US4406726A - Apparatus for producing compacted insulating glass having parallel planar faces - Google Patents
Apparatus for producing compacted insulating glass having parallel planar faces Download PDFInfo
- Publication number
- US4406726A US4406726A US06/309,119 US30911981A US4406726A US 4406726 A US4406726 A US 4406726A US 30911981 A US30911981 A US 30911981A US 4406726 A US4406726 A US 4406726A
- Authority
- US
- United States
- Prior art keywords
- press platen
- stationary
- insulating glass
- set forth
- press
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B3/00—Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
- E06B3/66—Units comprising two or more parallel glass or like panes permanently secured together
- E06B3/673—Assembling the units
- E06B3/67365—Transporting or handling panes, spacer frames or units during assembly
- E06B3/67386—Presses; Clamping means holding the panes during assembly
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B3/00—Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
- E06B3/66—Units comprising two or more parallel glass or like panes permanently secured together
- E06B3/673—Assembling the units
- E06B3/67365—Transporting or handling panes, spacer frames or units during assembly
Definitions
- This invention comprises apparatus for producing compacted insulating glass having parallel planar faces, comprising two substantially vertical press platens, one of which is stationary whereas the other press platen is mounted in a frame and movable relative to the stationary press platen to perform the compacting operation, and a conveyor, which is disposed adjacent to the lower longitudinal edge of the stationary press platen and serves to compact the insulating glass.
- the movable press platen is forced by a plurality of fluid-operable cylinders against the insulating glass, which lies against the stationary press platen. It has been found that it is extremely difficult or even impossible to supply pressure fluid to a plurality of fluid-operable cylinders so that the latter are operated absolutely in unison. But when the fluid-operable cylinders do not uniformly move the movable press platen, the insulating glass panels will not be properly compacted or the glass panes will even break, in case of particularly large deviations.
- the movable press platen is rigidly connected to racks, which extend at right angles to the movable press platen and are in mesh with pinions that are rotatable on axes that are fixed in the frame, and common drive means are provided for rotating said pinions in synchronism.
- the pinions in mesh with the racks can be rotated only in synchronism so that a displacement of the movable press platen without canting is ensured.
- Another problem arising in connection with the known surface presses is due to the fact that the insulating glass panel is spaced from the stationary press platen by a cushion of air as it is moved to its end position in engagement with the stationary press platen. That air cushion must be adjusted in dependence on the size and weight of the glass panes; this adjustment is very difficult. If air under an excessively high pressure is supplied to the air cushion, the insulating glass panel may be moved too far away from the stationary press platen. If an inadequate quantity of air or air under an inadequate pressure is supplied, then the insulating glasses will bear on the stationary press platen and cannot be moved to the desired end position.
- the stationary press platen is slightly inclined from the vertical away from the movable press platen and carries backing rollers, which are adapted to be retracted entirely into the stationary press platen.
- the backing rollers carried by the stationary press platen are entirely retracted into said platen as soon as the insulating glass element has reached its predetermined end position.
- Insulating glass panels which are received by the compacting station may be open at the bottom so that the bottom edge of the glass pane facing the movable press platen is not yet in contact with the associated leg of the spacing frame. Depending on the size of that glass pane, the same will sag more or less so that the glass panes of the compacted insulating glass panel will be curved inwardly, i.e., concave on the outside.
- the conveyor comprises horizontally spaced apart conveyor rollers and a plurality of upwardly directed nozzles are provided between adjacent ones of said conveyor rollers and serve to blow a gas into the space between the press platens. The blowing of air into the open-bottomed insulating glass panel eliminates the sag of the glass pane which faces the movable press platen so that the compacted insulating glass panels will be entirely planar.
- FIGS. 1 and 2 are side elevations showing respective embodiments diagrammatically and by way of example.
- the apparatus shown in FIG. 1 for producing compacted insulating glass panels having parallel planar faces comprises a movable press platen 1 and a stationary press platen 2, which is carried by a frame 3.
- the press platens 1 and 2 are parallel to each other and are inclined from the vertical by a few degrees, e.g., 5 degrees, toward the frame 3.
- a conveyor is provided below the press platens 1 and 2 and in the embodiment shown in FIG. 1 consists of a plurality of horizontally spaced apart conveyor rollers 4, which are rotatably mounted on substantially horizontal axes.
- Drive means serve to drive the conveyor rollers 4 so that they can convey insulating glass that is to be or has been compacted.
- the insulating glass panel 5 comprises two glass panes 6 and 7 and an interposed spacing frame 8 and when it has been conveyed into the space between the press platens 1 and 2 bears on backing rollers 9.
- These backing rollers 9 are mounted in the press platen 2 for rotation on substantially vertical axes and protrude slightly, e.g., by 1 to 2 mm, beyond that surface of the press platen 2 which faces the movable press platen 1.
- the backing rollers 9 can be entirely retracted into the press platen 2 and for this purpose can be moved by fluid-operable cylinders or other means, not shown, to a position behind the plane of the compacting surface 10 of the press platen 2. If the backing rollers 9 are retractable, drive means for retracting a plurality or all of the backing rollers in unison are preferably provided.
- the press platen 1 which is movable in the direction of the double-headed arrow 11 is provided at its bottom edge with rails 12, which rest on rollers 13 to permit of a displacement of the press platen 1.
- Racks 15 are connected to the rails 12 and to brackets 14, which extend from the top end of the press platen 1 and are parallel to the rails 12.
- the racks 15 are in mesh with pinions 16. Whereas only one rack 15 is shown in FIG. 1 at the top and bottom ends of the press platen 1, it is recommendable to provide two racks 15 and rails 12 and brackets 14 associated therewith at each of the top and bottom ends of the press platen 1.
- the pinions 16 are non-rotatably secured to shafts 17 and 18, which are rotatably mounted in the frame 3.
- the shafts 17 and 18 are coupled for synchronous rotation by means of levers 19 and 20 and a coupling rod 21.
- Drive means e.g., a pressure-fluid cylinder 22, are connected to an extension of the lever 20 and serve to operate the pinions 16.
- the fluid-operable cylinder can displace the press platen 1 in the direction of the double-headed arrow 11 without any canting.
- a retractable limit stop 24 is provided at the delivery end of the stationary press platen 2.
- a sensor 25 consisting, e.g., of a proximity switch, is mounted in the press platen 2 and is disposed before and spaced from the limit stop 24 and in response to the detection of the insulating glass panel acts to decrease the velocity at which the conveyor rollers 4 convey the insulating glass panel. As a result, the latter will not strike on the limit stop 24 at full speed.
- a measuring device 26 is associated with the stationary plate 2 and is movable up and down in the direction of the double-headed arrow 27.
- the measuring device 26 serves to measure the height of the insulating glass panel 5 and in dependence thereon to control the pressure of the air which is supplied to upwardly directed air discharge nozzles disposed between adjacent conveyor rollers 4 and symbolized in the drawing by an arrow 29.
- the arrangement is such that the air is supplied to the nozzles 29 under a higher pressure when larger, i.e., higher glass panels have been detected by the measuring device 26.
- the racks 15 are adjustable by adjusting means 30 relative to the rails 12 and the brackets 14, respectively.
- the adjusting means may comprise screws connected to the racks and nuts screwable on said screws.
- An insulating glass panel 5 consisting of the two glass panes 6 and 7 and the interposed spacing frame 8 is placed on edge on the conveyor rollers 4 and moved as far as to the limit stop 24 while it lies against the backing rollers 9 in the press platen 2.
- the switch 25 operates to decrease the speed of travel and to brake the insulating glass panel 5.
- the backing rollers 9, if they are retractable, are retracted into the press platen 2, so that the glass pane 6 lies against the surface 10 of the press platen 2; that surface is covered, e.g., with felt.
- pressure fluid is then supplied to the fluid-operable cylinder 22 so that the pinions 16 are rotated and the movable press platen 1 is moved toward the stationary press platen 2 and the insulating glass panel 5 lying against the same.
- the insulating glass panel 5 is still open at its bottom, i.e., has a gap between each glass pane and the spacing frame, air is supplied to the upwardly directed nozzles disposed between the conveyor rollers 4.
- the pressure of said air depends on the position of the measuring device 26 corresponding to the level of the top edge of the insulating glass panel 5.
- a sensor 31 causes the supply of air to the nozzles 29 to be interrupted whereafter the compacting operation is completed within 1 to 2 seconds. That time will be sufficient for a relief of any overpressure from the interior of the insulating glass panel 5 before the bottom gap is closed.
- the apparatus according to the invention affords the advantage that the required pressure force to be applied, amounting to a total of 5 tons, can be exerted by small fluid-operable cylinders about 50 mm in diameter owing to the mechanical advantage.
- the movable press platen can readily be shifted over a large distance from the stationary press platen when the rack-and-pinion drives have been disengaged, e.g., for cleaning and maintenance work.
- stops may be provided, which will ensure that the racks and pinions will interengage in preset positions.
- FIG. 2 Another embodiment of the apparatus according to the invention is shown in FIG. 2 and comprises a movable press platen 1 which is carried by the frame 3 just as the stationary press platen 2.
- the limit stop 24 and the measuring device 26 are not shown in FIG. 2.
Landscapes
- Engineering & Computer Science (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Joining Of Glass To Other Materials (AREA)
- Press Drives And Press Lines (AREA)
Abstract
Description
Claims (21)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT0208081A AT385499B (en) | 1981-05-11 | 1981-05-11 | DEVICE FOR PRESSING INSULATING GLASS |
AT2080/81 | 1981-05-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
US4406726A true US4406726A (en) | 1983-09-27 |
Family
ID=3527328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/309,119 Expired - Lifetime US4406726A (en) | 1981-05-11 | 1981-10-06 | Apparatus for producing compacted insulating glass having parallel planar faces |
Country Status (7)
Country | Link |
---|---|
US (1) | US4406726A (en) |
AT (1) | AT385499B (en) |
CH (1) | CH655084A5 (en) |
DE (1) | DE3130645C2 (en) |
FR (1) | FR2505256A1 (en) |
GB (1) | GB2098263B (en) |
IT (1) | IT1168061B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4788910A (en) * | 1983-06-30 | 1988-12-06 | Atlas Pacific Engineering Company | Press for extracting juice from comestible solids and semi-solids such as fruits and vegetables |
US5413156A (en) * | 1992-12-18 | 1995-05-09 | Lisec; Peter | Process and apparatus for filling insulating glass panes with a gas other than air |
US5762739A (en) * | 1988-05-04 | 1998-06-09 | Lenhardt Maschinenbau Gmbh | Process and apparatus for assembling insulating glass panes which are filled with a gas other than air |
US8596024B2 (en) | 2007-11-13 | 2013-12-03 | Infinite Edge Technologies, Llc | Sealed unit and spacer |
US20160298376A1 (en) * | 2013-12-31 | 2016-10-13 | Cardinal Ig Company | Multiple-pane insulating glazing unit assembly, gas filling, and pressing machine |
US9656356B2 (en) | 2013-01-22 | 2017-05-23 | Guardian Ig, Llc | Window unit assembly station and method |
US9951553B2 (en) | 2014-06-05 | 2018-04-24 | Erdman Automation Corporation | High speed parallel process insulated glass manufacturing line |
US10253552B2 (en) | 2016-04-21 | 2019-04-09 | Erdman Automation Corporation | High speed parallel process insulated glass manufacturing line |
CN109678326A (en) * | 2019-03-01 | 2019-04-26 | 夏美佳 | A kind of hot-forming unit of glass |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT391860B (en) * | 1988-04-25 | 1990-12-10 | Lisec Peter | DEVICE FOR DETERMINING THE DISTANCE BETWEEN GLASS PANELS OF INSULATING GLASS PANELS |
AT408982B (en) * | 1990-02-28 | 2002-04-25 | Lisec Peter | METHOD FOR FILLING THE INTERIOR OF INSULATING GLASS PANELS WITH GAS |
DE4100697C3 (en) * | 1990-02-28 | 1999-07-15 | Peter Lisec | Method and device for filling the interior of insulating glass sheet blanks with gas |
ATE166420T1 (en) * | 1994-03-24 | 1998-06-15 | Peter Lisec | METHOD FOR ASSEMBLING INSULATING GLASS PANES, THE INTERIOR OF WHICH IS FILLED WITH A HEAVY GAS AND DEVICE FOR FILLING INSULATING GLASS PANELS WITH HEAVY GAS |
DE102011122157A1 (en) | 2011-12-23 | 2013-06-27 | Fromm Holding Ag | strapping tool |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US443995A (en) * | 1891-01-06 | Attachment for cotton-presses | ||
US1267492A (en) * | 1916-11-08 | 1918-05-28 | John Young | Press. |
US1880873A (en) * | 1928-10-04 | 1932-10-04 | Andrew Terkelsen | Press |
US2353388A (en) * | 1942-10-28 | 1944-07-11 | Bliss E W Co | Apparatus for controlling the slide movement in long-bed hydraulic presses |
US3562474A (en) * | 1967-10-18 | 1971-02-09 | Robert F Sellmann | Arrangement for maintaining parallelism between relatively movable members of an electrical discharge machining apparatus |
US3920504A (en) * | 1974-10-25 | 1975-11-18 | Branson Ultrasonics Corp | Friction welding apparatus |
US3996849A (en) * | 1973-03-01 | 1976-12-14 | Del Jiacco Nicholas A | Apparatus for compaction baling |
US4248656A (en) * | 1977-05-16 | 1981-02-03 | Glasmatec Ag | Device for manufacturing an insulating glass plate |
US4369084A (en) * | 1981-05-26 | 1983-01-18 | Peter Lisec | Apparatus for producing insulating glass filled with a gas other than air |
-
1981
- 1981-05-11 AT AT0208081A patent/AT385499B/en not_active IP Right Cessation
- 1981-07-30 DE DE3130645A patent/DE3130645C2/en not_active Expired
- 1981-08-14 CH CH5256/81A patent/CH655084A5/en not_active IP Right Cessation
- 1981-10-06 US US06/309,119 patent/US4406726A/en not_active Expired - Lifetime
- 1981-10-21 FR FR8119786A patent/FR2505256A1/en active Granted
- 1981-11-10 IT IT24948/81A patent/IT1168061B/en active
- 1981-11-17 GB GB8134616A patent/GB2098263B/en not_active Expired
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US443995A (en) * | 1891-01-06 | Attachment for cotton-presses | ||
US1267492A (en) * | 1916-11-08 | 1918-05-28 | John Young | Press. |
US1880873A (en) * | 1928-10-04 | 1932-10-04 | Andrew Terkelsen | Press |
US2353388A (en) * | 1942-10-28 | 1944-07-11 | Bliss E W Co | Apparatus for controlling the slide movement in long-bed hydraulic presses |
US3562474A (en) * | 1967-10-18 | 1971-02-09 | Robert F Sellmann | Arrangement for maintaining parallelism between relatively movable members of an electrical discharge machining apparatus |
US3996849A (en) * | 1973-03-01 | 1976-12-14 | Del Jiacco Nicholas A | Apparatus for compaction baling |
US3920504A (en) * | 1974-10-25 | 1975-11-18 | Branson Ultrasonics Corp | Friction welding apparatus |
US4248656A (en) * | 1977-05-16 | 1981-02-03 | Glasmatec Ag | Device for manufacturing an insulating glass plate |
US4369084A (en) * | 1981-05-26 | 1983-01-18 | Peter Lisec | Apparatus for producing insulating glass filled with a gas other than air |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4788910A (en) * | 1983-06-30 | 1988-12-06 | Atlas Pacific Engineering Company | Press for extracting juice from comestible solids and semi-solids such as fruits and vegetables |
US5762739A (en) * | 1988-05-04 | 1998-06-09 | Lenhardt Maschinenbau Gmbh | Process and apparatus for assembling insulating glass panes which are filled with a gas other than air |
US5413156A (en) * | 1992-12-18 | 1995-05-09 | Lisec; Peter | Process and apparatus for filling insulating glass panes with a gas other than air |
US5476124A (en) * | 1992-12-18 | 1995-12-19 | Lisec; Peter | Process and apparatus for filling insulating glass panes with a gas other than air |
US9617781B2 (en) | 2007-11-13 | 2017-04-11 | Guardian Ig, Llc | Sealed unit and spacer |
US8596024B2 (en) | 2007-11-13 | 2013-12-03 | Infinite Edge Technologies, Llc | Sealed unit and spacer |
US8795568B2 (en) | 2007-11-13 | 2014-08-05 | Guardian Ig, Llc | Method of making a box spacer with sidewalls |
US9127502B2 (en) | 2007-11-13 | 2015-09-08 | Guardian Ig, Llc | Sealed unit and spacer |
US9187949B2 (en) | 2007-11-13 | 2015-11-17 | Guardian Ig, Llc | Spacer joint structure |
US9656356B2 (en) | 2013-01-22 | 2017-05-23 | Guardian Ig, Llc | Window unit assembly station and method |
US10246933B2 (en) | 2013-01-22 | 2019-04-02 | Guardian Ig, Llc | Window unit assembly station and method |
US20160298376A1 (en) * | 2013-12-31 | 2016-10-13 | Cardinal Ig Company | Multiple-pane insulating glazing unit assembly, gas filling, and pressing machine |
US11168515B2 (en) * | 2013-12-31 | 2021-11-09 | Cardinal Ig Company | Multiple-pane insulating glazing unit assembly, gas filling, and pressing machine |
US9951553B2 (en) | 2014-06-05 | 2018-04-24 | Erdman Automation Corporation | High speed parallel process insulated glass manufacturing line |
US10988974B2 (en) | 2014-06-05 | 2021-04-27 | Erdman Automation Corporation | High speed parallel process insulated glass manufacturing line |
US10253552B2 (en) | 2016-04-21 | 2019-04-09 | Erdman Automation Corporation | High speed parallel process insulated glass manufacturing line |
US10704319B2 (en) | 2016-04-21 | 2020-07-07 | Erdman Automation Corporation | High speed parallel process insulated glass manufacturing line |
US11174671B2 (en) | 2016-04-21 | 2021-11-16 | Erdman Automation Corporation | High speed parallel process insulated glass manufacturing line |
US11828104B2 (en) | 2016-04-21 | 2023-11-28 | Erdman Automation Corporation | High speed parallel process insulated glass manufacturing line |
CN109678326A (en) * | 2019-03-01 | 2019-04-26 | 夏美佳 | A kind of hot-forming unit of glass |
Also Published As
Publication number | Publication date |
---|---|
AT385499B (en) | 1988-04-11 |
CH655084A5 (en) | 1986-03-27 |
GB2098263A (en) | 1982-11-17 |
DE3130645C2 (en) | 1985-06-27 |
FR2505256B3 (en) | 1984-07-13 |
ATA208081A (en) | 1982-04-15 |
IT8124948A0 (en) | 1981-11-10 |
GB2098263B (en) | 1984-11-14 |
IT1168061B (en) | 1987-05-20 |
DE3130645A1 (en) | 1982-11-25 |
FR2505256A1 (en) | 1982-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4406726A (en) | Apparatus for producing compacted insulating glass having parallel planar faces | |
US4369084A (en) | Apparatus for producing insulating glass filled with a gas other than air | |
US3413174A (en) | Conveyor apparatus | |
CN114771920A (en) | Automatic folding device of clothing for tailoring | |
US5070782A (en) | Screen printer | |
CA1082901A (en) | Apparatus and method for the assembly of glass sheets | |
CN117225933A (en) | Leveling machine for stainless steel plate production | |
FI74937B (en) | ANORDING FOR BOILING AV VARMA GLASSKIVOR. | |
CN208962471U (en) | A kind of Wood-plastic profiles surface coating machine | |
CN112867271A (en) | Vertical ink leveling machine | |
CN214448994U (en) | Sealing strip packaging hardware of plastic packaging bag | |
CN111993775A (en) | Non-solvent green printing device for beverage packaging film and working method thereof | |
CN215435285U (en) | Paper material flattening mechanism of paper material flattening die cutting machine | |
IE34674B1 (en) | Glass bending method and apparatus | |
CN211897531U (en) | Glass fiber felt flattening and slitting mechanism | |
CN212522185U (en) | Raw materials conveyer of panty-shape diapers production usefulness | |
CN218224242U (en) | Deflection feeder capable of synchronously deflecting left and right and directly feeding front and back | |
CN219752151U (en) | Automatic turn-over glass cutting machine | |
CN221677588U (en) | Flexible facing brick production equipment | |
US4176506A (en) | Vacuum packing machine with tiltable roller stacking plate | |
CN220641675U (en) | Conveying device for glass production | |
CN220946151U (en) | Cable rubber material open mill | |
GB988711A (en) | Stencil printing machine | |
CN221351186U (en) | Multi-angle visual inspection device | |
CN217226988U (en) | Printing table with protection function for printing machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, PL 96-517 (ORIGINAL EVENT CODE: M170); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PAYMENT IS IN EXCESS OF AMOUNT REQUIRED. REFUND SCHEDULED (ORIGINAL EVENT CODE: F169); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, PL 96-517 (ORIGINAL EVENT CODE: M171); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 8 |
|
REFU | Refund |
Free format text: REFUND - PAYMENT OF MAINTENANCE FEE, 8TH YEAR, PL 96-517 (ORIGINAL EVENT CODE: R171); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M285); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 12 |