US4636995A - Mud pressure control system - Google Patents

Mud pressure control system Download PDF

Info

Publication number
US4636995A
US4636995A US06/764,167 US76416785A US4636995A US 4636995 A US4636995 A US 4636995A US 76416785 A US76416785 A US 76416785A US 4636995 A US4636995 A US 4636995A
Authority
US
United States
Prior art keywords
rotor
torque
ram
drive
valve member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/764,167
Other languages
English (en)
Inventor
Michael K. Russell
Anthony W. Russell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Energy Services Inc
Original Assignee
NL Sperry Sun Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NL Sperry Sun Inc filed Critical NL Sperry Sun Inc
Application granted granted Critical
Publication of US4636995A publication Critical patent/US4636995A/en
Assigned to BAROID TECHNOLOGY, INC., 3000 NORTH SAM HOUSTON PARKWAY EAST A CORP. OF DE reassignment BAROID TECHNOLOGY, INC., 3000 NORTH SAM HOUSTON PARKWAY EAST A CORP. OF DE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SPERRY-SUN DRILLING SERVICES, INC.
Assigned to SPERRY-SUN DRILLING SERVICES, INC. reassignment SPERRY-SUN DRILLING SERVICES, INC. CHANGE OF NAME (SEE RECORD FOR DETAILS) EFFECTIVE 10-19-81 , DELAWARE Assignors: NL SPERRY - SUN, INC.
Assigned to SPERRY-SUN, INC. reassignment SPERRY-SUN, INC. CERTIFICATE OF INCORPORATION TO RESTATE INCORPORATION, EFFECTIVE JULY 21, 1976 Assignors: SPERRY-SUN WELL SURVEYING COMPANY
Assigned to CHASE MANHATTAN BANK (NATIONAL ASSOCIATION), THE reassignment CHASE MANHATTAN BANK (NATIONAL ASSOCIATION), THE SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAROID CORPORATION, A CORP. OF DE.
Assigned to SPERRY-SUN, INC., A CORP. OF DE. reassignment SPERRY-SUN, INC., A CORP. OF DE. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SPERRY-SUN WELL SURVEYING COMPANY
Assigned to SPERRY-SUN DRILLING SERVICES, INC. reassignment SPERRY-SUN DRILLING SERVICES, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). APRIL 24, 1981, JUNE 24, 1981 AND NOVEMBER 23, 1988 RESPECTIVELY Assignors: NL ACQUISTION CORPORATION, (CHANGED TO), NL SPERRY-SUN, INC., (CHANGED TO), SPERRY-SUN, INC., (CHANGED TO )
Assigned to BAROID TECHNOLOGY, INC., A CORP. OF DE. reassignment BAROID TECHNOLOGY, INC., A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SPERRY-SUN DRILLING SERVICES, INC., A CORP. OF DE.
Assigned to BAROID CORPORATION reassignment BAROID CORPORATION RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CHASE MANHATTAN BANK, THE
Assigned to HALLIBURTON ENERGY SERVICES, INC. reassignment HALLIBURTON ENERGY SERVICES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAROID TECHNOLOGY, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
    • E21B47/18Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/0085Adaptations of electric power generating means for use in boreholes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
    • E21B47/18Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry
    • E21B47/20Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry by modulation of mud waves, e.g. by continuous modulation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
    • E21B47/18Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry
    • E21B47/24Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry by positive mud pulses using a flow restricting valve within the drill pipe

Definitions

  • This invention relates to apparatus for signalling within a borehole while drilling, and is more particularly concerned with a down-hole signal transmitter for a mud-pulse telemetry system.
  • MWD measurements-while-drilling
  • mud-pulse telemetry system the mud stream, which passes down the drill string to the drill bit and then back up the annular space between the drill string and the bore wall with the object of lubricating the drill string and carrying away the drilling products, is used to transmit the measurement data from a down-hole measuring instrument to a receiver and data processor at the surface. This is achieved by modulating the mud pressure in the vicinity of the measuring instrument under control of the electrical output signal from the measuring instrument, and sensing the resultant mud-pulses at the surface by means of a pressure transducer.
  • a down-hole signal transmitter for a mud-pulse telemetry system comprising a flow constrictor defining a throttle orifice for the mud passing along a drill string, a throttling member displaceble with respect to the throttle orifice to vary the throughflow cross-section of the throttle orifice, and control means for displacing the throttling member to modulate the mud pressure, wherein the flow constrictor, throttling member and control means are formed as an integrated unit which is adapted to be installed within a drill collar disposed at the end of the drill string and which is capable of being retrieved by drawing it up the inside of the drill string.
  • a fishing neck may be attached to the unit to enable the unit to be retrieved by engaging the fishing neck with a gripping device at the end of a line.
  • the transmitter in the event of instrumentation failure, it is a simple matter to retrieve the transmitter by inserting a wireline down the drill string, engaging the wireline with the fishing neck, for example by means of a per se known gripping device on the end of the wireline, and drawing the transmitter up the drill string on the end of the wireline. Furthermore the transmitter is a self-contained unit which is relatively inexpensive to produce and may therefore be replaced at low cost.
  • the invention also provides a down-hole signal transmitter for a mud-pulse telemetry system, comprising a flow constrictor defining a throttle orifice for the mud passing along the drill string, a throttling member displaceable with respect to the throttle orifice to vary the throughflow cross-section of the throttle orifice, a turbogenerator for supplying a measuring instrument and arranged to be driven by the mud flow passing along the drill string, and control means for displacing the throttling member to modulate the mud pressure, wherein the control means is coupled to the rotor of the turbogenerator and is adapted to modulate the mud pressure according to the torque required to drive the rotor which is dependent on the electrical load of the turbogenerator.
  • Such an arrangement is particularly convenient as it not only produces the required mud pulses for transmitting the measurement data to the surface, but also generates the electrical power required for operating the measuring instrument and/or other devices.
  • control means is adapted to displace the throttling member in one direction when the electrical load of the turbogenerator is such that the torque required to drive the rotor exceeds the maximum torque available for driving the rotor, and to displace the throttling member in the opposite direction when the electrical load is such that the torque required to drive the rotor does not exceed the maximum available driving torque.
  • control means incorporates a ram coupled to the throttling member, a pump for supplying hydraulic fluid to the ram, and a torque-sensitive actuator for controlling supply of hydraulic fluid from the pump to the ram.
  • the ram is double-acting, and the torque-sensitive actuator is adapted to supply hydraulic fluid to one side of the ram to displace the throttling member in said one direction or to the opposite side of the ram to displace the throttling member in said opposite direction, according to the torque required to drive the rotor.
  • the pump may incorporate a rotary valve member for supplying hydraulic fluid from the pump to said one side of the ram when rotating with a first phase and to said opposite side of the ram when rotating with a second phase, the torque-sensitive actuator being adapted to control the phase of rotation of the rotary valve member.
  • the pump may also incorporate a plurality of cylinders having pistons arranged to be driven cyclically, the rotary valve member being adapted to connect each cylinder in turn to one side of the ram during rotation.
  • the torque-sensitive actuator may comprise a drive plate coupled to the rotary valve member and an escapement plate for driving both the drive plate and the rotor, the escapement plate being adaped to engage the drive plate in a first relative rotational position or in a second relative rotational position during rotation of the plates, according to the torque required to drive the rotor.
  • the escapement plate is tiltable about a tilt axis transverse to its axis of rotation to change the relative rotational position of the drive plate and escapement plate, and is coupled to the rotor by a torque drive arm which is adapted to tilt the escapement plate when the torque required to drive the rotor exceeds the maximum driving torque available at the escapement plate.
  • FIG. 1 is a longitudinal section through an upper part of the transmitter
  • FIG. 2 is a longitudinal section through a central part of the transmitter
  • FIG. 3 is a longitudinal section through a lower part of the transmitter.
  • FIG. 4 is a longitudinal section through a portion of the lower part, taken along the line IV--IV in FIG. 3.
  • the signal transmitter 1 illustrated in the drawings is installed in use within a non-magnetic drill collar and coupled to a measuring instrument disposed in an instrument pressure casing installed within the drill collar immediately below the transmitter 1.
  • the drill collar is disposed at the end of a drill string within a borehole during drilling, and the measuring instrument may serve to monitor the inclination of the borehole in the vicinity of the drill bit during drilling, for example.
  • the signal transmitter 1 serves to transmit the measurement data to the surface in the form of pressure pulses by modulating the pressure of the mud which passes down the drill string.
  • the transmitter 1 is formed as a self-contained unit and is installed within the drill collar in such a manner that it may be retrieved, in the event of instrumentation failure for example, by inserting a wireline down the drill string and engaging the wireline with a fishing neck on the transmitter, for example by means of a per se known gripping device on the end of the wireline, and drawing the transmitter up the drill string on the end of the wireline.
  • the transmitter 1 includes a duct 2 provided, at its upper end, with an annular flow constrictor 4 defining a throttle orifice 6 for the mud passing down the drill string in the direction of the arrow 8.
  • an elongate casing 10 bearing at its upper end, in the vicinity of the throttle orifice 6, a throttling member 12 which is displaceable with respect to the casing 10 in the direction of the axis of the duct 2 to vary the throughflow cross-section of the throttle orifice 6.
  • the throttling member 12 is provided with a shaft 14 which extends into the casing 10, the space within the casing 10 being filled with hydraulic oil in order to ensure hydrostatic pressure balance and being sealed at its upper end by a Viton diaphragm 16 extending between the inside wall of the casing 10 and the shaft 14.
  • the casing 10 is rigidly mounted within the duct 2 by three upper support webs 18 and three lower support webs 20 extending radially between the casing 10 and the duct 2, so as to provide an annular gap between the casing 10 and the duct 2 for mud flow.
  • the blades 24 are mounted on a magnetisable steel boss 30 which surrounds a copper drive ring 32.
  • a rare earth magnet assembly 34 is carried by an annular shaft 36 rotatably mounted within the casing 10 by means of bearings such as 38, and incorporates six Sm Co (samarium-cobalt), magnets 40 distributed about the periphery of the shaft 36.
  • Three of the magnets 40 have their North poles facing radially outwardly and a further three of the magnets 40, alternating with the previous three magnets 40, have their South poles facing radially outwardly.
  • the annular shaft 36 drives a rotor 42 of an electrical generator 44 for supplying power to the measuring instrument by way of a circular escapement plate 46, pivotally mounted within the shaft 36 by pivot pins 47, and a torque drive arm 48 (see FIG. 4) attached to the periphery of the plate 46 and arranged to engage a drive pin 50 attached to the periphery of the rotor 42.
  • the annular shaft 36 drives a hydraulic pump 52 by way of an angled swashplate 54 and an associated piston thrust plate 56 provided with a bearing race 57.
  • the hydraulic pump 52 comprises eight cylinders 58 extending parallel to the axis of the casing 10 and arranged in an annular configuration, and a respective piston 60 associated with each cylinder 58.
  • the lower end of each piston 60 is permanently biased into engagement with the thrust plate 56 by a respective piston return spring 62, so that rotation of the swashplate 54 with the shaft 36 will cause the pistons 60 to axially reciprocate within their cylinders 58, the eight pistons 60 being reciprocated cyclically so that when one of the pistons is at the top of its stroke the diametrically opposing pistons will be at the bottom of its stroke and vice versa.
  • the pump 52 comprises a rotary valve member 64 mounted on bearings 65 and intended to rotate in synchronism with the swashplate 54 so as to supply the output from each cylinder 58 in turn to one side of a double-acting ram 66 disposed within a cylinder 68.
  • the double-acting ram 66 is coupled to the shaft 14 of the throttling member 12 by an output shaft 70, so that the throttling member 12 may be displaced by the pump 52 to vary the throughflow cross-section of the throttle orifice 6.
  • each of the axial bores 72 is crossed by a respective upper radial bore 76 and a respective lower radial bore 78.
  • the rotary valve member 64 is provided with an upper peripheral recess 80 which opens out at the periphery of the valve member 64 over approximately 180° of arc and which also opens at the top of the valve member 64 into the lower part 82 of the cylinder 68 below the ram 66, and a lower peripheral recess 84 (shown in FIG. 2 in broken lines) which opens out at the periphery of the valve member 64 over approximately 180° of arc on the opposite side of the valve member 64 to the upper peripheral recess 80 and which also opens at its upper region into a central annular recess 86 formed in the valve member 64.
  • the central annular recess 86 is permanently maintained in fluid communication with an annular passage 88 surrounding the cylinder 68 and valve housing 74 by radial passages (not shown) extending through the valve housing 74.
  • the annular passage 88 is itself in fluid communication with the upper part 90 of the cylinder 68 above the ram 66.
  • the input of the pump 52 will be connected to the upper part 90 of the cylinder 68 and the output of the pump 52 will be connected to the lower part 82 of the cylinder 68, so that the ram 66 and hence the throttling member 12 will be displaced upwardly.
  • the input of the pump 52 will be connected to the lower part 82 of the cylinder 68 and the output of the pump 52 will be connected to the upper part 90 of the cylinder 68, so that the ram 66 and the throttling member 12 will be displaced downwardly.
  • the rotary valve member 64 is coupled to a torque-sensitive actuator, comprising a circular drive plate 92 disposed opposite the escapement plate 46, by a drive shaft 94 rotatably mounted within the annular shaft 36 by bearings 96.
  • the drive plate 92 is provided with a driven pin 98 at its periphery which is engaged by a first escapement pin 100 at a first rotational position at the periphery of the escapement plate 46 in order to cause the valve member 64 to be driven by the shaft 36 with the first phase of rotation or alternatively by a second escapement pin 102 (see FIG. 4), which is disposed at a second rotational position offset by 180° with respect to the first rotational position at the periphery of the escapement plate 46, in order to cause the valve member 64 to be driven by the shaft 36 with the second phase of rotation.
  • the escapement plate 46 is capable of being tilted about a tilt axis defined by the pivot pins 47 between a first angled position (shown in solid lines in FIG. 4) and a second angled position (shown in broken lines in FIG. 4).
  • a tension spring 104 biases the escapement plate 46 into its first angled position.
  • the escapement plate 46 will drive the drive plate 92 with the first phase of rotation by means of the first escapement pin 100 and will also drive the rotor 42 of the generator 44 by way of the torque drive arm 48.
  • the torque drive arm 48 will be caused to tilt the escapement plate 46 into its second angled position against the action of the spring 104.
  • This will cause the first escapement pin 100 to be brought out of engagement with the driven pin 98 of the drive plate 92, and the second escapement pin 102 to be engaged with the driven pin 98 after the escapement plate 46 has rotated through 180° with respect to the drive plate 92.
  • This will cause the drive plate 92 to be driven with the second phase of rotation by means of the second escapement pin 102, and the supply by hydraulic fluid from the pump 52 to the double-acting ram 66 will be reversed.
  • the generator load subsequently decreases to a sufficient extent, the spring 104 will tilt the escapement plate 46 back into its first angled position, and the drive plate 92 will again be driven with the first phase of rotation.
  • the measurement data from the measuring instrument is arranged to suitably vary the electrical load of the generator 44, the phase of rotation of the rotary valve member 64, and hence the direction of displacement of the double-acting arm 66, will vary with the output of the measuring instrument.
  • This will in turn cause the throttling member 12 to be displaced with respect to the throttle orifice 6 to modulate the pressure of the mud flow upstream of the throttle orifice 6, and will produce a series of pressure pulses corresponding to the measurement data which will travel upstream in the mud flow and may be sensed at the surface by a pressure transducer in the vicinity of the output of the pump producing the mud flow.
  • This arrangement therefore enables data in digital form to be transmitted to the surface.
  • the duct 2 has an outside diameter, of, for example, 23/4 inches, which is slightly less than the internal diameter of the drill collar which is typically 2 13/16 inches, and the casing 10 is screwed to the casing of the measuring instrument so as to enable the measuring instrument to be retrieved with with the signal transmitter.
  • the signal transmitter/measuring assembly is installed with a predetermined orientation within the drill collar, which is in the form of a bent sub, by virtue of a per se known mule shoe coupling between the instrument casing and the drill collar.
  • a projection on the inside wall of the drill collar in the vicinity of the bent portion of the collar engages within a slot in the cylindrical wall of the instrument casing, the slot being open at its lower end and tapering upwardly to a level at which the assembly is held at the desired orientation with respect to the collar with the projection engaged between the opposing walls of the slot.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geophysics (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Reciprocating Pumps (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Earth Drilling (AREA)
  • Actuator (AREA)
  • Drilling And Boring (AREA)
  • Drilling Tools (AREA)
US06/764,167 1980-08-27 1985-08-09 Mud pressure control system Expired - Lifetime US4636995A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB8027727 1980-08-27
GB8027727 1980-08-27
GB8037213 1980-11-20
GB8037213 1980-11-20

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US06295431 Continuation 1981-08-24

Publications (1)

Publication Number Publication Date
US4636995A true US4636995A (en) 1987-01-13

Family

ID=26276704

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/764,167 Expired - Lifetime US4636995A (en) 1980-08-27 1985-08-09 Mud pressure control system

Country Status (10)

Country Link
US (1) US4636995A (fr)
BR (1) BR8105393A (fr)
CA (1) CA1165853A (fr)
CH (2) CH657419A5 (fr)
DE (1) DE3132807A1 (fr)
FR (2) FR2489407A1 (fr)
IT (1) IT1139401B (fr)
MX (1) MX150649A (fr)
NL (1) NL8103973A (fr)
NO (1) NO154766C (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0325047A2 (fr) * 1988-01-19 1989-07-26 Michael King Russell Dispositifs de transmission de signaux
US5839508A (en) * 1995-02-09 1998-11-24 Baker Hughes Incorporated Downhole apparatus for generating electrical power in a well
US6016288A (en) * 1994-12-05 2000-01-18 Thomas Tools, Inc. Servo-driven mud pulser
US20110193438A1 (en) * 2010-02-05 2011-08-11 Salvesen Richard S Pulse adapter assembly
US20120106297A1 (en) * 2009-07-08 2012-05-03 Intelligent Well Controls Limited Downhole apparatus, device, assembly and method
US9771793B2 (en) 2009-07-08 2017-09-26 Halliburton Manufacturing And Services Limited Downhole apparatus, device, assembly and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3035905C2 (de) * 1980-09-24 1982-12-30 Christensen, Inc., 84115 Salt Lake City, Utah Vorrichtung zur Fernübertragung von Informationen aus einem Bohrloch zur Erdoberfläche während des Betriebs eines Bohrgeräts
CA1268052A (fr) * 1986-01-29 1990-04-24 William Gordon Goodsman Systeme de telemetrie de fond en cours de forage
CN117553445B (zh) * 2024-01-09 2024-03-22 浙江拓感科技有限公司 一种红外探测器快速启动集成制冷机组件

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3867714A (en) * 1973-04-16 1975-02-18 Mobil Oil Corp Torque assist for logging-while-drilling tool
US3983948A (en) * 1974-07-01 1976-10-05 Texas Dynamatics, Inc. Method and apparatus for indicating the orientation of a down hole drilling assembly

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO135686C (fr) * 1970-07-30 1977-05-11 Schlumberger Inland Service
US3737843A (en) * 1971-12-09 1973-06-05 Aquitaine Petrole Hydraulically controlled device for modulating the mud
US3997867A (en) * 1973-09-17 1976-12-14 Schlumberger Technology Corporation Well bore data-transmission apparatus
US3932836A (en) * 1974-01-14 1976-01-13 Mobil Oil Corporation DC/AC motor drive for a downhole acoustic transmitter in a logging-while-drilling system
US4120097A (en) * 1974-10-02 1978-10-17 John Doise Jeter Pulse transmitter
US3995479A (en) * 1974-11-01 1976-12-07 Schlumberger Technology Corporation Apparatus for protecting downhole instruments from torsional and lateral movements
US4147233A (en) * 1976-08-16 1979-04-03 Smith Roy B Timing circuit for a chassis lubricator
US4139836A (en) * 1977-07-01 1979-02-13 Sperry-Sun, Inc. Wellbore instrument hanger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3867714A (en) * 1973-04-16 1975-02-18 Mobil Oil Corp Torque assist for logging-while-drilling tool
US3983948A (en) * 1974-07-01 1976-10-05 Texas Dynamatics, Inc. Method and apparatus for indicating the orientation of a down hole drilling assembly

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0325047A2 (fr) * 1988-01-19 1989-07-26 Michael King Russell Dispositifs de transmission de signaux
EP0325047A3 (en) * 1988-01-19 1990-05-09 Michael King Russell Signal transmitters
US6016288A (en) * 1994-12-05 2000-01-18 Thomas Tools, Inc. Servo-driven mud pulser
US5839508A (en) * 1995-02-09 1998-11-24 Baker Hughes Incorporated Downhole apparatus for generating electrical power in a well
US20120106297A1 (en) * 2009-07-08 2012-05-03 Intelligent Well Controls Limited Downhole apparatus, device, assembly and method
US9243492B2 (en) * 2009-07-08 2016-01-26 Halliburton Manufacturing And Services Limited Downhole apparatus, device, assembly and method
US9771793B2 (en) 2009-07-08 2017-09-26 Halliburton Manufacturing And Services Limited Downhole apparatus, device, assembly and method
US20110193438A1 (en) * 2010-02-05 2011-08-11 Salvesen Richard S Pulse adapter assembly
US8138647B2 (en) 2010-02-05 2012-03-20 Salvesen Richard S Pulse adapter assembly

Also Published As

Publication number Publication date
CH648634A5 (fr) 1985-03-29
FR2489407A1 (fr) 1982-03-05
MX150649A (es) 1984-06-13
DE3132807A1 (de) 1982-06-09
CA1165853A (fr) 1984-04-17
FR2557630A1 (fr) 1985-07-05
IT8123576A0 (it) 1981-08-20
NL8103973A (nl) 1982-03-16
NO154766C (no) 1986-12-17
CH657419A5 (fr) 1986-08-29
NO154766B (no) 1986-09-08
IT1139401B (it) 1986-09-24
FR2557630B1 (fr) 1986-12-12
NO812774L (no) 1982-03-01
BR8105393A (pt) 1982-05-11

Similar Documents

Publication Publication Date Title
US4802150A (en) Mud pressure control system with magnetic torque transfer
US4675852A (en) Apparatus for signalling within a borehole while drilling
US4535429A (en) Apparatus for signalling within a borehole while drilling
US4956823A (en) Signal transmitters
US6714138B1 (en) Method and apparatus for transmitting information to the surface from a drill string down hole in a well
US6092610A (en) Actively controlled rotary steerable system and method for drilling wells
US7250873B2 (en) Downlink pulser for mud pulse telemetry
RU2581616C2 (ru) Способ определения скорости вращения забойного бескомпрессорного двигателя
US6626253B2 (en) Oscillating shear valve for mud pulse telemetry
US7417920B2 (en) Reciprocating pulser for mud pulse telemetry
US6257356B1 (en) Magnetorheological fluid apparatus, especially adapted for use in a steerable drill string, and a method of using same
US20020159333A1 (en) Hydraulically balanced reciprocating pulser valve for mud pulse telemetry
US4636995A (en) Mud pressure control system
GB2087951A (en) Apparatus for signalling within a borehole while drilling
GB2082653A (en) Apparatus for signalling within a borehole while drilling
GB2137260A (en) Improvements in or relating to apparatus for signalling within a borehole while drilling
AU766588B2 (en) Actively controlled rotary steerable system and method for drilling wells
RU2256794C1 (ru) Забойная телеметрическая система с гидравлическим каналом связи
GB2407598A (en) Transmitting information down hole using a pulser
GB2123458A (en) Improvements in or relating to apparatus for signalling within a borehole while drilling
Brown Fluid motor and telemetry system

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: SPERRY-SUN DRILLING SERVICES, INC.

Free format text: CHANGE OF NAME;ASSIGNOR:NL SPERRY - SUN, INC.;REEL/FRAME:005024/0939

Effective date: 19880214

Owner name: SPERRY-SUN, INC.

Free format text: CERTIFICATE OF INCORPORATION TO RESTATE INCORPORATION, EFFECTIVE JULY 21, 1976;ASSIGNOR:SPERRY-SUN WELL SURVEYING COMPANY;REEL/FRAME:005024/0918

Effective date: 19760617

Owner name: BAROID TECHNOLOGY, INC., 3000 NORTH SAM HOUSTON PA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SPERRY-SUN DRILLING SERVICES, INC.;REEL/FRAME:005024/0898

Effective date: 19890210

AS Assignment

Owner name: CHASE MANHATTAN BANK (NATIONAL ASSOCIATION), THE

Free format text: SECURITY INTEREST;ASSIGNOR:BAROID CORPORATION, A CORP. OF DE.;REEL/FRAME:005196/0501

Effective date: 19881222

AS Assignment

Owner name: SPERRY-SUN DRILLING SERVICES, INC.

Free format text: CHANGE OF NAME;ASSIGNORS:NL ACQUISTION CORPORATION, (CHANGED TO);SPERRY-SUN, INC., (CHANGED TO );NL SPERRY-SUN, INC., (CHANGED TO);REEL/FRAME:005208/0157

Effective date: 19810421

Owner name: SPERRY-SUN, INC., A CORP. OF DE., DELAWARE

Free format text: CHANGE OF NAME;ASSIGNOR:SPERRY-SUN WELL SURVEYING COMPANY;REEL/FRAME:005208/0153

Effective date: 19760617

Owner name: BAROID TECHNOLOGY, INC., A CORP. OF DE., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SPERRY-SUN DRILLING SERVICES, INC., A CORP. OF DE.;REEL/FRAME:005208/0161

Effective date: 19890613

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: BAROID CORPORATION, TEXAS

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:CHASE MANHATTAN BANK, THE;REEL/FRAME:006085/0590

Effective date: 19911021

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: HALLIBURTON ENERGY SERVICES, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BAROID TECHNOLOGY, INC.;REEL/FRAME:013821/0799

Effective date: 20030202