus and to a process for the fluorination of the said group by halogen/fluorine exchange.
  • halogenation is understood as meaning the attachment of at least one chlorine or bromine atom to the aromatic nucleus.
  • group containing a halogenoalkyl unit is understood as meaning a group of the following formula:
  • A represents a covalent bond, oxygen or sulfur
  • X 1 and X 2 which are identical or different, represent a halogen
  • Y corresponds to hydrogen, a halogen or an optionally halogenated alkyl chain having 1 to 3 carbon atoms.
  • halogens corresponding to X 1 , X 2 and Y are identical or different, but at least one of them must be other than fluorine.
  • aromatic derivatives substituted by at least one group containing a halogenoalkyl unit in a first step, to fluorination-exchange in hydrofluoric acid.
  • the aromatic derivative substituted by at least one group containing a fluoroalkyl unit is then chlorinated, in a second, independent step, by means of a chlorination catalyst such as, in particular, FeCl 3 , BF 3 (German Pat. No. 825,397) or Pt-on-alumina (German Pat. No. 1,034,609).
  • a chlorination catalyst such as, in particular, FeCl 3 , BF 3 (German Pat. No. 825,397) or Pt-on-alumina (German Pat. No. 1,034,609).
  • the chlorinated aromatic derivative substituted by a fluoroalkyl group is nitrated, in a third step, by means of a nitric acid/sulfuric acid mixture as described in European patent application No. 54,464.
  • the present invention which overcomes the disadvantages of the prior art, relates to a process for the halogenation/nitration/fluorination-exchange of aromatic compounds substituted by at least one group containing a halogenoalkyl unit, which comprises reacting the said aromatic compound successively or simultaneously with a halogen and a nitrating agent in liquid hydrofluoric acid.
  • the inventive process is carried out in the same reaction enclosure, without intermediate treatment.
  • the hydrofluoric acid serves a dual purpose; it acts as a fluorinating agent for the substituent group on the nucleus and acts as a solvent during the halogenation and nitration of the aromatic nucleus.
  • reaction conditions for carrying out the halogenation must be more harsh. Furthermore, during the nitration, water is formed which causes partial hydrolysis of the halogenoalkyl group during the halogenation.
  • aromatic compound used within the scope of the invention preferably corresponds to the following formula (I):
  • Ar represents a monocyclic or polycyclic aromatic radical
  • n is equal to 1 or 2 and preferably equal to 1.
  • Ar preferably has the formula: ##STR1## in which R represents a radical chosen from H, NO 2 , CN, NCO, COOH, CONH 2 , alkyl, alkoxy, phenyl and phenoxy.
  • halogen and the nitro group will be attached to the nucleus according to the substitution rules well known to those skilled in the art, as a function of the presence of orthopara- or meta-directing radicals.
  • the fluorination-exchange makes it possible to exchange the halogens of halogenomethyl, halogenomethoxy and halogenothiomethyl groups to give --CF 3 , --OCF 3 and --SCF 3 .
  • the hydrofluoric acid used for the present invention is preferably anhydrous hydrofluoric acid.
  • the molar ratio of the hydrofluoric acid to the starting aromatic compound is preferably between 10 and 100. An appreciably larger quantity does not have an adverse effect on the invention.
  • the quantity of halogen used is fixed by those skilled in the art, taking into account whether the desired product corresponds to monohalogenation or polyhalogenation.
  • the reaction is preferably carried out in the presence of a stoichiometric deficit of halogen, that is to say with a molar ratio of halogen to aromatic compound preferably of between 0.5 and 0.9.
  • a stoichiometric deficit of halogen that is to say with a molar ratio of halogen to aromatic compound preferably of between 0.5 and 0.9.
  • polyhalogenation it is preferred to carry out the reaction with an excess of halogen.
  • the halogen can be employed in a sealed enclosure under autogenous pressure (generally 1 to 50 bar) or under atmospheric pressure, for example by bubbling, or in any other device known to those skilled in the art.
  • the nitrating agent is chosen from nitric acid, alkali metal salts of nitric acid, and nitronium salts such as nitronium tetrafluoroborate, nitronium hexafluorophosphate and nitronium trifluoromethanesulfonate.
  • the nitric acid can also be generated in situ by reacting hydrofluoric acid with one of its salts.
  • nitronium salt nitronium tetrafluoroborate being preferred.
  • the molar ratio of the nitrating agent to the starting aromatic compound is preferably equal to at least 0.8 and even more preferably between 0.8 and 2.
  • the molar ratio of nitronium salt to aromatic compound is preferably about 1.
  • the temperature at which the halogenation and the nitration are carried out is preferably between -20° and 150° C.
  • the reaction can take place at atmospheric pressure or under pressure.
  • a practical way of carrying out the invention is to stop the halogen feed at the end of the halogenation reaction, to allow the unreacted halogen to escape, together, if appropriate, with the corresponding acid formed, and to introduce the nitric acid into the reaction medium without any other manipulation.
  • the duration of the chlorination and nitration reactions varies from a few minutes to a few hours.
  • the final product which is a nitrated, halogenated aromatic derivative substituted by a fluoroalkyl group, can be extracted from the reaction medium by an organic solvent and then washed several times with water in order to remove all the hydrofluoric acid and all the remaining nitric acid.
  • Products of the formula (I) which may be mentioned are: trichloromethylbenzene, trichloromethoxybenzene, trichloromethylthiobenzene, chlorotrichloromethylbenzenes, fluorotrichloromethylbenzenes, dichlorobromomethylbenzene, tribromomethylbenzene, chlorotrichloromethoxybenzenes, fluorotrichloromethoxybenzenes, p-trichloromethylphenyl chloroformate, p-trichloromethylphenyl isocyanate, pentachloroethoxybenzene and pentachloroethylthiobenzene.
  • the invention is not limited to these compounds, it has a particularly advantageous application in the chlorination, nitration and fluorination-exchange of perchloroalkyl, perchloroalkoxy and perchlorothioalkyl aromatic derivatives such as, for example, trichloromethylbenzenes, trichloromethoxybenzenes and trichloromethylthiobenzenes.
  • a particularly advantageous product from the industrial point of view is trichloromethylbenzene because the chlorinated nitrated product can be used to prepare orthotrifluoromethylaniline, which is used as a synthesis intermediate in the preparation of compounds having a plant-protecting activity.
  • nitrated, chlorinated aromatic derivatives substituted by a fluoroalkyl group are used as synthesis intermediates in the pharmaceutical, plant protection and dyestuffs industries.
  • Chlorine pressure 4 bar at 20° C.
  • Chlorination temperature 20° C.
  • Example 2 The procedure is identical to that of Example 1, the compounds and conditions being those given below and the treatment of the crude reaction mixture with ice being replaced with distillation of this crude mixture up to a bottom temperature of 80° C., under atmospheric pressure, in order to remove as much of the hydrofluoric acid solvent as possible.
  • Chlorine pressure 4 bar at 20° C.
  • Chlorination temperature 100° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A process for the halogenation (bromination or chlorination)/nitration/fluorination of aromatic derivatives substituted by at least one group containing a halogenoalkyl unit. The aromatic derivative is reacted with a halogen and a nitrating agent in liquid hydrofluoric acid. The products obtained are useful as intermediates for the synthesis of compounds having a plant-protecting or pharmaceutical activity.

Description

This application is a continuation of application Ser. No. 874,831, filed June 16, 1986, now abandoned, which is a continuation of application Ser. No. 623,464, filed June 22, 1984, now abandoned.
The present invention relates to a process for the halogenation, nitration and fluorination of aromatic derivatives substituted by at least one group containing a halogenoalkyl unit. It relates more particularly to a process for the halogenation and nitration of the aromatic nucleus and to a process for the fluorination of the said group by halogen/fluorine exchange.
The term "halogenation" is understood as meaning the attachment of at least one chlorine or bromine atom to the aromatic nucleus.
The term "group containing a halogenoalkyl unit" is understood as meaning a group of the following formula:
--A--CX.sub.1 X.sub.2 Y
in which:
A represents a covalent bond, oxygen or sulfur,
X1 and X2, which are identical or different, represent a halogen and
Y corresponds to hydrogen, a halogen or an optionally halogenated alkyl chain having 1 to 3 carbon atoms.
The halogens corresponding to X1, X2 and Y are identical or different, but at least one of them must be other than fluorine.
For greater clarity, the halogen/fluorine exchange of the group containing a halogenoalkyl unit will be designated below by the term "fluorination-exchange".
It has been known for a long time to subject aromatic derivatives substituted by at least one group containing a halogenoalkyl unit, in a first step, to fluorination-exchange in hydrofluoric acid. The aromatic derivative substituted by at least one group containing a fluoroalkyl unit is then chlorinated, in a second, independent step, by means of a chlorination catalyst such as, in particular, FeCl3, BF3 (German Pat. No. 825,397) or Pt-on-alumina (German Pat. No. 1,034,609). Finally, the chlorinated aromatic derivative substituted by a fluoroalkyl group is nitrated, in a third step, by means of a nitric acid/sulfuric acid mixture as described in European patent application No. 54,464.
The fact that this is a three-step process has numerous disadvantages and, in particular, causes a loss of yield.
It has been possible, as described in Houben Weyl (volume 3, page 679), to combine the first two steps, namely chlorination and fluorination-exchange, into a single step using a catalyst such as antimony pentachloride in anhydrous hydrofluoric acid, but the nitration must then be carried out in an independent step.
The process described above has the advantage of proceeding in two steps, but it requires the presence of two catalysts, namely SbCl5 for the first two steps and H2 SO4 for the nitration; as SbCl5 cannot be recycled, this presents problems of pollution from the technical point of view and problems of viability from the economic point of view.
The present invention, which overcomes the disadvantages of the prior art, relates to a process for the halogenation/nitration/fluorination-exchange of aromatic compounds substituted by at least one group containing a halogenoalkyl unit, which comprises reacting the said aromatic compound successively or simultaneously with a halogen and a nitrating agent in liquid hydrofluoric acid. Preferably, the inventive process is carried out in the same reaction enclosure, without intermediate treatment. For example, if nitration follows halogenation, there is no need to distill the halogenated product from the solution. Moreover, the entire inventive process can be carried out in one pot. The hydrofluoric acid serves a dual purpose; it acts as a fluorinating agent for the substituent group on the nucleus and acts as a solvent during the halogenation and nitration of the aromatic nucleus.
It is possible, according to the invention, to react the nitrating agent first and then the halogen, or the halogen and then the nitrating agent, or both simultaneously. It is preferred, however, to react the halogen first and then the nitrating agent.
If the reaction is carried out with the nitrating agent and then the halogen, as the nitrated aromatic derivative obtained is much less reactive, the reaction conditions for carrying out the halogenation must be more harsh. Furthermore, during the nitration, water is formed which causes partial hydrolysis of the halogenoalkyl group during the halogenation.
It is also possible to carry out the nitration and the halogenation simultaneously in hydrofluoric acid, but, in this case, a mixture of isomers is certain to be obtained, which is rarely an advantage from the industrial point of view.
From a practical point of view, it is therefore preferable to carry out the halogenation first and then the nitration.
The aromatic compound used within the scope of the invention preferably corresponds to the following formula (I):
Ar--(ACX.sub.1 X.sub.2 Y).sub.n                            (I)
in which:
Ar represents a monocyclic or polycyclic aromatic radical,
A, X1, X2 and Y have the meanings mentioned above and
n is equal to 1 or 2 and preferably equal to 1.
Ar preferably has the formula: ##STR1## in which R represents a radical chosen from H, NO2, CN, NCO, COOH, CONH2, alkyl, alkoxy, phenyl and phenoxy.
The halogen and the nitro group will be attached to the nucleus according to the substitution rules well known to those skilled in the art, as a function of the presence of orthopara- or meta-directing radicals.
The fluorination-exchange makes it possible to exchange the halogens of halogenomethyl, halogenomethoxy and halogenothiomethyl groups to give --CF3, --OCF3 and --SCF3.
In the case of halogenoalkoxy and halogenothioalkyl groups, the exchange will take place on the carbon located in the α-position to the heteroatom. Thus, the groups --OCCl2 --CCl3 and --SCCl2 CCl3 will be converted by fluorination-exchange to --OCF2 CCl3 and --SCF2 CCl3.
On the other hand, the halogen atoms directly attached to the benzene nucleus are not affected by the fluorination-exchange.
The hydrofluoric acid used for the present invention is preferably anhydrous hydrofluoric acid.
The molar ratio of the hydrofluoric acid to the starting aromatic compound is preferably between 10 and 100. An appreciably larger quantity does not have an adverse effect on the invention.
The quantity of halogen used is fixed by those skilled in the art, taking into account whether the desired product corresponds to monohalogenation or polyhalogenation. For monohalogenation, the reaction is preferably carried out in the presence of a stoichiometric deficit of halogen, that is to say with a molar ratio of halogen to aromatic compound preferably of between 0.5 and 0.9. For polyhalogenation, it is preferred to carry out the reaction with an excess of halogen. The halogen can be employed in a sealed enclosure under autogenous pressure (generally 1 to 50 bar) or under atmospheric pressure, for example by bubbling, or in any other device known to those skilled in the art.
The nitrating agent is chosen from nitric acid, alkali metal salts of nitric acid, and nitronium salts such as nitronium tetrafluoroborate, nitronium hexafluorophosphate and nitronium trifluoromethanesulfonate.
It is preferred to use concentrated or fuming nitric acid.
The nitric acid can also be generated in situ by reacting hydrofluoric acid with one of its salts.
In the case where the nitration is carried out before the halogenation, in order to minimize the hydrolysis phenomena, it is preferable to use a nitronium salt, nitronium tetrafluoroborate being preferred.
The molar ratio of the nitrating agent to the starting aromatic compound is preferably equal to at least 0.8 and even more preferably between 0.8 and 2.
If the nitration is carried out before the halogenation and if it is desired to effect mononitration, the molar ratio of nitronium salt to aromatic compound is preferably about 1.
The temperature at which the halogenation and the nitration are carried out is preferably between -20° and 150° C.
The reaction can take place at atmospheric pressure or under pressure.
If the temperature is to be above 20° C., the reaction will have to take place under pressure because the hydrofluoric acid must be liquid.
In the case where the halogenation is carried out first and the nitration afterwards, a practical way of carrying out the invention is to stop the halogen feed at the end of the halogenation reaction, to allow the unreacted halogen to escape, together, if appropriate, with the corresponding acid formed, and to introduce the nitric acid into the reaction medium without any other manipulation.
The duration of the chlorination and nitration reactions varies from a few minutes to a few hours.
The final product, which is a nitrated, halogenated aromatic derivative substituted by a fluoroalkyl group, can be extracted from the reaction medium by an organic solvent and then washed several times with water in order to remove all the hydrofluoric acid and all the remaining nitric acid.
In a preferred method of extraction, it is possible to distil all the hydrofluoric acid and then remove the nitric acid by washing the aromatic derivative with water.
Products of the formula (I) which may be mentioned are: trichloromethylbenzene, trichloromethoxybenzene, trichloromethylthiobenzene, chlorotrichloromethylbenzenes, fluorotrichloromethylbenzenes, dichlorobromomethylbenzene, tribromomethylbenzene, chlorotrichloromethoxybenzenes, fluorotrichloromethoxybenzenes, p-trichloromethylphenyl chloroformate, p-trichloromethylphenyl isocyanate, pentachloroethoxybenzene and pentachloroethylthiobenzene.
Although the invention is not limited to these compounds, it has a particularly advantageous application in the chlorination, nitration and fluorination-exchange of perchloroalkyl, perchloroalkoxy and perchlorothioalkyl aromatic derivatives such as, for example, trichloromethylbenzenes, trichloromethoxybenzenes and trichloromethylthiobenzenes.
A particularly advantageous product from the industrial point of view is trichloromethylbenzene because the chlorinated nitrated product can be used to prepare orthotrifluoromethylaniline, which is used as a synthesis intermediate in the preparation of compounds having a plant-protecting activity.
The nitrated, chlorinated aromatic derivatives substituted by a fluoroalkyl group are used as synthesis intermediates in the pharmaceutical, plant protection and dyestuffs industries.
The present invention will be understood more easily with the aid of the examples which follow, which are given by way of indication but without in any way implying a limitation.
EXAMPLE 1
100 ml (5 mol) of anhydrous hydrofluoric acid and 19.6 g (0.1 mol) of trichloromethylbenzene are introduced into a 250 ml reactor equipped with a magnetic stirrer bar and cooled to about 0° C. The reaction mixture is left to degas (evolution of hydrochloric acid) for one hour, with stirring, and the reactor is then closed and brought to a pressure of 5 bar at 20° C. with chlorine gas. The whole is then heated at 100° C. for 10 hours, with stirring.
After cooling to about 0° C. again, the reactor is decompressed and 6.9 g (0.11 mol) of 100% nitric acid are introduced dropwise. The reaction is left to proceed for 4 hours 30 minutes at 20° C. The crude reaction mixture then obtained is introduced onto 120 g of crushed ice. The heterogeneous mixture resulting from this treatment is extracted 3 times with 100 cm3 of methylene chloride. After decantation, the organic phases are combined, washed with 2 times 100 cm3 of softened water and dried. Analyses carried out by gas chromatography (% area), IR spectrometry and mass spectrometry give the following result:
m-nitrotrifluoromethylbenzene: 12.3% p0 2-nitro-5-chlorotrifluoromethylbenzene: 63.7%
other nitrochlorotrifluoromethylbenzenes: 24%.
EXAMPLE 2
The procedure is identical to that of Example 1, the compounds and conditions being as follows:
Anhydrous hydrofluoric acid: 50 g (2.5 mol)
p-Trichloromethylphenyl isocyanate: 23.6 g (0.1 mol)
Chlorine pressure: 4 bar at 20° C.
Chlorination temperature: 20° C.
Chlorination time: 6 hours
100% HNO3 : 7 g (0.11 mol eq)
Nitration temperature: 20° C.
Nitration time: 4 hours
Analyses carried out by gas chromatography (% area), IR spectrometry and mass spectrometry give the following result:
carbamoyl fluorides of 4-trifluoromethyl-5-nitro-2-chloroaniline and 4-trifluoromethyl-6-nitro-2-chloroaniline: 73%
EXAMPLE 3
The procedure is identical to that of Example 1, the compounds and conditions being those given below and the treatment of the crude reaction mixture with ice being replaced with extraction of this crude mixture 2 times using 100 cm3 of carbon tetrachloride, these organic phases subsequently being treated in the normal way.
Anhydrous hydrofluoric acid: 100 g (5 mol)
Trichloromethoxybenzene: 21.2 g (0.1 mol)
Bromine: 16 g (0.1 mol)
Bromination temperature: 120° C.
Bromination time: 5 hours
66% HNO3 : 10.5 g (0.11 mol eq)
Nitration temperature: 50° C.
Nitration time: 4 hours
Analyses carried out by gas chromatography (% area), IR spectrometry and mass spectrometry give the following result:
p-nitrotrifluoromethoxybenzene: 7%
2-nitro-4-bromotrifluoromethoxybenzene and 3-nitro-4-bromotrifluoromethoxybenzene: 48%
EXAMPLE 4
The procedure is identical to that of Example 1, the compounds and conditions being those given below and the treatment of the crude reaction mixture with ice being replaced with distillation of this crude mixture up to a bottom temperature of 80° C., under atmospheric pressure, in order to remove as much of the hydrofluoric acid solvent as possible.
Anhydrous hydrofluoric acid: 100 g (5 mol)
p-Chlorotrichloromethylbenzene: 23 g (0.1 mol)
Chlorine pressure: 4 bar at 20° C.
Chlorination temperature: 100° C.
Chlorination time: 4 hours
100% HNO3 : 6.3 g (0.1 mol)
Nitration temperature: 30° C.
Nitration time: 3 hours
Analyses carried out by gas chromatography (% area), IR spectrometry and mass spectrometry give the following result:
3-nitro-4-chlorotrifluoromethylbenzene: 18%
2-nitro-4,5-dichlorotrifluoromethylbenzene and 3-nitro-4,5-dichlorotrifluoromethylbenzene: 56%

Claims (21)

What is claimed is:
1. A process for the halogenation, nitration and fluorination of an aromatic compound corresponding to the formula:
Ar--(ACX.sub.1 X.sub.2 Y).sub.n
in which:
Ar is a monocyclic or polycyclic aromatic radical which may contain at least one substituent other than said --(ACX1 X2 Y) group(s);
A is a covalent bond, oxygen or sulfur;
X1 and X2, which are identical or different, are a halogen;
Y is selected from the group consisting of hydrogen, a halogen and an optionally halogenated alkyl chain having 1 to 3 carbon atoms;
wherein the halogens corresponding to X1, X2 and Y are identical or different, but at least one of them is other than fluorine; and
n is equal to 1 or 2;
comprising the step of reacting, in the substantial absence of a halogenation or nitration catalyst other than liquid hydrofluoric acid, the aromatic compound simultaneously or successively with a halogen and a nitrating agent, in liquid hydrofluoric acid for a time sufficient to effect halogenation and nitration of the aromatic ring of said aromatic compound and to effect halogen-fluorine exchange on said --(ACX1 X2 Y) groups(s),
with the proviso that when A is oxygen or sulfur, the halogen-fluorine exchange occurs on the carbon atom located in the alpha-position to either the oxygen or sulfur atom.
2. The process of claim 1, wherein the halogenation occurs prior to the nitration.
3. The process of claim 3, wherein the halogen is chlorine or bromine.
4. The process of claim 1, wherein the halogen is chlorine or bromine.
5. The process of claim 1, wherein n is equal to 1.
6. The process of claim 7, wherein Ar corresponds to the formula: ##STR2## in which: R is selected from the group consisting of H, NO2, CN, NCO, COOH, CONH2, alkyl, alkoxy, phenyl and phenoxy.
7. The process of claim 1, wherein Ar corresponds to the formula: ##STR3## in which: R is selected from the group consisting of H, NO2, CN, NCO, COOH, CONH2, alkyl, alkoxy, phenyl and phenoxy.
8. The process of claim 1, wherein the hydrofluoric acid is anhydrous.
9. The process of claim 1, wherein the molar ratio of hydrofluoric acid to aromatic compound ranges from 10 to 100.
10. The process of claim 9, wherein the molar ratio of hydrofluoric acid to aromatic compound ranges from 25 to 50.
11. The process of claim 1, wherein the nitrating agent is selected from the group consisting of nitric acid, alkali metal salts of nitric acid and nitronium salts.
12. The process of claim 11, wherein the molar ratio of nitrating agent to aromatic compound is at least 0.8.
13. The process of claim 1, wherein the molar ratio of nitrating agent to aromatic compound is at least 0.8.
14. The process of claim 12, wherein the molar ratio of nitrating agent to aromatic compound ranges from 0.8 to 2.
15. The process of claim 1, wherein the halogenation, the nitration and the halogen/fluorine exchange are carried out at from -20° C. to 150° C.
16. The process of claim 1, wherein the aromatic compound is selected from the group consisting of perchloroalkyl, perchloroalkoxy and perchlorothioalkyl derivatives.
17. The process of claim 16, wherein the aromatic compound is selected from the group consisting of trichloromethylbenzenes, trichloromethoxybenzenes and trichloromethylthiobenzenes.
18. The process of claim 1, wherein Ar corresponds to the formula: ##STR4## in which: R is selected from the group consisting of hydrogen, halogen, NO2, CN, NCO, COOH, CONH2, alkyl, alkoxy, phenyl and phenoxy.
19. The process of claim 18, wherein R is a halogen selected from the group consisting of chlorine and fluorine.
20. The process of claim 1, wherein said reacting step is accomplished within one reaction enclosure without intermediate treatment.
21. The process of claim 1, wherein Ar is a monocyclic or polycyclic aromatic radical which may contain at least one substituent other than --(ACX1 X2 Y)n, with the proviso that said substituent is selected from the group consisting of halogen, NO2, CN, NCO, COOH, CONH2, phenyl, phenoxy, and haloformate.
US07/134,539 1983-06-23 1987-12-15 Process for the halogenation, nitration and fluorination of aromatic derivatives Expired - Lifetime US4876376A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8310371A FR2547815B1 (en) 1983-06-23 1983-06-23 HALOGENATION-NITRATION-FLUORINATION PROCESS FOR AROMATIC DERIVATIVES
FR8310371 1983-06-23

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US06874831 Continuation 1986-06-16

Publications (1)

Publication Number Publication Date
US4876376A true US4876376A (en) 1989-10-24

Family

ID=9290084

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/134,539 Expired - Lifetime US4876376A (en) 1983-06-23 1987-12-15 Process for the halogenation, nitration and fluorination of aromatic derivatives

Country Status (7)

Country Link
US (1) US4876376A (en)
EP (1) EP0130875B1 (en)
JP (1) JPS6051126A (en)
AT (1) ATE28445T1 (en)
CA (1) CA1219281A (en)
DE (1) DE3464904D1 (en)
FR (1) FR2547815B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326633A (en) * 1986-03-24 1994-07-05 Ensci, Inc. Coated substrates
US5167820A (en) * 1986-03-24 1992-12-01 Ensci, Inc. Porous membranes and methods for using same
US5633081A (en) * 1986-03-24 1997-05-27 Ensci Inc. Coated porous substrates
US5603983A (en) * 1986-03-24 1997-02-18 Ensci Inc Process for the production of conductive and magnetic transitin metal oxide coated three dimensional substrates
US5264012A (en) * 1986-03-24 1993-11-23 Ensci Inc. Gas separation process
RU1770319C (en) * 1988-12-30 1992-10-23 Московское научно-производственное объединение "НИОПИК" Method of 2-bromine-4,6-dinitrochlorobenzene synthesis

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB955898A (en) * 1961-02-20 1964-04-22 Bayer Ag Process for the production of carbamic acid fluorides or isocyanates substituted by fluorine on aliphatic carbon atoms
US3326983A (en) * 1965-12-06 1967-06-20 Universal Oil Prod Co Preparation of nitrated aromatic compounds by nitrating in the presence of hydrogen fluoride and an alkali metal fluoride
GB1206389A (en) * 1968-06-10 1970-09-23 Bayer Ag Process for the preparation of nitrobenzal fluorides and use as herbicides of reaction products of said fluorides
US3966832A (en) * 1973-11-10 1976-06-29 Hoechst Aktiengesellschaft Continuous process for preparing derivatives of benzene with fluorinated side chains from the corresponding chlorine compounds
US4061688A (en) * 1976-12-06 1977-12-06 Hooker Chemicals & Plastics Corporation Liquid phase fluorination process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB955898A (en) * 1961-02-20 1964-04-22 Bayer Ag Process for the production of carbamic acid fluorides or isocyanates substituted by fluorine on aliphatic carbon atoms
US3326983A (en) * 1965-12-06 1967-06-20 Universal Oil Prod Co Preparation of nitrated aromatic compounds by nitrating in the presence of hydrogen fluoride and an alkali metal fluoride
GB1206389A (en) * 1968-06-10 1970-09-23 Bayer Ag Process for the preparation of nitrobenzal fluorides and use as herbicides of reaction products of said fluorides
US3966832A (en) * 1973-11-10 1976-06-29 Hoechst Aktiengesellschaft Continuous process for preparing derivatives of benzene with fluorinated side chains from the corresponding chlorine compounds
US4061688A (en) * 1976-12-06 1977-12-06 Hooker Chemicals & Plastics Corporation Liquid phase fluorination process

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
Clarke, "Modern Organic Chemistry," pp. 433-434, (1964).
Clarke, Modern Organic Chemistry, pp. 433 434, (1964). *
Houben Weyl, Methoden der Organischen Chemie, vol. V/3, pp. 678 681, (1962). *
Houben-Weyl, "Methoden der Organischen Chemie," vol. V/3, pp. 678-681, (1962).
Kirk Othmer, Encyclopedia of Chemical Technology, vol. 21, 2nd Ed., p. 679. *
Kirk-Othmer, "Encyclopedia of Chemical Technology," vol. 21, 2nd Ed., p. 679.
Roberts, Chem. Abstr., vol. 18, p. 378, (1924). *
Weygand/Hilgetag, "Preparative Organic Chemistry," p. 150, (1972).
Weygand/Hilgetag, Preparative Organic Chemistry, p. 150, (1972). *

Also Published As

Publication number Publication date
FR2547815B1 (en) 1985-10-31
JPS6121925B2 (en) 1986-05-29
JPS6051126A (en) 1985-03-22
DE3464904D1 (en) 1987-08-27
EP0130875A1 (en) 1985-01-09
EP0130875B1 (en) 1987-07-22
ATE28445T1 (en) 1987-08-15
FR2547815A1 (en) 1984-12-28
CA1219281A (en) 1987-03-17

Similar Documents

Publication Publication Date Title
EP0034402B1 (en) Method of preparing fluorine-substituted diphenyl ether derivatives and fluorine-substituted halogeno benzene derivatives for use therein
US4990661A (en) Process for the preparation of benzoic acid derivatives
US4582948A (en) 3-chloro-4-fluoro-5-nitrobenzotrifluoride
US4876376A (en) Process for the halogenation, nitration and fluorination of aromatic derivatives
US4079089A (en) Fluorination of trichloromethyl groups
US4470930A (en) Preparation of nuclear chlorinated aromatic compounds
US4575571A (en) Process for the simultaneous halogenation and fluorination of aromatic derivatives
EP0077853B1 (en) Novel trifluoromethyl benzal chlorides and process for the preparation thereof
US4093669A (en) Method for preparing trichloromethyl-trifluoromethyl-benzenes
JPH0533213B2 (en)
US4568781A (en) Preparation of fluorine-substituted aromatic compounds
US4051168A (en) Fluorination process
US4898996A (en) Process for producing 3-chloro-4-fluoronitrobenzene
EP0163230B1 (en) Process for producing aromatic chlorine compounds
EP0355719B1 (en) Process for producing chlorofluorobenzenes
US5847236A (en) Process for the preparation of 2-chloro-4-methylphenol
US4446078A (en) Process for the preparation of α,α-difluoroalkyl-thiophenyl ketones
US4704483A (en) 3,4-difluoro-5-nitrobenzotrifluoride and preparation of fluoro-nitro-benzotrifluorides
US5349098A (en) Process for producing chlorofluorobenzenes
JPS6334858B2 (en)
US4647700A (en) Process for the preparation of meta-chloroanilines
US4465842A (en) Preparation of N-benzylimides
US6255542B1 (en) Process for preparing 2-chloro-4-nitroalkylbenzene
JP2001151736A (en) Method for producing trifluoromethylaniline
JPS6350339B2 (en)

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12