US4736049A - Addition reaction method - Google Patents
Addition reaction method Download PDFInfo
- Publication number
- US4736049A US4736049A US07/101,050 US10105087A US4736049A US 4736049 A US4736049 A US 4736049A US 10105087 A US10105087 A US 10105087A US 4736049 A US4736049 A US 4736049A
- Authority
- US
- United States
- Prior art keywords
- silicon
- compound
- molecule
- process according
- double bond
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000007259 addition reaction Methods 0.000 title claims description 21
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 53
- 239000003054 catalyst Substances 0.000 claims abstract description 29
- -1 amide compound Chemical class 0.000 claims abstract description 27
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 25
- 150000003377 silicon compounds Chemical class 0.000 claims abstract description 24
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 23
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 17
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 12
- 239000010703 silicon Substances 0.000 claims abstract description 12
- 239000002253 acid Substances 0.000 claims description 17
- OSDWBNJEKMUWAV-UHFFFAOYSA-N Allyl chloride Chemical group ClCC=C OSDWBNJEKMUWAV-UHFFFAOYSA-N 0.000 claims description 10
- 150000004687 hexahydrates Chemical class 0.000 claims description 9
- 150000002430 hydrocarbons Chemical class 0.000 claims description 9
- 239000002904 solvent Substances 0.000 claims description 8
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 7
- 239000006227 byproduct Substances 0.000 claims description 7
- KTQYJQFGNYHXMB-UHFFFAOYSA-N dichloro(methyl)silicon Chemical group C[Si](Cl)Cl KTQYJQFGNYHXMB-UHFFFAOYSA-N 0.000 claims description 6
- 239000005048 methyldichlorosilane Substances 0.000 claims description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 5
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical group Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 claims description 5
- 239000005052 trichlorosilane Substances 0.000 claims description 5
- 125000003118 aryl group Chemical group 0.000 claims description 4
- 229930195733 hydrocarbon Natural products 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229920001296 polysiloxane Polymers 0.000 claims description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 125000004423 acyloxy group Chemical group 0.000 claims description 3
- 125000003342 alkenyl group Chemical group 0.000 claims description 3
- 125000003545 alkoxy group Chemical group 0.000 claims description 3
- 125000000217 alkyl group Chemical group 0.000 claims description 3
- 150000002170 ethers Chemical class 0.000 claims description 3
- 125000005843 halogen group Chemical group 0.000 claims description 3
- 125000000547 substituted alkyl group Chemical group 0.000 claims description 3
- 125000003107 substituted aryl group Chemical group 0.000 claims description 3
- 229930195735 unsaturated hydrocarbon Natural products 0.000 claims description 3
- 150000001336 alkenes Chemical class 0.000 claims description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims description 2
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- 150000004820 halides Chemical class 0.000 claims description 2
- 150000002576 ketones Chemical class 0.000 claims description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 2
- 150000001282 organosilanes Chemical class 0.000 claims description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 claims 4
- 230000001476 alcoholic effect Effects 0.000 claims 3
- 239000007787 solid Substances 0.000 claims 1
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 claims 1
- 150000001408 amides Chemical class 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 9
- 239000007795 chemical reaction product Substances 0.000 description 4
- 238000004817 gas chromatography Methods 0.000 description 4
- OOXSLJBUMMHDKW-UHFFFAOYSA-N trichloro(3-chloropropyl)silane Chemical compound ClCCC[Si](Cl)(Cl)Cl OOXSLJBUMMHDKW-UHFFFAOYSA-N 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- UCJHMXXKIKBHQP-UHFFFAOYSA-N dichloro-(3-chloropropyl)-methylsilane Chemical compound C[Si](Cl)(Cl)CCCCl UCJHMXXKIKBHQP-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- PMDCZENCAXMSOU-UHFFFAOYSA-N N-ethylacetamide Chemical compound CCNC(C)=O PMDCZENCAXMSOU-UHFFFAOYSA-N 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Chemical compound BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 2
- PXVXNKYHLDVPLF-UHFFFAOYSA-N dichloro(1-phenylpropan-2-yl)silane Chemical compound CC(Cc1ccccc1)[SiH](Cl)Cl PXVXNKYHLDVPLF-UHFFFAOYSA-N 0.000 description 2
- CHRJASBZZXDMBW-UHFFFAOYSA-N dichloro(2-phenylpropyl)silane Chemical compound Cl[SiH](Cl)CC(C)C1=CC=CC=C1 CHRJASBZZXDMBW-UHFFFAOYSA-N 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 150000004756 silanes Chemical class 0.000 description 2
- 125000003944 tolyl group Chemical group 0.000 description 2
- AQRLNPVMDITEJU-UHFFFAOYSA-N triethylsilane Chemical compound CC[SiH](CC)CC AQRLNPVMDITEJU-UHFFFAOYSA-N 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 1
- WZJUBBHODHNQPW-UHFFFAOYSA-N 2,4,6,8-tetramethyl-1,3,5,7,2$l^{3},4$l^{3},6$l^{3},8$l^{3}-tetraoxatetrasilocane Chemical compound C[Si]1O[Si](C)O[Si](C)O[Si](C)O1 WZJUBBHODHNQPW-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N N-methylacetamide Chemical compound CNC(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 1
- BHELZAPQIKSEDF-UHFFFAOYSA-N allyl bromide Chemical compound BrCC=C BHELZAPQIKSEDF-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- QABCGOSYZHCPGN-UHFFFAOYSA-N chloro(dimethyl)silicon Chemical compound C[Si](C)Cl QABCGOSYZHCPGN-UHFFFAOYSA-N 0.000 description 1
- AZFVLHQDIIJLJG-UHFFFAOYSA-N chloromethylsilane Chemical compound [SiH3]CCl AZFVLHQDIIJLJG-UHFFFAOYSA-N 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- CFBGXYDUODCMNS-UHFFFAOYSA-N cyclobutene Chemical compound C1CC=C1 CFBGXYDUODCMNS-UHFFFAOYSA-N 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- NHOGGUYTANYCGQ-UHFFFAOYSA-N ethenoxybenzene Chemical compound C=COC1=CC=CC=C1 NHOGGUYTANYCGQ-UHFFFAOYSA-N 0.000 description 1
- XVSBWQYHSLNOCU-UHFFFAOYSA-N ethenyl(dimethyl)silicon Chemical compound C[Si](C)C=C XVSBWQYHSLNOCU-UHFFFAOYSA-N 0.000 description 1
- 229940052303 ethers for general anesthesia Drugs 0.000 description 1
- QGBMSFLTRRZTGI-UHFFFAOYSA-N ethyl(dimethyl)silane Chemical compound CC[SiH](C)C QGBMSFLTRRZTGI-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- VHRYZQNGTZXDNX-UHFFFAOYSA-N methacryloyl chloride Chemical compound CC(=C)C(Cl)=O VHRYZQNGTZXDNX-UHFFFAOYSA-N 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- UIUXUFNYAYAMOE-UHFFFAOYSA-N methylsilane Chemical compound [SiH3]C UIUXUFNYAYAMOE-UHFFFAOYSA-N 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- UZJLYRRDVFWSGA-UHFFFAOYSA-N n-benzylacetamide Chemical compound CC(=O)NCC1=CC=CC=C1 UZJLYRRDVFWSGA-UHFFFAOYSA-N 0.000 description 1
- 150000003961 organosilicon compounds Chemical group 0.000 description 1
- PARWUHTVGZSQPD-UHFFFAOYSA-N phenylsilane Chemical compound [SiH3]C1=CC=CC=C1 PARWUHTVGZSQPD-UHFFFAOYSA-N 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- QLNJFJADRCOGBJ-UHFFFAOYSA-N propionamide Chemical compound CCC(N)=O QLNJFJADRCOGBJ-UHFFFAOYSA-N 0.000 description 1
- 229940080818 propionamide Drugs 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- MNRXELOPGLMRMR-UHFFFAOYSA-N trichloro(1-chloropropan-2-yl)silane Chemical compound ClCC(C)[Si](Cl)(Cl)Cl MNRXELOPGLMRMR-UHFFFAOYSA-N 0.000 description 1
- 229960000834 vinyl ether Drugs 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C—Si linkages
- C07F7/0801—General processes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C—Si linkages
- C07F7/12—Organo silicon halides
- C07F7/14—Preparation thereof from optionally substituted halogenated silanes and hydrocarbons hydrosilylation reactions
Definitions
- the present invention relates to a method for conducting the addition reaction between silicon compounds having hydrogen directly bonded to organosilicon and organic compounds having aliphatic double bonds.
- the object of the present invention is to eliminate this problem by providing a method for conducting the addition reaction between the silicon compound and an aliphatic double bond-containing organic compound in which little by-product is generated.
- the aforesaid object can be accomplished by means of an addition-reaction method which has the characteristic that a silicon compound having at least one hydrogen atom directly bonded to silicon in each molecule is addition reacted with an organic compound having at least 1 aliphatic double bond in each molecule in the presence of a platinum catalyst and an amide compound with the formula,
- the invention because the addition reaction between a silicon compound having at least 1 silicon-bonded hydrogen atom in each molecule and an organic compound having at least 1 aliphatic double bond in each molecule is carried out in the presence of platinum catalyst and an amide compound, the invention is characterized by the generation of only small quantities of by-product while having a high catalytic efficiency, and thus has high industrial utility.
- a process for the addition reaction of a hydrogen-containing silicon compound with an organic compound having at least one double bond under conditions that will be delineated herein is a process for minimizing the generation of by-products from the addition reaction of a hydrogen-containing silicon compound with an organic compound having at least one double bond, said process comprising reacting a silicon compound having at least one hydrogen atom directly bonded to silicon in each molecule with an organic compound having at least 1 aliphatic double bond in each molecule in the presence of a platinum catalyst and an amide compound with the formula,
- R is a monovalent hydrocarbon group; and each R 1 and each R 2 are independently selected and are a hydrogen atom or a monovalent hydrocarbon group.
- any silicon compound having at least one hydrogen atom directly bonded to silicon in each molecule is operative as the silicon compound in the present invention.
- Typical examples are monoorganosilanes, diorganosilanes, and triorganosilanes with the formulae,
- R 3 is a monovalent hydrocarbon group: each X is independently selected and is selected from a group consisting of halogen atoms, alkoxy groups, and acyloxy groups; a has a value of 1, 2, or 3; c has a value of 0, 1, 2 or 3; d has a value of 1 or 2; (c+d) equals 1, 2, or 3; and f each has a value greater than 0 but less than 3; and (e+f) has a value greater than 1.8 but less than 2.2.
- R 3 in the above formulae is a monovalent hydrocarbon group, and is exemplified by alkyl groups such as methyl, ethyl, propyl, and octyl; alkenyl groups such as vinyl, allyl, and propenyl; substituted alkyl groups such as 2-phenylethyl, 2-phenylpropyl, and 3,3,3-trifluoropropyl; aryl groups such as phenyl and tolyl; and substituted aryl groups.
- alkyl groups such as methyl, ethyl, propyl, and octyl
- alkenyl groups such as vinyl, allyl, and propenyl
- substituted alkyl groups such as 2-phenylethyl, 2-phenylpropyl, and 3,3,3-trifluoropropyl
- aryl groups such as phenyl and tolyl
- substituted aryl groups such as phenyl and tolyl
- X is a halogen atom, for example, the chlorine, bromine, or iodine atom; or is an alkoxy group such as methoxy, ethoxy, propoxy, or methoxyethoxy; or is an acyloxy group such as acetoxy.
- triethylsilane dimethylethylsilane, dimethylvinylsilane, methylsilane, and phenylsilane.
- trichlorosilane methyldichlorosilane, dimethylchlorosilane, and chloromethylsilane.
- organic compounds having at least 1 aliphatic double bond in each molecule which are operative in the present invention are olefinic hydrocarbons such as ethylene, propylene, 1-butene, isobutene, and 1-pentene; diene hydrocarbons such as butadiene and pentadiene; aromatic unsaturated hydrocarbons such as styrene; cyclic unsaturated hydrocarbons such as cyclohexene and cyclobutene; unsaturated ethers such as methyl vinyl ether, divinyl ether, and phenyl vinyl ether; unsaturated halides such as allyl chloride, methacryl chloride, and allyl bromide; and vinyl group-containing organopolysiloxanes such as dimethylvinylsilyl-terminated dimethylpolysiloxanes.
- olefinic hydrocarbons such as ethylene, propylene, 1-butene, isobutene, and 1-pentene
- the platinum catalyst operative in the present invention is concretely exemplified by finely divided platinum, finely divided platinum adsorbed on a carbon powder support, chloroplatinic acid, alcohol-modified chloroplatinic acid, olefin complexes of chloroplatinic acid, chloroplatinic acid-vinylsiloxane coordination compounds, and platinum black.
- R in the above formula is a monovalent hydrocarbon group and is exemplified by alkyl groups such as methyl, ethyl, propyl, and octyl; alkenyl groups such as vinyl, allyl, and propenyl; substituted alkyl groups such as 2-phenylethyl, 2-phenylpropyl, and 3,3,3-trifluoro propyl; aryl groups such as phenyl and tolyl; and substituted aryl groups.
- R 1 and R 2 are hydrogen atoms or monovalent hydrocarbon groups, and said monovalent hydrocarbon groups are exemplified as above.
- Said amide compound is specifically exemplified by N-methylacetamide. acetamide, propionamide, N-ethylacetamide, N,N-dimethylacetamide, and N-benzylacetamide.
- the method of the present invention consists of the addition reaction of a silicon compound as above with an aliphatic double bond-containing organic compound as above in the presence of a platinum catalyst and amide compound
- the platinum catalyst and amide compound may be mixed in advance to afford a catalyst composition, or they may be added separately to the addition reaction.
- No specific restriction obtains on the use quantities of the silicon compound or aliphatic double bond-containing organic compound, but it is preferred that the molar ratio of aliphatic double bond-containing organic compound to silicon compound be 0.3 to 3.0.
- the use quantity of platinum catalyst specifically restricted, although it preferably falls within the range of 10 -6 to 10 -7 moles per 1 mole silicon-bonded hydrogen atoms.
- the amide compound is preferably used in the range of 1 to 10 moles per 1 mole platinum present in said platinum catalyst.
- the reaction temperature will vary with the type of silicon compound, aliphatic double bond-containing organic compound, platinum catalyst, and amide compound, but is generally preferably in the range of 20° C. to 200° C.
- the atmosphere in the addition-reaction system is also not specifically restricted, and may be air or an inert gas, at ambient pressure or at elevated pressures.
- a solvent such as an aromatic hydrocarbon solvent (benzene, toluene, xylene, etc.), a ketone solvent, chlorinated hydrocarbon solvent, organosilane, organopolysiloxane, etc.
- a catalyst solution was prepared by thoroughly mixing 50 g of a 2 weight percent (wt %) isopropanolic solution of chloroplatinic acid hexahydrate with 0.17 g N,N-dimethylacetamide. 40 g of 3-chloropropylmethyldichlorosilane as solvent and 0.07 g of the previously prepared catalyst solution were placed in a 300 ml four-neck flask equipped with condenser, stirrer, thermometer, and addition funnel. The internal temperature of the flask was brought to 60° C., and a mixture of 41.2 g allyl chloride and 62.0 g methyldichlorosilane was gradually dripped in. The evolution of heat due to the addition reaction between the allyl chloride and methyldichlorosilane was observed during addition.
- the composition of the reaction product was analyzed by gas chromatography, and the results showed that 3-chloropropylmethyldichlorosilane had been produced in a yield of 79 mole percent (mole %) based on the allyl chloride added.
- Example 2 An addition reaction was conducted exactly as described in Example 1 with the exception that 0.07 g of a 2 wt % isopropanolic chloroplatinic acid hexahydrate solution was used as the catalyst solution. The result was the production of 3-chloropropylmethyldichlorosilane in a yield of 59.4 mol %. The temperature gradually fell off during addition, and external heating was necessary in order to maintain the temperature at the specified value.
- a catalyst solution was prepared by thoroughly mixing 50 g of a 2 wt % isopropanolic chloroplatinic acid hexahydrate solution with 0.17 g N,N-dimethylacetamide. 40 g 3-chloropropyltrichlorosilane as solvent and 0.07 g of previously prepared catalyst solution were placed in a 300 ml four-neck flask equipped with condenser, stirrer, thermometer, and addition funnel. The internal temperature of the flask was brought to 60° C., and a mixture of 38.7 g allyl chloride and 68.5 g trichlorosilane was gradually dripped in. The evolution of heat due to the addition reaction between the allyl chloride and trichlorosilane was observed during addition.
- a catalyst solution was prepared by thoroughly mixing 50 g of a 2 wt % isopropanolic chloroplatinic acid hexahydrate solution with 0.17 g N,N-dimethylacetamide. 105.6 g styrene and 0.16 g of previously prepared catalyst solution were placed in a 500 ml four-neck flask equipped with condenser, stirrer, thermometer, and addition funnel. The internal temperature of the flask was brought to 90° C., and 127.3 g methyldichlorosilane was gradually dripped in to conduct the addition reaction.
- composition of the reaction product was analyzed by gas chromatography, a composition of 90% beta-methyldichlorosilylethylbenzene and 10% alpha-methyldichlorosilylethylbenzene was found.
- composition of the reaction product was analyzed by gas chromatography, and a composition of 60% beta-methyldichlorosilylethylbenzene and 40% alpha-methyldichlorosilylethylbenzene was found.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
A process having the characteristic that a silicon compound having at least one hydrogen atom directly bonded to silicon in each molecule is addition reacted with an organic compound having at least one aliphatic double bond in each molecule in the presence of a platinum catalyst and an amide compound with the formula, RCONR1 R2. The presence of the amide maximizes the yield of the desired beta-adduct and minimizes the yield of the alpha-adduct.
Description
The present invention relates to a method for conducting the addition reaction between silicon compounds having hydrogen directly bonded to organosilicon and organic compounds having aliphatic double bonds.
With regard to the reactions between SiH-containing silicon compounds and organic compounds having aliphatic double bonds, the addition reaction in the presence of a platinum catalyst, such as chloroplatinic acid, is known, for example, as described in Journal of the American Chemical Society, page 3601 (1960). However, the aforesaid addition-reaction method over chloroplatinic acid suffers from the problem of isomerization due to migration of the aliphatic double bond and consequently from the production of substantial quantities of the beta-adduct by-product in addition to the alpha-adduct target. For example, in the addition reaction between trichlorosilane and allyl chloride, 2-trichlorosilylchloropropane by-product is produced in addition to the 3-chloropropyltrichlorosilane target.
The object of the present invention is to eliminate this problem by providing a method for conducting the addition reaction between the silicon compound and an aliphatic double bond-containing organic compound in which little by-product is generated. The aforesaid object can be accomplished by means of an addition-reaction method which has the characteristic that a silicon compound having at least one hydrogen atom directly bonded to silicon in each molecule is addition reacted with an organic compound having at least 1 aliphatic double bond in each molecule in the presence of a platinum catalyst and an amide compound with the formula,
RCONR.sup.1 R.sup.2.
In the present invention, because the addition reaction between a silicon compound having at least 1 silicon-bonded hydrogen atom in each molecule and an organic compound having at least 1 aliphatic double bond in each molecule is carried out in the presence of platinum catalyst and an amide compound, the invention is characterized by the generation of only small quantities of by-product while having a high catalytic efficiency, and thus has high industrial utility.
In accordance with the instant invention, there is provided a process for the addition reaction of a hydrogen-containing silicon compound with an organic compound having at least one double bond under conditions that will be delineated herein. What is described therefore, is a process for minimizing the generation of by-products from the addition reaction of a hydrogen-containing silicon compound with an organic compound having at least one double bond, said process comprising reacting a silicon compound having at least one hydrogen atom directly bonded to silicon in each molecule with an organic compound having at least 1 aliphatic double bond in each molecule in the presence of a platinum catalyst and an amide compound with the formula,
RCONR.sup.1 R.sup.2,
wherein
R is a monovalent hydrocarbon group; and each R1 and each R2 are independently selected and are a hydrogen atom or a monovalent hydrocarbon group.
In explanation of the preceding, any silicon compound having at least one hydrogen atom directly bonded to silicon in each molecule is operative as the silicon compound in the present invention. Typical examples are monoorganosilanes, diorganosilanes, and triorganosilanes with the formulae,
R.sup.3.sub.a SiH.sub.4-a,
or
R.sup.3.sub.c SiH.sub.d X.sub.4-c-d,
or
R.sup.3.sub.e H.sub.f SiO.sub.(4-e-f)/2,
wherein
R3 is a monovalent hydrocarbon group: each X is independently selected and is selected from a group consisting of halogen atoms, alkoxy groups, and acyloxy groups; a has a value of 1, 2, or 3; c has a value of 0, 1, 2 or 3; d has a value of 1 or 2; (c+d) equals 1, 2, or 3; and f each has a value greater than 0 but less than 3; and (e+f) has a value greater than 1.8 but less than 2.2.
R3 in the above formulae is a monovalent hydrocarbon group, and is exemplified by alkyl groups such as methyl, ethyl, propyl, and octyl; alkenyl groups such as vinyl, allyl, and propenyl; substituted alkyl groups such as 2-phenylethyl, 2-phenylpropyl, and 3,3,3-trifluoropropyl; aryl groups such as phenyl and tolyl; and substituted aryl groups. X is a halogen atom, for example, the chlorine, bromine, or iodine atom; or is an alkoxy group such as methoxy, ethoxy, propoxy, or methoxyethoxy; or is an acyloxy group such as acetoxy.
Specific examples of the aforementioned silanes having the formula
R.sup.3.sub.a SiH.sub.4-a
are triethylsilane, dimethylethylsilane, dimethylvinylsilane, methylsilane, and phenylsilane.
Specific examples of the aforementioned silanes with the formula
R.sup.3.sub.c SiH.sub.d X.sub.4-c-d
are trichlorosilane, methyldichlorosilane, dimethylchlorosilane, and chloromethylsilane.
Specific examples of the aforementioned organohydrogen siloxanes having the formula
R.sup.3.sub.e (H).sub.f SiO.sub.(4-e-f)/ 2
are 1,3,5,7-tetramethylcyclotetrasiloxane, trimethylsilyl-terminated methylhydrogenpolysiloxanes, and trimethylsilyl-terminated methylhydrogensiloxane-dimethylsiloxane copolymers.
Specific examples of organic compounds having at least 1 aliphatic double bond in each molecule which are operative in the present invention are olefinic hydrocarbons such as ethylene, propylene, 1-butene, isobutene, and 1-pentene; diene hydrocarbons such as butadiene and pentadiene; aromatic unsaturated hydrocarbons such as styrene; cyclic unsaturated hydrocarbons such as cyclohexene and cyclobutene; unsaturated ethers such as methyl vinyl ether, divinyl ether, and phenyl vinyl ether; unsaturated halides such as allyl chloride, methacryl chloride, and allyl bromide; and vinyl group-containing organopolysiloxanes such as dimethylvinylsilyl-terminated dimethylpolysiloxanes.
The platinum catalyst operative in the present invention is concretely exemplified by finely divided platinum, finely divided platinum adsorbed on a carbon powder support, chloroplatinic acid, alcohol-modified chloroplatinic acid, olefin complexes of chloroplatinic acid, chloroplatinic acid-vinylsiloxane coordination compounds, and platinum black.
The amide compounds with formula
RCONR.sup.1 R.sup.2
which are used in the present invention function to increase the catalytic effect in the addition reaction under platinum catalysis while suppressing the appearance of by-product. R in the above formula is a monovalent hydrocarbon group and is exemplified by alkyl groups such as methyl, ethyl, propyl, and octyl; alkenyl groups such as vinyl, allyl, and propenyl; substituted alkyl groups such as 2-phenylethyl, 2-phenylpropyl, and 3,3,3-trifluoro propyl; aryl groups such as phenyl and tolyl; and substituted aryl groups. R1 and R2 are hydrogen atoms or monovalent hydrocarbon groups, and said monovalent hydrocarbon groups are exemplified as above.
Said amide compound is specifically exemplified by N-methylacetamide. acetamide, propionamide, N-ethylacetamide, N,N-dimethylacetamide, and N-benzylacetamide.
While the method of the present invention consists of the addition reaction of a silicon compound as above with an aliphatic double bond-containing organic compound as above in the presence of a platinum catalyst and amide compound, the platinum catalyst and amide compound may be mixed in advance to afford a catalyst composition, or they may be added separately to the addition reaction. No specific restriction obtains on the use quantities of the silicon compound or aliphatic double bond-containing organic compound, but it is preferred that the molar ratio of aliphatic double bond-containing organic compound to silicon compound be 0.3 to 3.0. Nor is the use quantity of platinum catalyst specifically restricted, although it preferably falls within the range of 10-6 to 10-7 moles per 1 mole silicon-bonded hydrogen atoms. The amide compound is preferably used in the range of 1 to 10 moles per 1 mole platinum present in said platinum catalyst.
The reaction temperature will vary with the type of silicon compound, aliphatic double bond-containing organic compound, platinum catalyst, and amide compound, but is generally preferably in the range of 20° C. to 200° C.
The atmosphere in the addition-reaction system is also not specifically restricted, and may be air or an inert gas, at ambient pressure or at elevated pressures. The simultaneous use is also permissible of a solvent such as an aromatic hydrocarbon solvent (benzene, toluene, xylene, etc.), a ketone solvent, chlorinated hydrocarbon solvent, organosilane, organopolysiloxane, etc.
So that those skilled in the art may better appreciate or understand the instant invention, the following examples are presented. These examples are meant to be illustrative and are not to be construed as limiting the claims delineated herein.
A catalyst solution was prepared by thoroughly mixing 50 g of a 2 weight percent (wt %) isopropanolic solution of chloroplatinic acid hexahydrate with 0.17 g N,N-dimethylacetamide. 40 g of 3-chloropropylmethyldichlorosilane as solvent and 0.07 g of the previously prepared catalyst solution were placed in a 300 ml four-neck flask equipped with condenser, stirrer, thermometer, and addition funnel. The internal temperature of the flask was brought to 60° C., and a mixture of 41.2 g allyl chloride and 62.0 g methyldichlorosilane was gradually dripped in. The evolution of heat due to the addition reaction between the allyl chloride and methyldichlorosilane was observed during addition.
The composition of the reaction product was analyzed by gas chromatography, and the results showed that 3-chloropropylmethyldichlorosilane had been produced in a yield of 79 mole percent (mole %) based on the allyl chloride added.
An addition reaction was conducted exactly as described in Example 1 with the exception that 0.07 g of a 2 wt % isopropanolic chloroplatinic acid hexahydrate solution was used as the catalyst solution. The result was the production of 3-chloropropylmethyldichlorosilane in a yield of 59.4 mol %. The temperature gradually fell off during addition, and external heating was necessary in order to maintain the temperature at the specified value.
A catalyst solution was prepared by thoroughly mixing 50 g of a 2 wt % isopropanolic chloroplatinic acid hexahydrate solution with 0.17 g N,N-dimethylacetamide. 40 g 3-chloropropyltrichlorosilane as solvent and 0.07 g of previously prepared catalyst solution were placed in a 300 ml four-neck flask equipped with condenser, stirrer, thermometer, and addition funnel. The internal temperature of the flask was brought to 60° C., and a mixture of 38.7 g allyl chloride and 68.5 g trichlorosilane was gradually dripped in. The evolution of heat due to the addition reaction between the allyl chloride and trichlorosilane was observed during addition.
When the composition of the reaction product was analyzed by gas chromatography, it was found that 3-chloropropyltrichlorosilane had been produced in a yield of 84.7 mol % based on the allyl chloride taken.
An addition reaction was conducted exactly as described in Example 2 with the exception that 0.07 g of 2 wt % isopropanolic chloroplatinic acid hexahydrate was used as the catalyst solution.
The result was the production of 3-chloropropyltrichlorosilane in a yield of 78.3 mol %. The temperature gradually fell off during addition, and external heating was necessary in order to maintain the temperature at the specified value.
A catalyst solution was prepared by thoroughly mixing 50 g of a 2 wt % isopropanolic chloroplatinic acid hexahydrate solution with 0.17 g N,N-dimethylacetamide. 105.6 g styrene and 0.16 g of previously prepared catalyst solution were placed in a 500 ml four-neck flask equipped with condenser, stirrer, thermometer, and addition funnel. The internal temperature of the flask was brought to 90° C., and 127.3 g methyldichlorosilane was gradually dripped in to conduct the addition reaction.
When the composition of the reaction product was analyzed by gas chromatography, a composition of 90% beta-methyldichlorosilylethylbenzene and 10% alpha-methyldichlorosilylethylbenzene was found.
An addition reaction was conducted exactly as described in Example 3 with the exception that 0.16 g of a 2 wt % isopropanolic chloroplatinic acid hexahydrate solution was used as the catalyst solution.
The composition of the reaction product was analyzed by gas chromatography, and a composition of 60% beta-methyldichlorosilylethylbenzene and 40% alpha-methyldichlorosilylethylbenzene was found.
Claims (13)
1. A process for minimizing the generation of by-products from the addition reaction of a hydrogen-containing silicon compound with an organic compound having at least one double bond, said process comprising reacting a silicon compound having at least one hydrogen atom directly bonded to silicon in each molecule with an organic compound having at least 1 aliphatic double bond in each molecule in the presence of a platinum catalyst and an amide compound with the formula,
RCONR.sup.1 R.sup.2,
wherein
R is a monovalent hydrocarbon group; and each R1 and each R2 are independently selected and are a hydrogen atom or a monovalent hydrocarbon group.
2. A process according to claim 1, wherein the silicon compound having at least one hydrogen atom directly bonded to silicon has the formula,
R.sup.3.sub.a SiH.sub.4-a,
or
R.sup.3.sub.c SiH.sub.d X.sub.4-c-d,
or
R.sup.3.sub.e H.sub.f SiO.sub.(4-e-f)/ 2,
wherein
R3 is a monovalent hydrocarbon group; each X is independently selected and is selected from a group consisting of halogen atoms, alkoxy groups, and acyloxy groups; a has a value of 1, 2, or 3); c has a value of 0, 1, 2 or 3; d has a value of 1 or 2; (c+d) must equal 1, 2, or 3); e and f each has a value greater than 0 but less than 3; and (e+f) has a value greater than 1.8 but less than 2.2.
3. A process according to claim 2, wherein R3 is monovalent hydrocarbon group and is selected from a group consisting of alkyl groups, alkenyl groups, substituted alkyl groups, and substituted aryl groups.
4. A process according to claim 1, wherein the organic compound having at least one aliphatic double bond is selected from a group consisting of olefinic hydrocarbons, diene hydrocarbons, aromatic unsaturated hydrocarbons, unsaturated ethers, unsaturated halides, unsaturated ethers, and vinyl group-containing organopolysiloxanes.
5. A process according to claim 1, wherein the platinum catalyst is selected from a group consisting of platinum metal, platinum adsorbed on a solid support, chloroplatinic acid, alcohol-modified chloroplatinic acid, olefin complexes of chloroplatinic acid, chloroplatinic acid-vinylsiloxane coordination compounds, and platinum black.
6. A process according to claim 1, wherein the molar ratio of the organic compound having at least 1 aliphatic double bond in each molecule to the silicon compound having at least one hydrogen atom directly bonded to silicon in each molecule is in a range from about 0.3 to 3.
7. A process according to claim 1, wherein the amide compound is present at a concentration in the range of from about 1 to 10 moles per mole of platinum present in the platinum catalyst.
8. A process according to claim 1, wherein the silicon compound having at least one hydrogen atom directly bonded to silicon, the organic compound having at least 1 aliphatic double bond in each molecule, the platinum catalyst, and the amide compound are contacted at a temperature in the range of from about 20° C. to 200° C.
9. A process according to claim 1, wherein the silicon compound having at least one hydrogen atom directly bonded to silicon, the organic compound having at least 1 aliphatic double bond in each molecule, the platinum catalyst, and the amide compound are contacted in the presence of a solvent.
10. A process according to claim 9, wherein the solvent is selected from a group consisting of aromatic hydrocarbons, ketones, chlorinated hydrocarbons, organosilanes, and organopolysiloxanes.
11. A process according to claim 1, wherein the silicon compound having at least one hydrogen atom directly bonded to silicon in each molecule is methyldichlorosilane, wherein the organic compound having at least 1 aliphatic double bond in each molecule is allyl chloride, wherein the platinum catalyst is an alcoholic solution of chloroplatinic acid hexahydrate, and wherein the amide compound is N,N-dimethylacetamide.
12. A process according to claim 1, wherein the silicon compound having at least one hydrogen atom directly bonded to silicon in each molecule is trichlorosilane, wherein the organic compound having at least 1 aliphatic double bond in each molecule is allyl chloride, wherein the platinum catalyst is an alcoholic solution of chloroplatinic acid hexahydrate, and wherein the amide compound is N,N-dimethylacetamide.
13. A process according to claim 1, wherein the silicon compound having at least one hydrogen atom directly bonded to silicon in each molecule is methyldichlorosilane, wherein the organic compound having at least 1 aliphatic double bond in each molecule is styrene, wherein the platinum catalyst is an alcoholic solution of chloroplatinic acid hexahydrate, and wherein the amide compound is N,N-dimethylacetamide.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61-237591 | 1986-10-06 | ||
JP61237591A JPH0633288B2 (en) | 1986-10-06 | 1986-10-06 | Addition reaction method |
Publications (1)
Publication Number | Publication Date |
---|---|
US4736049A true US4736049A (en) | 1988-04-05 |
Family
ID=17017589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/101,050 Expired - Lifetime US4736049A (en) | 1986-10-06 | 1987-09-25 | Addition reaction method |
Country Status (5)
Country | Link |
---|---|
US (1) | US4736049A (en) |
EP (1) | EP0263673B1 (en) |
JP (1) | JPH0633288B2 (en) |
CA (1) | CA1312617C (en) |
DE (1) | DE3788334T2 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5274156A (en) * | 1993-05-07 | 1993-12-28 | Dow Corning Corporation | Organosiloxane ethers |
US5892084A (en) * | 1998-02-03 | 1999-04-06 | Pcr, Inc. | Aminoorganofunctionalsiloxanes |
EP0969007A2 (en) * | 1998-06-29 | 2000-01-05 | Dow Corning Asia, Ltd. | Method of making an aromatic chlorosilane compound by a hydrosilation reaction |
US6100408A (en) * | 1998-02-09 | 2000-08-08 | Huels Aktiengesellschaft | Process for preparing 3-glycidyloxypropyltrialkoxysilanes |
US6303729B1 (en) * | 1999-05-19 | 2001-10-16 | Shin-Etsu Chemical Co., Ltd. | Process for preparing partially added cyclic organohydrogensiloxane |
US6339137B1 (en) | 2000-03-22 | 2002-01-15 | Archimica (Florida) Inc. | Poly (aminoorganofunctionalsiloxanes) |
US6353073B1 (en) | 2000-03-22 | 2002-03-05 | Archimica (Florida), Inc. | Poly (aminoorganofunctionaldisiloxanes) |
WO2008095570A1 (en) | 2007-02-09 | 2008-08-14 | Evonik Degussa Gmbh | Process for preparing glycidyloxyalkyltrialkoxysilanes |
CN102498117A (en) * | 2009-07-13 | 2012-06-13 | 三星精密化学株式会社 | Organic Chlorosilane And Method For Preparing Same |
US20120149901A1 (en) * | 2010-12-09 | 2012-06-14 | Kazuhiro Tsuchida | Hydrosilylation method, method for producing organosilicon compound, and organosilicon compound |
CN108069996A (en) * | 2016-11-18 | 2018-05-25 | 荆州市江汉精细化工有限公司 | The method for producing chloropropyl trichloro-silane |
EP3441397A1 (en) | 2017-08-09 | 2019-02-13 | Evonik Degussa GmbH | Method for the preparation of 3-glycidyloxypropyltrialkoxysilanes |
EP3473631A1 (en) | 2017-10-19 | 2019-04-24 | Evonik Degussa GmbH | New epoxy-functional alkoxysilanes, method for their preparation and their use |
US11780983B2 (en) | 2017-02-08 | 2023-10-10 | Elkem Silicones USA Corp. | Secondary battery pack with improved thermal management |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19847786A1 (en) | 1998-10-16 | 2000-04-20 | Degussa | Device and method for filling and emptying a container charged with flammable and aggressive gas |
JP4678910B2 (en) * | 2000-03-03 | 2011-04-27 | ダウ コーニング コーポレーション | Method for producing organosilicon compound |
EP1306381B1 (en) * | 2001-10-10 | 2012-09-12 | Evonik Degussa GmbH | Process for the hydrosilylation of aliphatic unsaturated compounds |
JP2010285363A (en) * | 2009-06-10 | 2010-12-24 | Shin-Etsu Chemical Co Ltd | Method for producing chlorosilyl group-having ethylnorbornene compound |
DE102009027215A1 (en) * | 2009-06-25 | 2010-12-30 | Wacker Chemie Ag | Hydrosilylation process |
JP5740953B2 (en) * | 2010-12-09 | 2015-07-01 | 信越化学工業株式会社 | Method for producing organosilicon compound |
DE102011076687A1 (en) | 2011-05-30 | 2012-12-06 | Wacker Chemie Ag | Preparing a hydrosilylation catalyst, useful to prepare an organofunctional organosilicon compound, comprises reacting a platinum-containing hydrosilation catalyst with an alkyne compound and a hydrosilane-compound |
WO2024111422A1 (en) * | 2022-11-21 | 2024-05-30 | 信越化学工業株式会社 | Hydrogen silane composition and method or producing hydrosilylation reactant |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2823218A (en) * | 1955-12-05 | 1958-02-11 | Dow Corning | Process for the production of organo-silicon compounds |
US3057902A (en) * | 1960-08-31 | 1962-10-09 | Union Carbide Corp | Ester solvents and basic catalysts employed in an addition process |
US3153662A (en) * | 1960-09-14 | 1964-10-20 | Union Carbide Corp | Addition process employing nitrile solvents and basic catalysts |
US3925434A (en) * | 1975-01-22 | 1975-12-09 | Union Carbide Corp | The reaction of chlorosilanes with unsaturated organic compounds |
US4398010A (en) * | 1981-12-07 | 1983-08-09 | Sws Silicones Corporation | Method for accelerating the activity of a hydrosilation catalyst |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3099670A (en) * | 1953-12-31 | 1963-07-30 | Gen Electric | Addition of silicon hydrides to aliphatically unsaturated organic compounds |
US2860153A (en) * | 1957-04-25 | 1958-11-11 | Dow Corning | Method of preparing beta-cyanoethyltrichlorosilane |
FR1389134A (en) * | 1964-02-28 | 1965-02-12 | Thomson Houston Comp Francaise | Stable mixtures of compositions containing a platinum catalyst and their manufacturing process |
US4417069A (en) * | 1983-02-22 | 1983-11-22 | General Electric Company | Method of preparing β-phenylethylchlorosilanes |
DE3331682C2 (en) * | 1983-09-02 | 1985-08-22 | Dynamit Nobel Ag, 5210 Troisdorf | Process for the preparation of 2-phenylethylchlorosilanes |
DE3507424C2 (en) * | 1985-03-02 | 1987-02-26 | Dynamit Nobel Ag, 5210 Troisdorf | Process for the preparation of high purity dialkyldichlorosilanes |
-
1986
- 1986-10-06 JP JP61237591A patent/JPH0633288B2/en not_active Expired - Lifetime
-
1987
- 1987-09-25 US US07/101,050 patent/US4736049A/en not_active Expired - Lifetime
- 1987-10-05 CA CA000548557A patent/CA1312617C/en not_active Expired - Lifetime
- 1987-10-06 DE DE3788334T patent/DE3788334T2/en not_active Expired - Lifetime
- 1987-10-06 EP EP87308834A patent/EP0263673B1/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2823218A (en) * | 1955-12-05 | 1958-02-11 | Dow Corning | Process for the production of organo-silicon compounds |
US3057902A (en) * | 1960-08-31 | 1962-10-09 | Union Carbide Corp | Ester solvents and basic catalysts employed in an addition process |
US3153662A (en) * | 1960-09-14 | 1964-10-20 | Union Carbide Corp | Addition process employing nitrile solvents and basic catalysts |
US3925434A (en) * | 1975-01-22 | 1975-12-09 | Union Carbide Corp | The reaction of chlorosilanes with unsaturated organic compounds |
US4398010A (en) * | 1981-12-07 | 1983-08-09 | Sws Silicones Corporation | Method for accelerating the activity of a hydrosilation catalyst |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5274156A (en) * | 1993-05-07 | 1993-12-28 | Dow Corning Corporation | Organosiloxane ethers |
US5892084A (en) * | 1998-02-03 | 1999-04-06 | Pcr, Inc. | Aminoorganofunctionalsiloxanes |
US6100408A (en) * | 1998-02-09 | 2000-08-08 | Huels Aktiengesellschaft | Process for preparing 3-glycidyloxypropyltrialkoxysilanes |
EP0969007A2 (en) * | 1998-06-29 | 2000-01-05 | Dow Corning Asia, Ltd. | Method of making an aromatic chlorosilane compound by a hydrosilation reaction |
EP0969007A3 (en) * | 1998-06-29 | 2001-06-27 | Dow Corning Asia, Ltd. | Method of making an aromatic chlorosilane compound by a hydrosilation reaction |
US6303729B1 (en) * | 1999-05-19 | 2001-10-16 | Shin-Etsu Chemical Co., Ltd. | Process for preparing partially added cyclic organohydrogensiloxane |
US6339137B1 (en) | 2000-03-22 | 2002-01-15 | Archimica (Florida) Inc. | Poly (aminoorganofunctionalsiloxanes) |
US6353073B1 (en) | 2000-03-22 | 2002-03-05 | Archimica (Florida), Inc. | Poly (aminoorganofunctionaldisiloxanes) |
WO2008095570A1 (en) | 2007-02-09 | 2008-08-14 | Evonik Degussa Gmbh | Process for preparing glycidyloxyalkyltrialkoxysilanes |
DE102007007185A1 (en) | 2007-02-09 | 2008-08-14 | Evonik Degussa Gmbh | Process for the preparation of glycidyloxyalkyltrialkoxysilanes |
CN102498117A (en) * | 2009-07-13 | 2012-06-13 | 三星精密化学株式会社 | Organic Chlorosilane And Method For Preparing Same |
US20120149901A1 (en) * | 2010-12-09 | 2012-06-14 | Kazuhiro Tsuchida | Hydrosilylation method, method for producing organosilicon compound, and organosilicon compound |
US8946464B2 (en) * | 2010-12-09 | 2015-02-03 | Shin-Etsu Chemical Co., Ltd. | Hydrosilylation method, method for producing organosilicon compound, and organosilicon compound |
US9156864B2 (en) | 2010-12-09 | 2015-10-13 | Shin-Etsu Chemical Co., Ltd. | Hydrosilylation method, method for producing organosilicon compound, and organosilicon compound |
US9163037B2 (en) | 2010-12-09 | 2015-10-20 | Shin-Etsu Chemical Co., Ltd. | Hydrosilylation method, method for producing organosilicon compound, and organosilicon compound |
CN108069996A (en) * | 2016-11-18 | 2018-05-25 | 荆州市江汉精细化工有限公司 | The method for producing chloropropyl trichloro-silane |
CN108069996B (en) * | 2016-11-18 | 2020-03-06 | 荆州市江汉精细化工有限公司 | Method for producing chloropropyltrichlorosilane |
US11780983B2 (en) | 2017-02-08 | 2023-10-10 | Elkem Silicones USA Corp. | Secondary battery pack with improved thermal management |
US11905385B2 (en) | 2017-02-08 | 2024-02-20 | Elkem Silicones USA Corp. | Secondary battery pack with improved thermal management |
EP3441397A1 (en) | 2017-08-09 | 2019-02-13 | Evonik Degussa GmbH | Method for the preparation of 3-glycidyloxypropyltrialkoxysilanes |
US10464954B2 (en) | 2017-08-09 | 2019-11-05 | Evonik Degussa Gmbh | Process for preparing 3-glycidyloxypropyltrialkoxysilanes |
EP3473631A1 (en) | 2017-10-19 | 2019-04-24 | Evonik Degussa GmbH | New epoxy-functional alkoxysilanes, method for their preparation and their use |
WO2019076594A1 (en) | 2017-10-19 | 2019-04-25 | Evonik Degussa Gmbh | Novel epoxy-functional alkoxysilanes, method for the production and use thereof |
Also Published As
Publication number | Publication date |
---|---|
CA1312617C (en) | 1993-01-12 |
EP0263673A3 (en) | 1990-05-09 |
JPH0633288B2 (en) | 1994-05-02 |
DE3788334D1 (en) | 1994-01-13 |
EP0263673A2 (en) | 1988-04-13 |
DE3788334T2 (en) | 1994-06-09 |
EP0263673B1 (en) | 1993-12-01 |
JPS63179883A (en) | 1988-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4736049A (en) | Addition reaction method | |
EP2698201B1 (en) | Dehydrogenative silylation and crosslinking using cobalt catalysts | |
JPH08208838A (en) | Method of hydrosilylation by using unsaturated ketone as accelerator | |
US4888435A (en) | Integrated process for alkylation and redistribution of halosilanes | |
EP3071586A1 (en) | Cobalt catalysts and their use for hydrosilylation and dehydrogenative silylation | |
JP2960522B2 (en) | Purification method of silane mixture | |
US3474123A (en) | Production of organosilicon compounds | |
JP2017523144A (en) | Platinum-catalyzed hydrosilation reaction using cyclodiene additive | |
EP1252167B1 (en) | High purity organofunctional alkyldialkoxysilanes through inverse addition | |
EP0228095B1 (en) | Process for the preparation of olefinic silanes and siloxanes | |
JPH08291181A (en) | Hydrosilylation method using unsaturated alcohol as accelerator | |
KR20200014859A (en) | Preparation of siloxanes in the presence of cationic silicone (II) compounds | |
WO2015023328A1 (en) | Reusable homogeneous cobalt pyridine dimine catalysts for dehydrogenative silylation and tandem dehydrogenative-silylation-hydrogenation | |
EP3140037A1 (en) | Dialkyl cobalt catalysts and their use for hydrosilylation and dehydrogenative silylation | |
JP4222662B2 (en) | Method for producing acyloxysilane compound having functional group bonded to silicon atom through Si-C bond | |
EP1314735A2 (en) | Process for producing organosilanes | |
EP0601380B2 (en) | Method for the preparation of triorganochlorosilane | |
JP7416927B2 (en) | Method for preparing siloxane from hydridosilicon compounds | |
US5247110A (en) | Phosphinoaliphaticsilane catalysts for preparation of β-cyanoalkylsilanes | |
JPH11209384A (en) | Pr0duction of organosilicon compound having specific gamma-aminopropylsilyl group | |
US4740607A (en) | Removal of olefins from organohalosilanes | |
JPH05201883A (en) | Preparation of alpha.omega-silylalkane and orga- nosiloxane copolymer | |
JP7537354B2 (en) | Method for producing halosilane compounds | |
JP4130489B2 (en) | Hydrosilylation of alkynes using cycloalkenes as catalyst modifiers. | |
JPH0684381B2 (en) | Method for producing organosilicon compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: TORAY SILICONE COMPANY, LTD., 3-16, 2-CHOME, NIHON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:SUZUKI, MASAHIKO;IMAI, TAKESHI;REEL/FRAME:004809/0417 Effective date: 19871102 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |