US4439526A - Clustered ingress apertures for capillary transport devices and method of use - Google Patents

Clustered ingress apertures for capillary transport devices and method of use Download PDF

Info

Publication number
US4439526A
US4439526A US06/401,753 US40175382A US4439526A US 4439526 A US4439526 A US 4439526A US 40175382 A US40175382 A US 40175382A US 4439526 A US4439526 A US 4439526A
Authority
US
United States
Prior art keywords
liquid
passage
aperture
apertures
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/401,753
Inventor
Richard L. Columbus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clinical Diagnostic Systems Inc
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Priority to US06/401,753 priority Critical patent/US4439526A/en
Priority to CA000414317A priority patent/CA1174140A/en
Priority to JP58135671A priority patent/JPS5940154A/en
Priority to DE8383304307T priority patent/DE3377016D1/en
Priority to EP83304307A priority patent/EP0100235B1/en
Assigned to KODAK COMPANY, ROCHESTER, NY A CORP. reassignment KODAK COMPANY, ROCHESTER, NY A CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: COLUMBUS, RICHARD L.
Application granted granted Critical
Publication of US4439526A publication Critical patent/US4439526A/en
Assigned to CLINICAL DIAGNOSTIC SYSTEMS INC. reassignment CLINICAL DIAGNOSTIC SYSTEMS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EASTMAN KODAK COMPANY
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/307Disposable laminated or multilayered electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/2575Volumetric liquid transfer

Definitions

  • This invention is directed to devices and a method for the capillary transport of liquid along a passage within the device, and specifically to means in the device for conveying liquid into such passage.
  • flow-through apertures providing liquid access to a capillary zone or passage are difficult to use if they are circular in shape.
  • the difficulty concerns the tendency of the liquid to not enter the aperture.
  • the smooth cylindrical sidewalls of circular apertures tend to cause a drop of the liquid deposited in the vicinity of the aperture to draw away from the aperture, rather than enter it, unless careful centering is achieved. If careful centering does not occur, the drop circumference does not completely encompass the aperture, but instead intersects it.
  • the surface tension of the liquid in such cases tends to push the liquid away from such circular aperture instead of into it.
  • the metering displacement error that is, the distance between the aperture center and the center of the deposited quantity of liquid
  • the only other readily manipulatable variables are the quantity of deposited liquid and the size of the ingress aperture.
  • the quantity of deposited liquid could be increased to insure that the aperture is always encompassed by the circumference of the deposited liquid, as determined by the maximum expected displacement error.
  • due to the magnitude of such maximum displacement error such an approach could drastically and unacceptably increase the requisite volume of deposited liquid from the presently preferred level of about 10 ⁇ l.
  • a first access aperture capable of having flow-through dimensions small enough to be reliably encompassed by practical drop sizes with practical displacement errors, which, when used with an additional aperture disposed close to the first aperture, provides superior transfer of liquid from the exterior surface to the transport passage.
  • a liquid transport device having an exterior surface for receipt of liquid deposited, and wall means interior of the surface for transporting liquid by capillary attraction along a passage.
  • Access means are also provided, for fluidly connecting the exterior surface and a portion of the passage so that liquid deposited on the exterior surface at the access means is transported into and along the passage.
  • the device is improved in that the access means comprises a cluster of apertures extending from the exterior surface to the passage, one of the apertures having a maximum flow-through dimension that allows the liquid to independently initiate capillary flow along the passage.
  • the other apertures have smaller maximum flow-through dimensions that allow liquid to form menisci along the passage wall but prevent independent initiation of capillary flow along the passage.
  • the method comprises the steps of (a) positioning such transport device with the one larger aperture located within a predetermined error range measured from a desired metering position, and (b) depositing such liquid onto the surface so as to encompass the one larger aperture and at least one other aperture.
  • the ingress aperture can be circular in flowthrough shape, and still insure proper wetting of the interior capillary passage.
  • the size of the ingress aperture is reduced to insure it is encompassed within a quantity of deposited liquid, and still provide satisfactory liquid flow into the passage.
  • Another related advantage of the invention is that such ingress apertures provide more complete drainage into the passage, so that minimal residual liquid is left on the exterior surface.
  • Still another advantage of the invention, and one that is applicable whether the invention is applied to solve a displacement error problem or not, is that the additional, smaller apertures that deliver menisci along the passage wall as described above, act to slow down the rate of transport of liquid within the passage.
  • FIG. 1 is an isometric view of an ISE test element, illustrating the problem solved by the invention
  • FIG. 2 is a fragmentary vertical section view of the liquid access aperture of FIG. 1, further illustrating the problem solved by the invention
  • FIG. 3 is a fragmentary plan view of a device constructed in accordance with the invention.
  • FIG. 4 is a section view taken generally along the line IV--IV of FIG. 3;
  • FIG. 5 is a fragmentary section view similar to that of FIG. 4, but illustrating a comparative example.
  • FIG. 6 is a plan view of an ion bridge incorporating the invention.
  • FIGS. 1 and 2 The problem to which the invention is addressed is illustrated in FIGS. 1 and 2.
  • Device 10 comprises a potentiometric test element as described in U.S. Pat. No. 4,233,029.
  • Ion bridge 12 is disposed above two ion-selective electrodes (ISE's) 14 and 14a.
  • the bridge comprises two members 16 and 18 spaced apart a distance effective to form a capillary transport passage 20 between opposing surfaces 24 and 26, FIG. 2.
  • Useful values for such spacing distance range between about 50 microns and about 600 microns.
  • Access or ingress apertures 28 and 28a are formed in member 16, FIG. 1, connecting exterior surface 30 of member 16 with passage 20. Each aperture 28 and 28a is disposed to receive a separate drop.
  • Apertures 32 are formed in member 18, extending to ISE's 14 and 14a, and are preferably aligned with apertures 28 and 28a, respectively, as indicated in FIG. 2.
  • Apertures 28 and 28a are adjusted in size and flow-through volume so that the volume of liquid deposit L that flows through the aperture will adequately wet passage 20 and initiate capillary flow, as is further described in the aforesaid U.S. patent.
  • an improved liquid transport device 112 avoids the problem of noninitiation of flow into the device, noted above. Parts similar to those of FIG. 2 bear the same reference numeral to which the value 100 is added.
  • device 112 comprises two members 116 and 118 spaced apart a distance "x" to provide a capillary transport passage 120, as is described for example in my aforesaid U.S. Pat. No. 4,233,029.
  • An ingress aperture 128 is provided connecting exterior surface 130 to passage 120 in a manner similar to that described above.
  • the maximum flow-through diameter 2 r is less than about 3 mm.
  • aperture 128 is provided with at least one additional satellite aperture 140 to form a cluster of apertures as the ingress means.
  • the satellite aperture 140 having a radius r', also is formed in member 116 extending from surface 130 to passage 120. As is described further hereinafter, aperture 140 assists in providing liquid ingress to passage 120.
  • the cluster of apertures avoids the problems noted in the "Background". More specifically, the maximum flow-through dimension 2r' of any satellite aperture 140 is smaller than dimension 2r of aperture 128 and is smaller than that which will allow liquid within aperture 140 to contact surface 126, FIG. 4, and thus independently initiate flow within passage 120. Otherwise, as shown in the comparative example of FIG. 5, the independent flows occurring at apertures both of which initiate flow, could entrap air at pocket 200 when the two flows meet along irregularly shaped wavefronts. Such entrapped air tends to interfere with subsequent processing that is carried out within the device, for example, if it is used as an ion bridge as shown in FIG. 1.
  • the thickness of member 116 is selected in accordance with the wettability of the material used for member 116, such that liquid L penetrates through aperture 140 within a given time frame. Thus, the thickness is governed by the surface energetics of the material. If member 116 is polystyrene, for example, it should be no thicker than about 200 microns.
  • the dimensions of aperture 140 are selected so that the liquid within the aperture penetrates passage 120 sufficiently, and only sufficiently, to form a meniscus M 2 , FIG. 4, such that, when the advancing meniscus M 1 arrives from aperture 128 as per the dotted arrow, meniscus M 2 coalesces with M 1 .
  • meniscus M 2 is either generally convex, as shown, or generally concave, at surface 124.
  • the particular shape will depend primarily upon the height of the head of liquid above exterior surface 130.
  • dimensions r and r' are radii. If apertures 128 and 140 are non-circular, dimensions r and r' are one-half the maximum flow-through dimensions.
  • a second reason for the dimension 2r' being less than dimension 2r of aperture 128 is that, as the dimension 2r' of aperture 140 approaches 2r of aperture 128, it becomes more and more difficult to insure that circumference Z 3 of aperture 140 falls within circumference Z 2 of the deposited liquid, as described hereinafter.
  • the dimension "r" is selected to be no larger than the difference between the predicted radius R of the liquid deposit contact area, and the maximum expected error of displacement d of center C 2 compared to center C 1 . This relationship insures that the circumference Z 2 of quantity L, FIG. 3, will always encompass the circumference Z 1 of aperture 128.
  • r and Z 1 as shown in FIGS. 3 and 4 are maximum allowable values; and preferably aperture 128 has a radius and circumference, respectively, that are less than these.
  • the maximum displacement error is partially a function of the equipment used to deposit the liquid, and more specifically, of the tolerances inherent in the relative movement of the capillary transport device and that equipment, leading to the liquid-depositing step.
  • the displacement error is also a function of tolerances within the transport device itself. If apertures 128 and 140 are not formed so as to be spaced an expected distance from a locating edge of the device, then those apertures are not going to be properly aligned with the apparatus used to deposit the liquid, even if the device is otherwise properly positioned.
  • the method of metering preferably proceeds as follows: Center C 1 of aperture 128, FIG. 3, represents the most likely, or ideal, location of the liquid L if metering occurs exactly as desired. Distance "d” represents the possible displacement error, arising from the aforementioned factors. To be certain that the larger aperture of the cluster is always encompassed by liquid L, the device 112 bearing that aperture is positioned relative to the metering apparatus so that such aperture is within circumference Z 1 . That is, for an aperture 128 having a slightly smaller diameter than diameter 2r which is the "worst" case, Z 1 becomes a hypothetical circle within which the actual aperture 128 of a radius less than r, is located. Thus circumference Z 1 can be considered to be the circumference of the predetermined error range for the location of aperture 128 relative to center C 1 , the ideal center of metering.
  • quantity L is deposited onto surface 130 so as to encompass aperture 128 and at least one of apertures 140.
  • the cluster is designed so that at least one satellite aperture 140 is also completely encompassed by the deposited liquid L.
  • the center C 3 of aperture 140 is preferably displaced from the center C 1 of aperture 128 in the direction of the expected displacement error. Furthermore, it is displaced by a distance ⁇ , FIG. 3, that is no greater than that which will insure that its circumference Z 3 falls within and is encompassed by the contact area of deposited liquid L for the expected error of displacement.
  • ⁇ R-r' d.
  • a hemispherical protuberance represents a worst case such that if r' of aperture 140 were to be equal to spacing x, aperture 140 would independently initiate flow within passage 120.
  • r' of aperture 140 should be less than spacing x, or, for O.05 mm ⁇ x ⁇ 0.6 mm as noted above for passage 20 of FIG. 2, the maximum that r' can be is a value just less than 0.05 mm up to a value just less than 0.6 mm, respectively.
  • aperture 140 preferably has a radius r' between about 0.05 mm and about 0.125 mm, most preferably about 0.075 mm.
  • more than one satellite aperture 140 is disposed, at approximately equal distances, around aperture 128, with aperture 128 located approximately in the center of the cluster.
  • the spacing of the satellite apertures 140 is selected on the basis that the locus of center C 2 is to be found on or within a circle 150, shown as a dot-dash line, FIG. 3, having a radius d, the maximum error of displacement.
  • apertures 140 are spaced so that, no matter where within circle 150 the center C 2 falls, the liquid contact area within circumference Z 2 will encompass at least one such satellite aperture.
  • four or five satellite apertures evenly spaced (about 90° or 72° respectively) around aperture 128 is a preferred cluster arrangement.
  • the preferred distance ⁇ of the center of each satellite aperture from C 1 is between about 1.25 mm and about 1.6 mm, and most preferably about 1.5 mm.
  • satellite holes have been found to produce several advantages.
  • One advantage is that it acts to "pin down" the deposited quantity of liquid, preventing it from wandering over the deposit surface when device 112 is jarred or vibrated.
  • Another advantage is that it produces more uniform and complete drainage or penetration of the liquid into the passage.
  • a third is that it reduces the rate of flow.
  • FIG. 6 illustrates such an ion bridge 112', wherein two clusters 160 and 170 of apertures are provided, each with a center aperture 128' and four satellite apertures 140'. (Primes are added to reference numerals depicting features similar to those shown in the previously described embodiment.)
  • One or more air vents 180 is preferably provided, generally centered between clusters 160 and 170, to allow the escape of entrapped air.
  • a drop of a sample liquid such as blood is deposited to encompass all of the aperture 128' and at least one satellite aperture 140' at one of the clusters 160 or 170, and at the other cluster, a drop of a reference liquid is similarly deposited.
  • the depositions take place at about the same time.
  • apertures in the lower member that lead to the ISE's are either generally aligned with apertures 128', or are offset as described in U.S. Pat. No. 4,271,119, issued on June 2, 1981.
  • the preferred embodiments are described herein in connection with liquid deposited as a drop.
  • the invention is applicable to ingress apertures used for any deposited liquid, regardless of the shape or configuration the liquid assumes as it is being deposited.
  • the device is useful with liquid transferred to the device without assuming a drop shape.
  • the preferred embodiments also refer to the contact area formed by the deposited drop on the exterior surface as being generally the area of a circle having a predictable radius. Whether in fact a circle forms depends on whether the exterior surface for deposit is generally smooth, as in the preferred embodiments, or not.
  • the invention is also applicable to non-circular contact areas, in which case "contact radius” is taken to mean the dimension of the contact area measured from the approximate center of that area to the liquid circumference, along the center line extending between the contact area center and the center of the ingress aperture, i.e., center C 1 in FIG. 3.
  • the preferred embodiments herein described refer to the use of the invention in an ion bridge for an ISE test element, wherein the ingress aperture is circular.
  • the invention is applicable to an ingress aperture providing liquid access to a transport passage used for any other purpose.
  • the invention is not restricted by the shape of the ingress apertures. For example, elliptical and polygonal shapes are useful also, particularly those having axisymmetry or a plane of symmetry.
  • a capillary passage was constructed using a nominally smooth sheet of polyethylene terephthalate as the bottom sheet, and a nominally smooth sheet of triacetate as the top sheet.
  • the sheets were mounted so as to be spaced apart about 50 microns.
  • Three such test elements were prepared, each with a different pattern of ingress apertures in the top sheet.
  • a single circular aperture was punched with a radius of about 0.76 mm.
  • four circular satellite apertures were punched 90° around the center aperture with radii of about 0.076 mm and centers 1.5 mm from the center of the main aperture. (See the clusters of FIG.
  • Example 2 the pattern of Example 1 was duplicated, except that 4 more satellite holes of identical dimensions were placed, evenly spaced, among the first 4 satellite apertures (45° apart). A drop of 10 ⁇ l of water was placed over the center aperture in each case, and over at least one other aperture in Examples 1 and 2, and the rate of drainage into the passage was timed. Drainage into the capillary passage was determined to have ended when there remained no head of liquid in the center aperture to continue driving the flow.
  • Table sets forth the results:
  • the afore-mentioned delay is a feature of the invention that is useful whether or not the invention is applied to solve a displacement error problem.
  • the apertures have any shape, not just those with symmetry, and the larger aperture is as large as, or smaller than, those already described in the aforesaid U.S. Pat. No. 4,233,029.

Abstract

Device and method for transporting liquid within a passage, the device having improved acess means for conveying liquid into the passage. Each access means comprises at least two and preferably more than two, apertures, one larger than the others, the apertures being sized so that only the larger aperture permits independent initiation of flow within the passage.

Description

FIELD OF THE INVENTION
This invention is directed to devices and a method for the capillary transport of liquid along a passage within the device, and specifically to means in the device for conveying liquid into such passage.
BACKGROUND OF THE INVENTION
As described in European Patent application No. 0,010,456, published April 3, 1980, flow-through apertures providing liquid access to a capillary zone or passage are difficult to use if they are circular in shape. The difficulty concerns the tendency of the liquid to not enter the aperture. The smooth cylindrical sidewalls of circular apertures tend to cause a drop of the liquid deposited in the vicinity of the aperture to draw away from the aperture, rather than enter it, unless careful centering is achieved. If careful centering does not occur, the drop circumference does not completely encompass the aperture, but instead intersects it. The surface tension of the liquid in such cases tends to push the liquid away from such circular aperture instead of into it.
The device described in the aforesaid European Application eliminates the problem by the use of special aperture sidewall configurations. These configurations have been found to be very effective and useful in urging the drop to enter the aperture. However, such configurations exclude circular apertures formed by cylindrical sidewalls. Because circular apertures are the simplest to manufacture, it would also be useful to provide a device which allows circular flow-through or ingress apertures to be used even when metering errors occur. However, as noted above, this requires that the drop always encompass the circular aperture.
It will be appreciated that the metering displacement error, that is, the distance between the aperture center and the center of the deposited quantity of liquid, is an important part of the problem. It is impractical to reduce that error to zero by means of metering apparatus and aperture location tolerance control. The only other readily manipulatable variables are the quantity of deposited liquid and the size of the ingress aperture. The quantity of deposited liquid could be increased to insure that the aperture is always encompassed by the circumference of the deposited liquid, as determined by the maximum expected displacement error. However, due to the magnitude of such maximum displacement error such an approach could drastically and unacceptably increase the requisite volume of deposited liquid from the presently preferred level of about 10 μl.
The opposite approach would be to hold the deposited liquid volume constant and reduce the aperture size. This could insure that the aperture is encompassed by the deposited liquid, even when maximum displacement errors occur. However, apertures significantly smaller than about 3 mm diameter have several drawbacks. The surface area contacted by the drop becomes so large, compared to the area of the aperture, that residual liquid tends to remain on the exterior around the aperture, rather than drain into the aperture. Such behavior alters the volume of the liquid that passes through the capillary passage, which in turn can produce errors in the detected analyte levels if such is the end use of the passage. In addition, the large surface contact area that is contacted (compared to the area of the aperture) tends to induce the drop to wander away from a position centered on the aperture.
Thus, for use of circular ingress apertures, a dilemma has existed prior to this invention. Neither increasing the quantity of liquid relative to a fixed size of ingress aperture, nor decreasing the aperture size relative to a fixed quantity of deposited liquid, has appeared to be a satisfactory solution to the reliable use of circular ingress apertures for liquid deposited with a potential displacement error.
(Merely increasing the size of the aperture to encompass the displacement error is not a satisfactory solution because the drop could enter the aperture without contacting the upper surface of the transport passage. In such a case, capillary flow would not initiate.)
SUMMARY OF THE INVENTION
I have discovered a solution to the aforementioned dilemma, namely, a first access aperture capable of having flow-through dimensions small enough to be reliably encompassed by practical drop sizes with practical displacement errors, which, when used with an additional aperture disposed close to the first aperture, provides superior transfer of liquid from the exterior surface to the transport passage.
More specifically, in accord with one aspect of the invention, there is provided a liquid transport device having an exterior surface for receipt of liquid deposited, and wall means interior of the surface for transporting liquid by capillary attraction along a passage. Access means are also provided, for fluidly connecting the exterior surface and a portion of the passage so that liquid deposited on the exterior surface at the access means is transported into and along the passage. The device is improved in that the access means comprises a cluster of apertures extending from the exterior surface to the passage, one of the apertures having a maximum flow-through dimension that allows the liquid to independently initiate capillary flow along the passage. The other apertures have smaller maximum flow-through dimensions that allow liquid to form menisci along the passage wall but prevent independent initiation of capillary flow along the passage.
A method is also provided for improving the flow of deposited liquid from an exterior deposit surface of a transport device to an interior transport passage, the surface including a cluster of apertures extending to the passage, only one of which has a maximum flow-through dimension that is sufficiently large as to allow the liquid to independently initiate transport in the passage. The method comprises the steps of (a) positioning such transport device with the one larger aperture located within a predetermined error range measured from a desired metering position, and (b) depositing such liquid onto the surface so as to encompass the one larger aperture and at least one other aperture.
Thus, it is an advantage of the present invention that the ingress aperture can be circular in flowthrough shape, and still insure proper wetting of the interior capillary passage.
It is a related advantage of the invention that the size of the ingress aperture is reduced to insure it is encompassed within a quantity of deposited liquid, and still provide satisfactory liquid flow into the passage.
Another related advantage of the invention is that such ingress apertures provide more complete drainage into the passage, so that minimal residual liquid is left on the exterior surface.
Still another advantage of the invention, and one that is applicable whether the invention is applied to solve a displacement error problem or not, is that the additional, smaller apertures that deliver menisci along the passage wall as described above, act to slow down the rate of transport of liquid within the passage.
Other advantages and features will become apparent upon reference to the following "Description of the Preferred Embodiments", when read in light of the attached drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is an isometric view of an ISE test element, illustrating the problem solved by the invention;
FIG. 2 is a fragmentary vertical section view of the liquid access aperture of FIG. 1, further illustrating the problem solved by the invention;
FIG. 3 is a fragmentary plan view of a device constructed in accordance with the invention;
FIG. 4 is a section view taken generally along the line IV--IV of FIG. 3;
FIG. 5 is a fragmentary section view similar to that of FIG. 4, but illustrating a comparative example; and
FIG. 6 is a plan view of an ion bridge incorporating the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The problem to which the invention is addressed is illustrated in FIGS. 1 and 2. Device 10 comprises a potentiometric test element as described in U.S. Pat. No. 4,233,029. Ion bridge 12 is disposed above two ion-selective electrodes (ISE's) 14 and 14a. The bridge comprises two members 16 and 18 spaced apart a distance effective to form a capillary transport passage 20 between opposing surfaces 24 and 26, FIG. 2. Useful values for such spacing distance range between about 50 microns and about 600 microns. Access or ingress apertures 28 and 28a are formed in member 16, FIG. 1, connecting exterior surface 30 of member 16 with passage 20. Each aperture 28 and 28a is disposed to receive a separate drop. Apertures 32 are formed in member 18, extending to ISE's 14 and 14a, and are preferably aligned with apertures 28 and 28a, respectively, as indicated in FIG. 2.
Apertures 28 and 28a are adjusted in size and flow-through volume so that the volume of liquid deposit L that flows through the aperture will adequately wet passage 20 and initiate capillary flow, as is further described in the aforesaid U.S. patent.
When aperture 28 is generally circular, and the center C2 on center line C'2 of quantity L is displaced from center line C'1 of aperture 28 so that the circumference of the deposit L intersects, rather than encompasses, the circumference of aperture 28, liquid deposited as a quantity L experiences a tendency to sit up on surface 30, FIG. 2, rather than enter aperture 28. Under these conditions, the meniscus of quantity L apparently encounters an energy barrier that displaces the meniscus away from the aperture, as shown by the arrow. The liquid thus is prevented from entering the aperture, and flow is not initiated.
As illustrated in FIGS. 3 and 4, an improved liquid transport device 112 avoids the problem of noninitiation of flow into the device, noted above. Parts similar to those of FIG. 2 bear the same reference numeral to which the value 100 is added. Thus, device 112 comprises two members 116 and 118 spaced apart a distance "x" to provide a capillary transport passage 120, as is described for example in my aforesaid U.S. Pat. No. 4,233,029. An ingress aperture 128 is provided connecting exterior surface 130 to passage 120 in a manner similar to that described above. Preferably, the maximum flow-through diameter 2 r is less than about 3 mm.
In accordance with one aspect of the invention, aperture 128 is provided with at least one additional satellite aperture 140 to form a cluster of apertures as the ingress means. The satellite aperture 140, having a radius r', also is formed in member 116 extending from surface 130 to passage 120. As is described further hereinafter, aperture 140 assists in providing liquid ingress to passage 120.
The cluster of apertures avoids the problems noted in the "Background". More specifically, the maximum flow-through dimension 2r' of any satellite aperture 140 is smaller than dimension 2r of aperture 128 and is smaller than that which will allow liquid within aperture 140 to contact surface 126, FIG. 4, and thus independently initiate flow within passage 120. Otherwise, as shown in the comparative example of FIG. 5, the independent flows occurring at apertures both of which initiate flow, could entrap air at pocket 200 when the two flows meet along irregularly shaped wavefronts. Such entrapped air tends to interfere with subsequent processing that is carried out within the device, for example, if it is used as an ion bridge as shown in FIG. 1.
The thickness of member 116 is selected in accordance with the wettability of the material used for member 116, such that liquid L penetrates through aperture 140 within a given time frame. Thus, the thickness is governed by the surface energetics of the material. If member 116 is polystyrene, for example, it should be no thicker than about 200 microns.
Thus, the dimensions of aperture 140 are selected so that the liquid within the aperture penetrates passage 120 sufficiently, and only sufficiently, to form a meniscus M2, FIG. 4, such that, when the advancing meniscus M1 arrives from aperture 128 as per the dotted arrow, meniscus M2 coalesces with M1. For such coalescence, meniscus M2 is either generally convex, as shown, or generally concave, at surface 124. The particular shape will depend primarily upon the height of the head of liquid above exterior surface 130. For apertures 128 and 140 that are circular in flow-through shape, dimensions r and r' are radii. If apertures 128 and 140 are non-circular, dimensions r and r' are one-half the maximum flow-through dimensions.
A second reason for the dimension 2r' being less than dimension 2r of aperture 128 is that, as the dimension 2r' of aperture 140 approaches 2r of aperture 128, it becomes more and more difficult to insure that circumference Z3 of aperture 140 falls within circumference Z2 of the deposited liquid, as described hereinafter.
In accordance with another aspect of the invention, to prevent the intersection of the liquid meniscus with aperture 128, that aperture is sized to always be within the predictable contact area of the drop. To this end, the dimension "r" is selected to be no larger than the difference between the predicted radius R of the liquid deposit contact area, and the maximum expected error of displacement d of center C2 compared to center C1. This relationship insures that the circumference Z2 of quantity L, FIG. 3, will always encompass the circumference Z1 of aperture 128.
Stated mathematically, the relationship is, R=d+r. As is readily apparent, this requires that the error d in displacement of the center C2 from the aperture center C1, always be less than radius R of the contact area of the deposited liquid. In apparatus tending to produce larger displacement errors d, radius r is decreased to avoid increasing radius R.
Therefore, r and Z1 as shown in FIGS. 3 and 4 are maximum allowable values; and preferably aperture 128 has a radius and circumference, respectively, that are less than these.
The maximum displacement error is partially a function of the equipment used to deposit the liquid, and more specifically, of the tolerances inherent in the relative movement of the capillary transport device and that equipment, leading to the liquid-depositing step. The displacement error is also a function of tolerances within the transport device itself. If apertures 128 and 140 are not formed so as to be spaced an expected distance from a locating edge of the device, then those apertures are not going to be properly aligned with the apparatus used to deposit the liquid, even if the device is otherwise properly positioned.
The method of metering preferably proceeds as follows: Center C1 of aperture 128, FIG. 3, represents the most likely, or ideal, location of the liquid L if metering occurs exactly as desired. Distance "d" represents the possible displacement error, arising from the aforementioned factors. To be certain that the larger aperture of the cluster is always encompassed by liquid L, the device 112 bearing that aperture is positioned relative to the metering apparatus so that such aperture is within circumference Z1. That is, for an aperture 128 having a slightly smaller diameter than diameter 2r which is the "worst" case, Z1 becomes a hypothetical circle within which the actual aperture 128 of a radius less than r, is located. Thus circumference Z1 can be considered to be the circumference of the predetermined error range for the location of aperture 128 relative to center C1, the ideal center of metering.
Thereafter, quantity L is deposited onto surface 130 so as to encompass aperture 128 and at least one of apertures 140.
Examples of useful values for r≦R-d, in systems having a displacement error d of 0.125 mm and drop volume to 10 μl, are indicated below:
______________________________________                                    
Material Comprising                                                       
Surface 130  d          R       r ≦ (R- d)                         
______________________________________                                    
Cellulose acetate                                                         
             0.125 mm   2.1 mm  1.9 mm                                    
polystyrene  0.125 mm   1.9 mm  1.7 mm                                    
______________________________________                                    
The cluster is designed so that at least one satellite aperture 140 is also completely encompassed by the deposited liquid L. To achieve this result, the center C3 of aperture 140 is preferably displaced from the center C1 of aperture 128 in the direction of the expected displacement error. Furthermore, it is displaced by a distance δ, FIG. 3, that is no greater than that which will insure that its circumference Z3 falls within and is encompassed by the contact area of deposited liquid L for the expected error of displacement. For example, for aperture 140 to be properly located when displacement is to the left of center C1, FIG. 3, δ≦R-r'=d.
The exact range of values to be selected for r' in keeping with the aforementioned guidelines, varies depending upon several factors. To keep liquid in aperture 140 from independently contacting surface 126, the spacing x of the passage must be taken into account, as well as the height of the head of liquid created by the sesile drop L.
Assuming the preferred conditions of about 10 μl for the liquid, it can be shown that the head of liquid created by quantity L, FIG. 4, will always be less than the head necessary to force the liquid meniscus M2 to form a hemispherical protuberance into passage 120. Therefore, under the preferred conditions of use, a hemispherical protuberance represents a worst case such that if r' of aperture 140 were to be equal to spacing x, aperture 140 would independently initiate flow within passage 120. To avoid this "worst case", r' of aperture 140 should be less than spacing x, or, for O.05 mm≦x ≦0.6 mm as noted above for passage 20 of FIG. 2, the maximum that r' can be is a value just less than 0.05 mm up to a value just less than 0.6 mm, respectively.
An empirical test for the determination of the value of r' is, liquid L is deposited so as to circumscribe only the aperture 140 of interest. If flow is not initiated, then r' is sufficiently small.
It will be readily appreciated that the preferred values for r' are much less than the afore-noted maximums. Thus, for aperture 128 having a radius r of between about 0.75 mm to about 1.15 mm, and most preferably about 0.95 mm, aperture 140 preferably has a radius r' between about 0.05 mm and about 0.125 mm, most preferably about 0.075 mm.
When meniscus M1 coalesces with meniscus M2 as noted above, a second flow path is completed from liquid L on the surface, into the passage. It is this coalescence event which has been found to produce a reduction in the rate of traverse of passage 120 by the liquid. That is, the energy and time needed to bring about the coalescence reduces the rate of drainage into passage 120, and therefore also the flow rate within the passage. That this coalescence event should produce the reduction in drainage rate, was quite unexpected.
Most preferably, because the direction of the displacement error is usually unknown, more than one satellite aperture 140 is disposed, at approximately equal distances, around aperture 128, with aperture 128 located approximately in the center of the cluster. The spacing of the satellite apertures 140 is selected on the basis that the locus of center C2 is to be found on or within a circle 150, shown as a dot-dash line, FIG. 3, having a radius d, the maximum error of displacement. Most preferably, apertures 140 are spaced so that, no matter where within circle 150 the center C2 falls, the liquid contact area within circumference Z2 will encompass at least one such satellite aperture. For example, four or five satellite apertures evenly spaced (about 90° or 72° respectively) around aperture 128 is a preferred cluster arrangement. The preferred distance δ of the center of each satellite aperture from C1 is between about 1.25 mm and about 1.6 mm, and most preferably about 1.5 mm.
The use of one or more satellite holes has been found to produce several advantages. One advantage is that it acts to "pin down" the deposited quantity of liquid, preventing it from wandering over the deposit surface when device 112 is jarred or vibrated. Another advantage is that it produces more uniform and complete drainage or penetration of the liquid into the passage. A third is that it reduces the rate of flow.
The afore-described improved access aperture means for conveying deposited liquid to an interior transport passage is useful for a variety of transport purposes. A preferred use is to provide an ion bridge for an ISE test element of the type shown in FIG. 1. FIG. 6 illustrates such an ion bridge 112', wherein two clusters 160 and 170 of apertures are provided, each with a center aperture 128' and four satellite apertures 140'. (Primes are added to reference numerals depicting features similar to those shown in the previously described embodiment.) One or more air vents 180 is preferably provided, generally centered between clusters 160 and 170, to allow the escape of entrapped air. In use, a drop of a sample liquid such as blood is deposited to encompass all of the aperture 128' and at least one satellite aperture 140' at one of the clusters 160 or 170, and at the other cluster, a drop of a reference liquid is similarly deposited. Preferably the depositions take place at about the same time. When the two drops meet by flowing under member 116' within passage 120', an electrical circuit is completed, allowing potentiometric measurements to be taken as is discribed in the aforesaid U.S. patent, using potentiometer 226 and contacts 224, FIG. 1.
The apertures in the lower member that lead to the ISE's are either generally aligned with apertures 128', or are offset as described in U.S. Pat. No. 4,271,119, issued on June 2, 1981.
The preferred embodiments are described herein in connection with liquid deposited as a drop. In addition, the invention is applicable to ingress apertures used for any deposited liquid, regardless of the shape or configuration the liquid assumes as it is being deposited. For example, the device is useful with liquid transferred to the device without assuming a drop shape.
The preferred embodiments also refer to the contact area formed by the deposited drop on the exterior surface as being generally the area of a circle having a predictable radius. Whether in fact a circle forms depends on whether the exterior surface for deposit is generally smooth, as in the preferred embodiments, or not. The invention is also applicable to non-circular contact areas, in which case "contact radius" is taken to mean the dimension of the contact area measured from the approximate center of that area to the liquid circumference, along the center line extending between the contact area center and the center of the ingress aperture, i.e., center C1 in FIG. 3.
Still further, the preferred embodiments herein described refer to the use of the invention in an ion bridge for an ISE test element, wherein the ingress aperture is circular. In addition, the invention is applicable to an ingress aperture providing liquid access to a transport passage used for any other purpose. Furthermore, the invention is not restricted by the shape of the ingress apertures. For example, elliptical and polygonal shapes are useful also, particularly those having axisymmetry or a plane of symmetry.
EXAMPLES
The following examples further illustrate the invention.
EXAMPLES 1-2
A capillary passage was constructed using a nominally smooth sheet of polyethylene terephthalate as the bottom sheet, and a nominally smooth sheet of triacetate as the top sheet. The sheets were mounted so as to be spaced apart about 50 microns. Three such test elements were prepared, each with a different pattern of ingress apertures in the top sheet. In the Control, a single circular aperture was punched with a radius of about 0.76 mm. In Example 1, in addition to the aperture of the Control, four circular satellite apertures were punched 90° around the center aperture with radii of about 0.076 mm and centers 1.5 mm from the center of the main aperture. (See the clusters of FIG. 6.) In Example 2, the pattern of Example 1 was duplicated, except that 4 more satellite holes of identical dimensions were placed, evenly spaced, among the first 4 satellite apertures (45° apart). A drop of 10 μl of water was placed over the center aperture in each case, and over at least one other aperture in Examples 1 and 2, and the rate of drainage into the passage was timed. Drainage into the capillary passage was determined to have ended when there remained no head of liquid in the center aperture to continue driving the flow. The following Table sets forth the results:
              TABLE                                                       
______________________________________                                    
                                Drainage                                  
                                time into                                 
         No. of     Equivalent  capillary                                 
         Satellite  Flow-Through                                          
                                passage (sec.)                            
Example  Holes      Diameter*   (±20%)                                 
______________________________________                                    
(Control)                                                                 
         0          0.152       4                                         
1        4          0.155       7                                         
2        8          0.157       8                                         
______________________________________                                    
 *= (Σ Area of holes · 4/π).sup.1/2-                    
Thus, notwithstanding that the equivalent flow-through diameters increased slightly, the more satellite apertures that were present, the longer the drainage time. If any change would have been expected, it would have been the opposite. This delay in drainage time is advantageous as it provides a means for controlling flow in passages that tends to be too fast. For example, if flow occurs too rapidly from cluster 160 to cluster 170 in the device of FIG. 6, the liquid deposited at 160 might reach 170 before the liquid that is to be deposited at 170, enters the passage. Such mistiming could produce contamination.
The afore-mentioned delay is a feature of the invention that is useful whether or not the invention is applied to solve a displacement error problem. In such a use, the apertures have any shape, not just those with symmetry, and the larger aperture is as large as, or smaller than, those already described in the aforesaid U.S. Pat. No. 4,233,029.
The invention has been described in detail with particular reference to preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.

Claims (7)

What is claimed is:
1. In a liquid transport device including an exterior surface adapted to receive a quantity of deposited liquid, wall means interior of said surface for transporting liquid within the device by capillary attraction along a passage, and access means for fluidly connecting said exterior surface and a portion of said passage so that liquid deposited on said exterior surface at said access means is transported to and along said passage,
the improvement wherein said access means comprises a cluster of at least two apertures extending from said exterior surface to said passage, only one of said apertures having a maximum flow-through dimension that is sufficiently large as to allow the liquid to independently initiate transport of liquid within said passage, and the others of said apertures having maximum flow-through dimensions that permit liquid to form a meniscus at a position that is capable of coalescing with liquid advancing within said passage, but not of independently initiating flow within said passage said apertures being positioned whereby liquid sample placed on the one of said apertures that allows independent transport will encompass at least one of the other apertures.
2. A device as defined in claim 1, wherein at least four of said other apertures are disposed around said only one aperture.
3. A device as defined in claim 1, wherein at least said only one aperture has a circular flow-through shape.
4. A device as defined in claim 1, wherein all of said apertures have a circular flow-through shape.
5. A method for introducing a quantity of liquid into an interior capillary transport passage of a liquid transport device, the method comprising the steps of
(a) positioning such transport device having an exterior surface that includes a cluster of at least two apertures extending to said interior passage, only one of said apertures having a maximum flow-through dimension sufficiently large as to allow liquid to independently initiate transport in said passage when placed at said cluster, with said one larger aperture located within a predetermined error range measured from a desired metering position, the others of said apertures being sized to deliver to said passage a meniscus at a position that is capable of coalescing with liquid advancing within said passage, but not independently intiating flow within said passage and
(b) depositing such liquid onto said surface so as to encompass said one larger aperture and at least one other aperture of said cluster.
6. A method as defined in claim 5, wherein said liquid is deposited with a volume of about 10 μlonto said exterior surface to cover a contact area having a radius of about 2.1 mm, and wherein one-half of said maximum flow-through dimension of said one aperture is no larger than about 1.9 mm.
7. A method as defined in claim 5, wherein said liquid is deposited with a volume of about 10 μlonto said exterior surface to cover a contact area having a radius of about 1.9 mm, and wherein one-half of said maximum flow-through dimension of said one aperture is no larger than about 1.7 mm.
US06/401,753 1982-07-26 1982-07-26 Clustered ingress apertures for capillary transport devices and method of use Expired - Lifetime US4439526A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US06/401,753 US4439526A (en) 1982-07-26 1982-07-26 Clustered ingress apertures for capillary transport devices and method of use
CA000414317A CA1174140A (en) 1982-07-26 1982-10-27 Clustered ingress apertures for capillary transport devices and method of use
JP58135671A JPS5940154A (en) 1982-07-26 1983-07-25 Liquid conveyor
DE8383304307T DE3377016D1 (en) 1982-07-26 1983-07-26 Liquid transport device
EP83304307A EP0100235B1 (en) 1982-07-26 1983-07-26 Liquid transport device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US06/401,753 US4439526A (en) 1982-07-26 1982-07-26 Clustered ingress apertures for capillary transport devices and method of use

Publications (1)

Publication Number Publication Date
US4439526A true US4439526A (en) 1984-03-27

Family

ID=23589097

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/401,753 Expired - Lifetime US4439526A (en) 1982-07-26 1982-07-26 Clustered ingress apertures for capillary transport devices and method of use

Country Status (5)

Country Link
US (1) US4439526A (en)
EP (1) EP0100235B1 (en)
JP (1) JPS5940154A (en)
CA (1) CA1174140A (en)
DE (1) DE3377016D1 (en)

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5051237A (en) * 1988-06-23 1991-09-24 P B Diagnostic Systems, Inc. Liquid transport system
US5121050A (en) * 1987-07-04 1992-06-09 Horiba, Ltd. Method of measuring physical properties by super-thin liquid membrane forming mode and interface reaction detection type boisensor by super-thin liquid membrane forming mode
WO1999017093A1 (en) * 1997-09-26 1999-04-08 The Regents Of The University Of Michigan Moving microdroplets
US6048734A (en) * 1995-09-15 2000-04-11 The Regents Of The University Of Michigan Thermal microvalves in a fluid flow method
US6184040B1 (en) 1998-02-12 2001-02-06 Polaroid Corporation Diagnostic assay system and method
US6319719B1 (en) 1999-10-28 2001-11-20 Roche Diagnostics Corporation Capillary hematocrit separation structure and method
US6328930B1 (en) 1999-02-11 2001-12-11 Polaroid Corporation Apparatus for performing diagnostic testing
US6331715B1 (en) 1998-10-14 2001-12-18 Polaroid Corporation Diagnostic assay system and method having a luminescent readout signal
US6406672B1 (en) 2000-01-28 2002-06-18 Roche Diagnostics Plasma retention structure providing internal flow
US6451264B1 (en) 2000-01-28 2002-09-17 Roche Diagnostics Corporation Fluid flow control in curved capillary channels
US6495373B1 (en) 1998-10-14 2002-12-17 Polaroid Corporation Method and apparatus for performing diagnostic tests
US20020197733A1 (en) * 2001-06-20 2002-12-26 Coventor, Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US20020195343A1 (en) * 2001-06-20 2002-12-26 Coventor, Inc. Microfabricated separation device employing a virtual wall for interfacing fluids
US20030007898A1 (en) * 2001-06-20 2003-01-09 Coventor, Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US20030015244A1 (en) * 2001-04-25 2003-01-23 Ismagilov Rustem F. Fluidic switches and method for controlling flow in fluidic systems
US20030015425A1 (en) * 2001-06-20 2003-01-23 Coventor Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US6555060B1 (en) 1998-10-14 2003-04-29 Polaroid Corporation Apparatus for performing diagnostic testing
US6641782B1 (en) 2000-11-15 2003-11-04 Polaroid Corporation Apparatus for performing diagnostic testing
US20040265171A1 (en) * 2003-06-27 2004-12-30 Pugia Michael J. Method for uniform application of fluid into a reactive reagent area
US20040265172A1 (en) * 2003-06-27 2004-12-30 Pugia Michael J. Method and apparatus for entry and storage of specimens into a microfluidic device
US20050084424A1 (en) * 2001-03-28 2005-04-21 Karthik Ganesan Systems and methods for thermal actuation of microfluidic devices
US6902702B1 (en) * 2000-08-16 2005-06-07 University Health Network Devices and methods for producing microarrays of biological samples
US6911183B1 (en) 1995-09-15 2005-06-28 The Regents Of The University Of Michigan Moving microdroplets
US7008799B1 (en) 1997-12-04 2006-03-07 Roche Diagnostics Gmbh Analytical test element with a capillary channel
US20060183216A1 (en) * 2005-01-21 2006-08-17 Kalyan Handique Containers for liquid storage and delivery with application to microfluidic devices
US20070111302A1 (en) * 2005-11-17 2007-05-17 The Regents Of The University Of Michigan Compositions and methods for liquid metering in microchannels
US20070148777A1 (en) * 2001-06-20 2007-06-28 Cytonome, Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US7238534B1 (en) * 1997-12-04 2007-07-03 Roche Diagnostics Gmbh Capillary active test element having an intermediate layer situated between the support and the covering
US20080050804A1 (en) * 2001-03-28 2008-02-28 Kalyan Handique Moving microdroplets in a microfluidic device
US20080257754A1 (en) * 2003-06-27 2008-10-23 Pugia Michael J Method and apparatus for entry of specimens into a microfluidic device
US20090130719A1 (en) * 2007-07-13 2009-05-21 Handylab, Inc. Microfluidic Cartridge
US20090136386A1 (en) * 2007-07-13 2009-05-28 Handylab, Inc. Rack for Sample Tubes and Reagent Holders
US20100009351A1 (en) * 2008-07-11 2010-01-14 Handylab, Inc. Polynucleotide Capture Materials, and Method of Using Same
US20100158754A1 (en) * 2001-09-12 2010-06-24 Handylab, Inc. Microfluidic devices having a reduced number of input and output connections
US20110027151A1 (en) * 2007-07-13 2011-02-03 Handylab, Inc. Reagent tube
US20110038768A1 (en) * 2001-02-14 2011-02-17 Kalyan Handique Heat-reduction methods and systems related to microfluidic devices
US20110207140A1 (en) * 2006-03-24 2011-08-25 Kalyan Handique Microfluidic system for amplifying and detecting polynucleotides in parallel
US8088616B2 (en) 2006-03-24 2012-01-03 Handylab, Inc. Heater unit for microfluidic diagnostic system
US8133671B2 (en) 2007-07-13 2012-03-13 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
USD665095S1 (en) 2008-07-11 2012-08-07 Handylab, Inc. Reagent holder
US8287820B2 (en) 2007-07-13 2012-10-16 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
USD669191S1 (en) 2008-07-14 2012-10-16 Handylab, Inc. Microfluidic cartridge
US8324372B2 (en) 2007-07-13 2012-12-04 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US8470586B2 (en) 2004-05-03 2013-06-25 Handylab, Inc. Processing polynucleotide-containing samples
US8473104B2 (en) 2001-03-28 2013-06-25 Handylab, Inc. Methods and systems for control of microfluidic devices
USD692162S1 (en) 2011-09-30 2013-10-22 Becton, Dickinson And Company Single piece reagent holder
US8679831B2 (en) 2003-07-31 2014-03-25 Handylab, Inc. Processing particle-containing samples
US8709787B2 (en) 2006-11-14 2014-04-29 Handylab, Inc. Microfluidic cartridge and method of using same
US8852862B2 (en) 2004-05-03 2014-10-07 Handylab, Inc. Method for processing polynucleotide-containing samples
US8883490B2 (en) 2006-03-24 2014-11-11 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US8895311B1 (en) 2001-03-28 2014-11-25 Handylab, Inc. Methods and systems for control of general purpose microfluidic devices
US9040288B2 (en) 2006-03-24 2015-05-26 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using the same
US9186677B2 (en) 2007-07-13 2015-11-17 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US9222954B2 (en) 2011-09-30 2015-12-29 Becton, Dickinson And Company Unitized reagent strip
USD787087S1 (en) 2008-07-14 2017-05-16 Handylab, Inc. Housing
US9765389B2 (en) 2011-04-15 2017-09-19 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
US10139012B2 (en) 2007-07-13 2018-11-27 Handylab, Inc. Integrated heater and magnetic separator
US10822644B2 (en) 2012-02-03 2020-11-03 Becton, Dickinson And Company External files for distribution of molecular diagnostic tests and determination of compatibility between tests
US10900066B2 (en) 2006-03-24 2021-01-26 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US11453906B2 (en) 2011-11-04 2022-09-27 Handylab, Inc. Multiplexed diagnostic detection apparatus and methods
US11806718B2 (en) 2006-03-24 2023-11-07 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU583040B2 (en) * 1984-06-13 1989-04-20 Applied Research Systems Ars Holding N.V. Devices for use in chemical test procedures
JPH01148843U (en) * 1988-04-01 1989-10-16
CN111077767B (en) * 2019-12-12 2021-11-30 南京航空航天大学 Satellite constellation networking same-orbit plane capacity expansion reconstruction control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0010456A1 (en) * 1978-10-25 1980-04-30 EASTMAN KODAK COMPANY (a New Jersey corporation) Liquid transport device
US4233029A (en) * 1978-10-25 1980-11-11 Eastman Kodak Company Liquid transport device and method
US4323536A (en) * 1980-02-06 1982-04-06 Eastman Kodak Company Multi-analyte test device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1133059A (en) * 1978-10-25 1982-10-05 Richard L. Columbus Electrode-containing device with capillary transport between electrodes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0010456A1 (en) * 1978-10-25 1980-04-30 EASTMAN KODAK COMPANY (a New Jersey corporation) Liquid transport device
US4233029A (en) * 1978-10-25 1980-11-11 Eastman Kodak Company Liquid transport device and method
US4323536A (en) * 1980-02-06 1982-04-06 Eastman Kodak Company Multi-analyte test device

Cited By (155)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5121050A (en) * 1987-07-04 1992-06-09 Horiba, Ltd. Method of measuring physical properties by super-thin liquid membrane forming mode and interface reaction detection type boisensor by super-thin liquid membrane forming mode
US5051237A (en) * 1988-06-23 1991-09-24 P B Diagnostic Systems, Inc. Liquid transport system
US8617905B2 (en) 1995-09-15 2013-12-31 The Regents Of The University Of Michigan Thermal microvalves
US6048734A (en) * 1995-09-15 2000-04-11 The Regents Of The University Of Michigan Thermal microvalves in a fluid flow method
US6130098A (en) * 1995-09-15 2000-10-10 The Regents Of The University Of Michigan Moving microdroplets
US6911183B1 (en) 1995-09-15 2005-06-28 The Regents Of The University Of Michigan Moving microdroplets
US20050272079A1 (en) * 1995-09-15 2005-12-08 The Regents Of The University Of Michigan Thermal microvalves
US8071056B2 (en) 1995-09-15 2011-12-06 The Regents Of The University Of Michigan Thermal microvalves
WO1999017093A1 (en) * 1997-09-26 1999-04-08 The Regents Of The University Of Michigan Moving microdroplets
US7008799B1 (en) 1997-12-04 2006-03-07 Roche Diagnostics Gmbh Analytical test element with a capillary channel
US7238534B1 (en) * 1997-12-04 2007-07-03 Roche Diagnostics Gmbh Capillary active test element having an intermediate layer situated between the support and the covering
US7799578B2 (en) 1997-12-04 2010-09-21 Roche Diagnostics Gmbh Capillary active test element having an intermediate layer situated between the support and the covering
US6184040B1 (en) 1998-02-12 2001-02-06 Polaroid Corporation Diagnostic assay system and method
US6495373B1 (en) 1998-10-14 2002-12-17 Polaroid Corporation Method and apparatus for performing diagnostic tests
US6331715B1 (en) 1998-10-14 2001-12-18 Polaroid Corporation Diagnostic assay system and method having a luminescent readout signal
US6555060B1 (en) 1998-10-14 2003-04-29 Polaroid Corporation Apparatus for performing diagnostic testing
US20040081586A1 (en) * 1998-10-14 2004-04-29 Polaroid Corporation Method and apparatus for performing diagnostic testing
US6328930B1 (en) 1999-02-11 2001-12-11 Polaroid Corporation Apparatus for performing diagnostic testing
US6319719B1 (en) 1999-10-28 2001-11-20 Roche Diagnostics Corporation Capillary hematocrit separation structure and method
US6451264B1 (en) 2000-01-28 2002-09-17 Roche Diagnostics Corporation Fluid flow control in curved capillary channels
US6406672B1 (en) 2000-01-28 2002-06-18 Roche Diagnostics Plasma retention structure providing internal flow
US6902702B1 (en) * 2000-08-16 2005-06-07 University Health Network Devices and methods for producing microarrays of biological samples
US6641782B1 (en) 2000-11-15 2003-11-04 Polaroid Corporation Apparatus for performing diagnostic testing
US9528142B2 (en) 2001-02-14 2016-12-27 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
US20110038768A1 (en) * 2001-02-14 2011-02-17 Kalyan Handique Heat-reduction methods and systems related to microfluidic devices
US8440149B2 (en) 2001-02-14 2013-05-14 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
US8734733B2 (en) 2001-02-14 2014-05-27 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
US9051604B2 (en) 2001-02-14 2015-06-09 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
US8110158B2 (en) 2001-02-14 2012-02-07 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
US10351901B2 (en) 2001-03-28 2019-07-16 Handylab, Inc. Systems and methods for thermal actuation of microfluidic devices
US8895311B1 (en) 2001-03-28 2014-11-25 Handylab, Inc. Methods and systems for control of general purpose microfluidic devices
US8473104B2 (en) 2001-03-28 2013-06-25 Handylab, Inc. Methods and systems for control of microfluidic devices
US8420015B2 (en) 2001-03-28 2013-04-16 Handylab, Inc. Systems and methods for thermal actuation of microfluidic devices
US8703069B2 (en) 2001-03-28 2014-04-22 Handylab, Inc. Moving microdroplets in a microfluidic device
US20080050804A1 (en) * 2001-03-28 2008-02-28 Kalyan Handique Moving microdroplets in a microfluidic device
US20080219894A1 (en) * 2001-03-28 2008-09-11 Karthik Ganesan Systems and methods for thermal actuation of microfluidic devices
US8768517B2 (en) 2001-03-28 2014-07-01 Handylab, Inc. Methods and systems for control of microfluidic devices
US8894947B2 (en) 2001-03-28 2014-11-25 Handylab, Inc. Systems and methods for thermal actuation of microfluidic devices
US10619191B2 (en) 2001-03-28 2020-04-14 Handylab, Inc. Systems and methods for thermal actuation of microfluidic devices
US10571935B2 (en) 2001-03-28 2020-02-25 Handylab, Inc. Methods and systems for control of general purpose microfluidic devices
US8273308B2 (en) 2001-03-28 2012-09-25 Handylab, Inc. Moving microdroplets in a microfluidic device
US9259735B2 (en) 2001-03-28 2016-02-16 Handylab, Inc. Methods and systems for control of microfluidic devices
US9677121B2 (en) 2001-03-28 2017-06-13 Handylab, Inc. Systems and methods for thermal actuation of microfluidic devices
US7829025B2 (en) 2001-03-28 2010-11-09 Venture Lending & Leasing Iv, Inc. Systems and methods for thermal actuation of microfluidic devices
US20050084424A1 (en) * 2001-03-28 2005-04-21 Karthik Ganesan Systems and methods for thermal actuation of microfluidic devices
US6843262B2 (en) * 2001-04-25 2005-01-18 President And Fellows Of Harvard College Fluidic switches and methods for controlling flow in fluidic systems
US20030015244A1 (en) * 2001-04-25 2003-01-23 Ismagilov Rustem F. Fluidic switches and method for controlling flow in fluidic systems
US7179423B2 (en) 2001-06-20 2007-02-20 Cytonome, Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US20030007898A1 (en) * 2001-06-20 2003-01-09 Coventor, Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US20020195343A1 (en) * 2001-06-20 2002-12-26 Coventor, Inc. Microfabricated separation device employing a virtual wall for interfacing fluids
US20070148777A1 (en) * 2001-06-20 2007-06-28 Cytonome, Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US20030015425A1 (en) * 2001-06-20 2003-01-23 Coventor Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US20020197733A1 (en) * 2001-06-20 2002-12-26 Coventor, Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US20060263264A1 (en) * 2001-06-20 2006-11-23 Cytonome, Inc Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US8323584B2 (en) 2001-09-12 2012-12-04 Handylab, Inc. Method of controlling a microfluidic device having a reduced number of input and output connections
US9028773B2 (en) 2001-09-12 2015-05-12 Handylab, Inc. Microfluidic devices having a reduced number of input and output connections
US20100158754A1 (en) * 2001-09-12 2010-06-24 Handylab, Inc. Microfluidic devices having a reduced number of input and output connections
US8685341B2 (en) 2001-09-12 2014-04-01 Handylab, Inc. Microfluidic devices having a reduced number of input and output connections
US8043581B2 (en) 2001-09-12 2011-10-25 Handylab, Inc. Microfluidic devices having a reduced number of input and output connections
US20040265172A1 (en) * 2003-06-27 2004-12-30 Pugia Michael J. Method and apparatus for entry and storage of specimens into a microfluidic device
US20100172801A1 (en) * 2003-06-27 2010-07-08 Pugia Michael J Method for uniform application of fluid into a reactive reagent area
US20080257754A1 (en) * 2003-06-27 2008-10-23 Pugia Michael J Method and apparatus for entry of specimens into a microfluidic device
US20040265171A1 (en) * 2003-06-27 2004-12-30 Pugia Michael J. Method for uniform application of fluid into a reactive reagent area
US11078523B2 (en) 2003-07-31 2021-08-03 Handylab, Inc. Processing particle-containing samples
US9670528B2 (en) 2003-07-31 2017-06-06 Handylab, Inc. Processing particle-containing samples
US10731201B2 (en) 2003-07-31 2020-08-04 Handylab, Inc. Processing particle-containing samples
US10865437B2 (en) 2003-07-31 2020-12-15 Handylab, Inc. Processing particle-containing samples
US8679831B2 (en) 2003-07-31 2014-03-25 Handylab, Inc. Processing particle-containing samples
US10443088B1 (en) 2004-05-03 2019-10-15 Handylab, Inc. Method for processing polynucleotide-containing samples
US8470586B2 (en) 2004-05-03 2013-06-25 Handylab, Inc. Processing polynucleotide-containing samples
US11441171B2 (en) 2004-05-03 2022-09-13 Handylab, Inc. Method for processing polynucleotide-containing samples
US10604788B2 (en) 2004-05-03 2020-03-31 Handylab, Inc. System for processing polynucleotide-containing samples
US10494663B1 (en) 2004-05-03 2019-12-03 Handylab, Inc. Method for processing polynucleotide-containing samples
US10364456B2 (en) 2004-05-03 2019-07-30 Handylab, Inc. Method for processing polynucleotide-containing samples
US8852862B2 (en) 2004-05-03 2014-10-07 Handylab, Inc. Method for processing polynucleotide-containing samples
US20060183216A1 (en) * 2005-01-21 2006-08-17 Kalyan Handique Containers for liquid storage and delivery with application to microfluidic devices
US8936945B2 (en) 2005-11-17 2015-01-20 The Regents Of The University Of Michigan Compositions and methods for liquid metering in microchannels
US20070111302A1 (en) * 2005-11-17 2007-05-17 The Regents Of The University Of Michigan Compositions and methods for liquid metering in microchannels
US10857535B2 (en) 2006-03-24 2020-12-08 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US10843188B2 (en) 2006-03-24 2020-11-24 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using the same
US11959126B2 (en) 2006-03-24 2024-04-16 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US8883490B2 (en) 2006-03-24 2014-11-11 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US11806718B2 (en) 2006-03-24 2023-11-07 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US9040288B2 (en) 2006-03-24 2015-05-26 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using the same
US11666903B2 (en) 2006-03-24 2023-06-06 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US9080207B2 (en) 2006-03-24 2015-07-14 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US11142785B2 (en) 2006-03-24 2021-10-12 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US11085069B2 (en) 2006-03-24 2021-08-10 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US9802199B2 (en) 2006-03-24 2017-10-31 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US10913061B2 (en) 2006-03-24 2021-02-09 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using the same
US10900066B2 (en) 2006-03-24 2021-01-26 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US20110207140A1 (en) * 2006-03-24 2011-08-25 Kalyan Handique Microfluidic system for amplifying and detecting polynucleotides in parallel
US10821436B2 (en) 2006-03-24 2020-11-03 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using the same
US10821446B1 (en) 2006-03-24 2020-11-03 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US10799862B2 (en) 2006-03-24 2020-10-13 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US8323900B2 (en) 2006-03-24 2012-12-04 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US10695764B2 (en) 2006-03-24 2020-06-30 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US11141734B2 (en) 2006-03-24 2021-10-12 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US8088616B2 (en) 2006-03-24 2012-01-03 Handylab, Inc. Heater unit for microfluidic diagnostic system
US10710069B2 (en) 2006-11-14 2020-07-14 Handylab, Inc. Microfluidic valve and method of making same
US8765076B2 (en) 2006-11-14 2014-07-01 Handylab, Inc. Microfluidic valve and method of making same
US8709787B2 (en) 2006-11-14 2014-04-29 Handylab, Inc. Microfluidic cartridge and method of using same
US9815057B2 (en) 2006-11-14 2017-11-14 Handylab, Inc. Microfluidic cartridge and method of making same
US10065185B2 (en) 2007-07-13 2018-09-04 Handylab, Inc. Microfluidic cartridge
US10625262B2 (en) 2007-07-13 2020-04-21 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US8287820B2 (en) 2007-07-13 2012-10-16 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
US10100302B2 (en) 2007-07-13 2018-10-16 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US11845081B2 (en) 2007-07-13 2023-12-19 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10139012B2 (en) 2007-07-13 2018-11-27 Handylab, Inc. Integrated heater and magnetic separator
US10179910B2 (en) 2007-07-13 2019-01-15 Handylab, Inc. Rack for sample tubes and reagent holders
US10234474B2 (en) 2007-07-13 2019-03-19 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
US20090136386A1 (en) * 2007-07-13 2009-05-28 Handylab, Inc. Rack for Sample Tubes and Reagent Holders
US10590410B2 (en) 2007-07-13 2020-03-17 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US20110027151A1 (en) * 2007-07-13 2011-02-03 Handylab, Inc. Reagent tube
US9701957B2 (en) 2007-07-13 2017-07-11 Handylab, Inc. Reagent holder, and kits containing same
US10071376B2 (en) 2007-07-13 2018-09-11 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US8216530B2 (en) 2007-07-13 2012-07-10 Handylab, Inc. Reagent tube
US8105783B2 (en) 2007-07-13 2012-01-31 Handylab, Inc. Microfluidic cartridge
US11549959B2 (en) 2007-07-13 2023-01-10 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
US10625261B2 (en) 2007-07-13 2020-04-21 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US11060082B2 (en) 2007-07-13 2021-07-13 Handy Lab, Inc. Polynucleotide capture materials, and systems using same
US10632466B1 (en) 2007-07-13 2020-04-28 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US11466263B2 (en) 2007-07-13 2022-10-11 Handylab, Inc. Diagnostic apparatus to extract nucleic acids including a magnetic assembly and a heater assembly
US8133671B2 (en) 2007-07-13 2012-03-13 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10717085B2 (en) 2007-07-13 2020-07-21 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US20090130719A1 (en) * 2007-07-13 2009-05-21 Handylab, Inc. Microfluidic Cartridge
US8415103B2 (en) 2007-07-13 2013-04-09 Handylab, Inc. Microfluidic cartridge
US11266987B2 (en) 2007-07-13 2022-03-08 Handylab, Inc. Microfluidic cartridge
US9347586B2 (en) 2007-07-13 2016-05-24 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
US11254927B2 (en) 2007-07-13 2022-02-22 Handylab, Inc. Polynucleotide capture materials, and systems using same
US8182763B2 (en) 2007-07-13 2012-05-22 Handylab, Inc. Rack for sample tubes and reagent holders
US10844368B2 (en) 2007-07-13 2020-11-24 Handylab, Inc. Diagnostic apparatus to extract nucleic acids including a magnetic assembly and a heater assembly
US9259734B2 (en) 2007-07-13 2016-02-16 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US8324372B2 (en) 2007-07-13 2012-12-04 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US8710211B2 (en) 2007-07-13 2014-04-29 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US9186677B2 (en) 2007-07-13 2015-11-17 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10875022B2 (en) 2007-07-13 2020-12-29 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US9238223B2 (en) 2007-07-13 2016-01-19 Handylab, Inc. Microfluidic cartridge
US9217143B2 (en) 2007-07-13 2015-12-22 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US20100009351A1 (en) * 2008-07-11 2010-01-14 Handylab, Inc. Polynucleotide Capture Materials, and Method of Using Same
USD665095S1 (en) 2008-07-11 2012-08-07 Handylab, Inc. Reagent holder
USD787087S1 (en) 2008-07-14 2017-05-16 Handylab, Inc. Housing
USD669191S1 (en) 2008-07-14 2012-10-16 Handylab, Inc. Microfluidic cartridge
US10781482B2 (en) 2011-04-15 2020-09-22 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
US11788127B2 (en) 2011-04-15 2023-10-17 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
US9765389B2 (en) 2011-04-15 2017-09-19 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
US9480983B2 (en) 2011-09-30 2016-11-01 Becton, Dickinson And Company Unitized reagent strip
US9222954B2 (en) 2011-09-30 2015-12-29 Becton, Dickinson And Company Unitized reagent strip
USD692162S1 (en) 2011-09-30 2013-10-22 Becton, Dickinson And Company Single piece reagent holder
USD742027S1 (en) 2011-09-30 2015-10-27 Becton, Dickinson And Company Single piece reagent holder
USD905269S1 (en) 2011-09-30 2020-12-15 Becton, Dickinson And Company Single piece reagent holder
USD831843S1 (en) 2011-09-30 2018-10-23 Becton, Dickinson And Company Single piece reagent holder
US10076754B2 (en) 2011-09-30 2018-09-18 Becton, Dickinson And Company Unitized reagent strip
US11453906B2 (en) 2011-11-04 2022-09-27 Handylab, Inc. Multiplexed diagnostic detection apparatus and methods
US10822644B2 (en) 2012-02-03 2020-11-03 Becton, Dickinson And Company External files for distribution of molecular diagnostic tests and determination of compatibility between tests

Also Published As

Publication number Publication date
EP0100235A3 (en) 1985-05-22
JPS5940154A (en) 1984-03-05
EP0100235A2 (en) 1984-02-08
CA1174140A (en) 1984-09-11
DE3377016D1 (en) 1988-07-14
EP0100235B1 (en) 1988-06-08

Similar Documents

Publication Publication Date Title
US4439526A (en) Clustered ingress apertures for capillary transport devices and method of use
EP0525886B1 (en) Coater for low flowrate coating
US4473457A (en) Liquid transport device providing diversion of capillary flow into a non-vented second zone
JP5466947B2 (en) Pipette tip
CA1142407A (en) Self-cleaning nozzle construction for aspirators
US4271119A (en) Capillary transport device having connected transport zones
KR840006852A (en) Monolithic Reagent Dispenser
EP0070623A2 (en) Reaction cuvette
IE920902A1 (en) Tip to surface spacing for optimum dispensing
US4684445A (en) Method and device of measuring ion activity
JPS6289052A (en) Photographic photosensitive material processor
DE19532110C1 (en) Clamping frame esp. for holding compact discs when printing onto surface
EP3455003B1 (en) Probe wash station for analytical instrumentation
US4567021A (en) U-Shaped reaction tube made of elastic material
EP0212612A2 (en) Method and device of measuring ion activity
US20050079621A1 (en) Liquid transfer system
US5896879A (en) Flow damper for a cleaning station
US20220148900A1 (en) Method and device for treating substrates
JP2000002580A (en) Float switch and float stopper
JP2000117965A (en) Acoustic liquid droplet emitter
CA1104887A (en) Pan for coating apparatus
WO2005092506A1 (en) A system and method for providing a reaction surface of a predetermined area for a limited volume
JP2796129B2 (en) Rectifier for coating liquid used in drum coating method
CN112810989B (en) Container with a lid
WO1990015333A1 (en) Apparatus and method for the self-levelling of liquid in a container

Legal Events

Date Code Title Description
AS Assignment

Owner name: KODAK COMPANY, ROCHESTER, NY A NJ CORP.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:COLUMBUS, RICHARD L.;REEL/FRAME:004197/0064

Effective date: 19820919

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, PL 96-517 (ORIGINAL EVENT CODE: M170); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, PL 96-517 (ORIGINAL EVENT CODE: M171); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

AS Assignment

Owner name: CLINICAL DIAGNOSTIC SYSTEMS INC., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EASTMAN KODAK COMPANY;REEL/FRAME:007453/0348

Effective date: 19950118

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M185); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY