US4298274A - Variable density filter for a multi-magnification copying device - Google Patents

Variable density filter for a multi-magnification copying device Download PDF

Info

Publication number
US4298274A
US4298274A US06/110,068 US11006880A US4298274A US 4298274 A US4298274 A US 4298274A US 11006880 A US11006880 A US 11006880A US 4298274 A US4298274 A US 4298274A
Authority
US
United States
Prior art keywords
lens
filter
optical system
magnification
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/110,068
Inventor
James D. Rees
Kenneth W. Altfather, Jr.
William L. Lama
Donna U. Ozern
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xerox Corp filed Critical Xerox Corp
Priority to US06/110,068 priority Critical patent/US4298274A/en
Priority to DE8181300014T priority patent/DE3163692D1/en
Priority to EP81300014A priority patent/EP0033185B1/en
Assigned to XEROX CORPORATION, STAMFORD, CT A CORP. OF NY reassignment XEROX CORPORATION, STAMFORD, CT A CORP. OF NY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: ALTFATHER KENNETH W. JR., LAMA WILLIAM L., REES JAMES D., OZERN DONNA U.
Application granted granted Critical
Publication of US4298274A publication Critical patent/US4298274A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • G03G15/041Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material with variable magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B27/00Photographic printing apparatus
    • G03B27/32Projection printing apparatus, e.g. enlarger, copying camera
    • G03B27/52Details
    • G03B27/54Lamp housings; Illuminating means
    • G03B27/542Lamp housings; Illuminating means for copying cameras, reflex exposure lighting

Definitions

  • This invention relates generally to a full frame copying device and, more particularly to an improved optical system adapted to provide a uniform irradiance at an image plane through a multi-magnification range.
  • the areas of a charged photoconductive surface, which are irradiated by a light image, are dicharged, the degree of discharge dependent upon the intensity (irradiance) of the impinging light rays. It is, therefore, desirable that the light ray intensity vary only due to the reflectance characteristics of the original document being copied rather than due to changes introduced by the imaging components. Stated in another manner, the optimum system would be providing uniform photoconductor irradiance given a uniformly reflecting document.
  • slit-scanning systems utilize a variable density filter in the optical path whose transmissiveness varies inversely to the cos 4 .
  • a variable density filter in the optical path whose transmissiveness varies inversely to the cos 4 .
  • Such a device is described in IBM Technical Disclosure, Vol. 14, No. 11 (April 1972).
  • other circularly symmetrical non-uniformities such as lens exit pupil distortion, lens transmission and vignetting affect the relative irradiance at the imaging plane.
  • the principal object of the present invention to provide uniform imaging of a document in a full frame, multi-magnification copying system by compensating for the effects of cos 4 and other variations through all magnification positions assumed by the projection lens.
  • This object is accomplished by positioning a variable density filter at suitable distance from the projection lens, the filter having aradially varying, circularly symmetric density which attenuates light passing therethrough so as to provide an irradiance profile at the imaging plane which is compenstated for the lens cos 4 falloff, lens pupil distortion, lens transmission and vignetting.
  • This filter will hereinafter be designated as a relative illumination filter.
  • the filter center is fixed in position on the lens optical axis and maintains this position relative to the lens in any magnification location assumed by the lens. According to one aspect of the invention, by maintaining the same relative lens-to-filter spacing, uniform irradiance at the image plane is maintained throughout the reduction range.
  • FIG. 1 is a view of an optical system for a full frame copier with the relative illumination filter of the present invention located in the optical path.
  • FIG. 2 is a graph which illustrates the relative illumination falloff at a photoconductive plane at wide field angles in both a corrected and uncorrected mode.
  • FIG. 3 is a graph illustrating the transmission profile of the filter of FIG. 1.
  • FIG. 4 is a cross-sectional view of the filter shown in FIG. 1.
  • FIG. 5 is a schematic view of one embodiment of the lens and filter of FIG. 1 at unity magnification and reduction positions.
  • FIG. 1 there is shown a full frame exposure optical system which utilizes a relative illumination (RI) filter constructed and positioned according to the principles of the present invention.
  • the optical system may be of the type described in copending U.S. application, Ser. No. 015,558, filed on Feb. 26, 1979 whose contents are hereby incorporated by reference.
  • a completely enclosed housing 10 has a first pair of opposing side walls 12, 14 and a second pair of opposing side walls 16, 18.
  • An upper, or top wall 20 includes a rectangular aperture 22 which, at the center thereof, accommodates a glass platen 24 forming the object plane.
  • the lower, or bottom wall 30 has an aperture 32 therein which accommodates lens 34.
  • Relative illumination (RI) filter 36 is fixedly mounted above lens 34 by a mounting bracket 38 with the center of the filter on lens optical axis Z and the XY plane of the filter perpendicular to the axis.
  • Filter 36 is a variable density filter having a transmission profile that increases with radial displacement from the optical axis as described in greater detail below.
  • An image plane 39 which may, for example, be a photoconductive sheet to which a charge has been applied, is positioned for exposure to light reflected from a document (not shown) on platen 24, transmitted through filter 36 and projected by lens 34.
  • the optimum spacing between the filter and lens depends upon actual system requirements and can be determined by design techniques known to those skilled in the art. If desired, the filter can be incorporated as part of the lens.
  • the optical system also includes a flash illumination source 42 which may be a periodically pulsed xenon lamp.
  • the interior of the housing 10 is preferentially coated with a substantially diffusely reflecting material. When lamp 42 is flashed, a substantially uniform illumination of the document placed on the platen is obtained.
  • the light reflected by the document passes through filter 36 which attenuates the amount of light passing through in accordance with its transmission profile.
  • the compensated light profile is projected through lens 34 and falls upon plane 39 selectively discharging the sheet and resulting in formation of a latent electrostatic image thereon.
  • the lens filter combination is assumed to be at unity (1:1) magnification.
  • Plot 40A shows the improvement in image plane irradiance when designing filter 36 with a transmission profile 50 as shown in FIG. 3.
  • Transmission profile 50 is seen to be radially symmetrc increasing with distance from the center.
  • Profile 50 is obtained by forming filter 36 as shown in FIG. 4.
  • Filter 36 comprises a circular glass plate 52 having a thin layer 54 of a vacuum deposited metal, typically chrome or nichrome. The density of layer 54 is maximum at the filter center and decreases outward to the edges of the plate.
  • Plot 40A in FIG. 2 shows the relative illumination compensation when using the filter of the present invention.
  • FIG. 5 is a schematic view of lens 34 and filter 36 in a unity magnification and reduction position. It is assumed that the system shown in FIG. 1 requires continuously variable optical magnification over a given range while maintaining a constant total optical conjugate. The system is also one in which documents are corner registered.
  • Lens 34 is a zoom lens whose focal length can be continuously varied. As shown in FIG. 5, at position 60, the lens/filter assembly are at unity magnification with the center of each element lying on optical axis z. When operating in a reduction mode, the assembly (by means not shown) is moved to position 62 to adjust the object and image conjugates with the focal length of lens 34 undergoing simultaneous changes to retain proper focusing. The center of the lens/filter assembly now lies on optical axis Z'. It is seen that the filter remains symmetrical with the changing lens optical axis during lens translation and therefore provides continuous and uniform compensation at all magnification positions while maintaining corner registration (C-C').
  • filter of the invention has been shown in connection with the specific embodiment of FIG. 1, it may be practised in other environments.
  • alternate optical systems may change magnification by varying total conjugate: e.g. moving object and/or image planes, addition of folding mirrors. Edge, rather than corner registration, may be employed.
  • filter 34 could be designed to compensate for a non-uniform platen illumination provided the non-uniformity is circularly symmetric about the lens axis at all magnifications used.
  • the filter has been shown mounted on the object side of the lens, it could also be mounted on the image side.
  • the description has described the use of the filter in relatively wide field angle situations where the illumination falloff problems are most severe, the filter is also suitable for use in systems having smaller field angle requirements.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Light Sources And Details Of Projection-Printing Devices (AREA)
  • Optical Systems Of Projection Type Copiers (AREA)

Abstract

In an optical system for a multi-magnification copying device, a relative illumination filter is mounted in a fixed position relative to the projection lens with the center on the lens optical axis. The filter provides a radially varying transmission therethrough which compensates for circularly symmetric nonuniformities in the optical system at any magnification.

Description

BACKGROUND OF THE INVENTION
This invention relates generally to a full frame copying device and, more particularly to an improved optical system adapted to provide a uniform irradiance at an image plane through a multi-magnification range.
In electrophotographic copiers, the areas of a charged photoconductive surface, which are irradiated by a light image, are dicharged, the degree of discharge dependent upon the intensity (irradiance) of the impinging light rays. It is, therefore, desirable that the light ray intensity vary only due to the reflectance characteristics of the original document being copied rather than due to changes introduced by the imaging components. Stated in another manner, the optimum system would be providing uniform photoconductor irradiance given a uniformly reflecting document.
Of the factors affecting relative irradiance at an imaging plane, the most significant is the cosine (cos) variation wherein the irradiance at an image plane is proportional to the cos4 of the angle between the lens axis and the field beam. Thus, even if an object plane is uniformly illuminated, photoconductor irradiance decreases as radial distance from the system optical axis increases. Various approaches have been devised to compensate for this effect. Typically, in slit-scanning systems, a sheet of opaque material having a butterfly slit formed thereon is employed with the irradiance profile. Other slit-scanning systems utilize a variable density filter in the optical path whose transmissiveness varies inversely to the cos4. Such a device is described in IBM Technical Disclosure, Vol. 14, No. 11 (April 1972). In addition to the cos4 variation, other circularly symmetrical non-uniformities such as lens exit pupil distortion, lens transmission and vignetting affect the relative irradiance at the imaging plane.
In full frame imaging systems wherein an entire document is typically illuminated by flash illumination, efforts to compensate for cos4 light falloff have emphasized locating light sources in such a way that the document edges are illuminated to a greater degree than central areas. Two such systems are disclosed in U.S. Pat. Nos. 3,669,538 (Fowler) and 3,777,135 (Rees). If these systems provide a magnification (generally reduction) option, a variation of the field angles (hence, cos4 variation) occurs with magnification changes, and it has not been possible to maintain the desired image plane illumination through all the reduction positions. This problem is further accentuated in system in which the document to be copies is edge or corner-registered due to the assymetrical aspect of the field.
SUMMARY OF THE INVENTION
It is therefore, the principal object of the present invention to provide uniform imaging of a document in a full frame, multi-magnification copying system by compensating for the effects of cos4 and other variations through all magnification positions assumed by the projection lens.
This object is accomplished by positioning a variable density filter at suitable distance from the projection lens, the filter having aradially varying, circularly symmetric density which attenuates light passing therethrough so as to provide an irradiance profile at the imaging plane which is compenstated for the lens cos4 falloff, lens pupil distortion, lens transmission and vignetting. This filter will hereinafter be designated as a relative illumination filter. The filter center is fixed in position on the lens optical axis and maintains this position relative to the lens in any magnification location assumed by the lens. According to one aspect of the invention, by maintaining the same relative lens-to-filter spacing, uniform irradiance at the image plane is maintained throughout the reduction range.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a view of an optical system for a full frame copier with the relative illumination filter of the present invention located in the optical path.
FIG. 2 is a graph which illustrates the relative illumination falloff at a photoconductive plane at wide field angles in both a corrected and uncorrected mode.
FIG. 3 is a graph illustrating the transmission profile of the filter of FIG. 1.
FIG. 4 is a cross-sectional view of the filter shown in FIG. 1.
FIG. 5 is a schematic view of one embodiment of the lens and filter of FIG. 1 at unity magnification and reduction positions.
DESCRIPTION
Referring now to FIG. 1, there is shown a full frame exposure optical system which utilizes a relative illumination (RI) filter constructed and positioned according to the principles of the present invention. The optical system may be of the type described in copending U.S. application, Ser. No. 015,558, filed on Feb. 26, 1979 whose contents are hereby incorporated by reference.
Generally, a completely enclosed housing 10, has a first pair of opposing side walls 12, 14 and a second pair of opposing side walls 16, 18. An upper, or top wall 20 includes a rectangular aperture 22 which, at the center thereof, accommodates a glass platen 24 forming the object plane.
The lower, or bottom wall 30 has an aperture 32 therein which accommodates lens 34.
Relative illumination (RI) filter 36 is fixedly mounted above lens 34 by a mounting bracket 38 with the center of the filter on lens optical axis Z and the XY plane of the filter perpendicular to the axis. Filter 36 is a variable density filter having a transmission profile that increases with radial displacement from the optical axis as described in greater detail below.
An image plane 39 which may, for example, be a photoconductive sheet to which a charge has been applied, is positioned for exposure to light reflected from a document (not shown) on platen 24, transmitted through filter 36 and projected by lens 34. The optimum spacing between the filter and lens depends upon actual system requirements and can be determined by design techniques known to those skilled in the art. If desired, the filter can be incorporated as part of the lens. The optical system also includes a flash illumination source 42 which may be a periodically pulsed xenon lamp. The interior of the housing 10 is preferentially coated with a substantially diffusely reflecting material. When lamp 42 is flashed, a substantially uniform illumination of the document placed on the platen is obtained. The light reflected by the document passes through filter 36 which attenuates the amount of light passing through in accordance with its transmission profile. The compensated light profile is projected through lens 34 and falls upon plane 39 selectively discharging the sheet and resulting in formation of a latent electrostatic image thereon. The lens filter combination is assumed to be at unity (1:1) magnification.
In the absence of filter 36, the effects of cos4 and other variations at half field angles of up to 36° would result in a falloff of relative irradiance at the image plane as shown by plot 40 of FIG. 2. Plot 40A shows the improvement in image plane irradiance when designing filter 36 with a transmission profile 50 as shown in FIG. 3. Transmission profile 50 is seen to be radially symmetrc increasing with distance from the center. Profile 50 is obtained by forming filter 36 as shown in FIG. 4. Filter 36 comprises a circular glass plate 52 having a thin layer 54 of a vacuum deposited metal, typically chrome or nichrome. The density of layer 54 is maximum at the filter center and decreases outward to the edges of the plate. Typically density layer thickness at the center are in hundreds of microns. Thus, the transmission of the filter, which depends inversely on the density of layer 54, increases with distance from the filter center (optical axis). Plot 40A in FIG. 2 shows the relative illumination compensation when using the filter of the present invention.
FIG. 5 is a schematic view of lens 34 and filter 36 in a unity magnification and reduction position. It is assumed that the system shown in FIG. 1 requires continuously variable optical magnification over a given range while maintaining a constant total optical conjugate. The system is also one in which documents are corner registered. Lens 34 is a zoom lens whose focal length can be continuously varied. As shown in FIG. 5, at position 60, the lens/filter assembly are at unity magnification with the center of each element lying on optical axis z. When operating in a reduction mode, the assembly (by means not shown) is moved to position 62 to adjust the object and image conjugates with the focal length of lens 34 undergoing simultaneous changes to retain proper focusing. The center of the lens/filter assembly now lies on optical axis Z'. It is seen that the filter remains symmetrical with the changing lens optical axis during lens translation and therefore provides continuous and uniform compensation at all magnification positions while maintaining corner registration (C-C').
The above principles will be valid for situations requiring enlargement as well. For example, if a document is to be magnified at a 1.5×ratio lens 34/filter 36 would be translated away from the photoreceptor to a new position (not shown) and the focal length adjusted accordingly.
Although the filter of the invention has been shown in connection with the specific embodiment of FIG. 1, it may be practised in other environments. For example, alternate optical systems may change magnification by varying total conjugate: e.g. moving object and/or image planes, addition of folding mirrors. Edge, rather than corner registration, may be employed. While relatively uniform illumination of the object plane has been described, filter 34 could be designed to compensate for a non-uniform platen illumination provided the non-uniformity is circularly symmetric about the lens axis at all magnifications used. Although the filter has been shown mounted on the object side of the lens, it could also be mounted on the image side. Finally, although the description has described the use of the filter in relatively wide field angle situations where the illumination falloff problems are most severe, the filter is also suitable for use in systems having smaller field angle requirements.

Claims (5)

What is claimed is:
1. A full frame, flash exposure optical system for a copier having magnification capabilities, including:
an object plane for supporting a document to be reproduced onto an imaging plane;
an illumination source for illuminating said object plane;
a lens for projecting an image of said object onto an imaging plane;
means for compensating for circularly symmetric exposure variation at said image plane said means comprising a variable transmission filter mounted in a fixed relation to said lens and having its center on the lens optical axis, said filter having an area of varying density which provides, for light passing therethrough, a radially symmetrical light transmission profile which is minimum at the center and which increases with distance from the center;
means for changing the magnification of said optical system said means at least effecting a translation of said lens and filter to maintain document registration;
wherein said filter maintains its position on the lens optical axis at any magnification position and compensates for said exposure variations throughout the magnification range.
2. The optical system of claim 1 wherein said filter is mounted on the object side of said lens.
3. The optical system of claim 1 wherein said filter is mounted on the image side of said lens.
4. The optical system of claim 1 wherein said illumination source provides relatively uniform illumination of said object plane.
5. The optical system of claim 1 wherein said illumination source provides non-uniform illumination of said object plane.
US06/110,068 1980-01-07 1980-01-07 Variable density filter for a multi-magnification copying device Expired - Lifetime US4298274A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US06/110,068 US4298274A (en) 1980-01-07 1980-01-07 Variable density filter for a multi-magnification copying device
DE8181300014T DE3163692D1 (en) 1980-01-07 1981-01-05 Method and apparatus for compensating for illumination defects in an optical system
EP81300014A EP0033185B1 (en) 1980-01-07 1981-01-05 Method and apparatus for compensating for illumination defects in an optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US06/110,068 US4298274A (en) 1980-01-07 1980-01-07 Variable density filter for a multi-magnification copying device

Publications (1)

Publication Number Publication Date
US4298274A true US4298274A (en) 1981-11-03

Family

ID=22331061

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/110,068 Expired - Lifetime US4298274A (en) 1980-01-07 1980-01-07 Variable density filter for a multi-magnification copying device

Country Status (1)

Country Link
US (1) US4298274A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4445774A (en) * 1982-04-30 1984-05-01 Xerox Corporation Document imaging system with improved exposure uniformity at image plane
DE3411894A1 (en) * 1983-03-31 1984-10-04 Fuji Photo Film Co., Ltd., Minami-Ashigara, Kanagawa READING / PRINTING DEVICE
US4653901A (en) * 1986-04-18 1987-03-31 Xerox Corporation Document imaging system using a three-dimensional relative illumination corrector
US4783157A (en) * 1987-04-30 1988-11-08 Xerox Corporation Symmetrical wide angle lens with improved illumination uniformity
US4855277A (en) * 1986-06-16 1989-08-08 Hobart Corporation Thermosensitive recording material having recording layer containing fluorescent dye
US5077154A (en) * 1986-08-08 1991-12-31 Corley Ferrand D E Soft edge mask

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2356694A (en) * 1944-08-22 Optical filter and method of
US3279311A (en) * 1963-10-10 1966-10-18 Gruner & Sohn Device for producing an even distribution of light on a copying frame
US3292487A (en) * 1963-07-17 1966-12-20 Zindler Lumoprint Kg Microfilm camera arrangements
US3397023A (en) * 1964-12-16 1968-08-13 Polaroid Corp Light apertures
US3614222A (en) * 1970-04-24 1971-10-19 Olivetti & Co Spa Optical drive system for reproducing machine
US3669538A (en) * 1970-08-31 1972-06-13 Ibm Illumination system
US3777135A (en) * 1972-07-11 1973-12-04 Xerox Corp Illumination system
US3981565A (en) * 1972-10-28 1976-09-21 Canon Kabushiki Kaisha Light-modulating device
US4229097A (en) * 1977-06-03 1980-10-21 Agence Nationale De Valorisation De La Recherche (Anvar) Apparatus for the photographic reproduction of transparent documents

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2356694A (en) * 1944-08-22 Optical filter and method of
US3292487A (en) * 1963-07-17 1966-12-20 Zindler Lumoprint Kg Microfilm camera arrangements
US3279311A (en) * 1963-10-10 1966-10-18 Gruner & Sohn Device for producing an even distribution of light on a copying frame
US3397023A (en) * 1964-12-16 1968-08-13 Polaroid Corp Light apertures
US3614222A (en) * 1970-04-24 1971-10-19 Olivetti & Co Spa Optical drive system for reproducing machine
US3669538A (en) * 1970-08-31 1972-06-13 Ibm Illumination system
US3777135A (en) * 1972-07-11 1973-12-04 Xerox Corp Illumination system
US3981565A (en) * 1972-10-28 1976-09-21 Canon Kabushiki Kaisha Light-modulating device
US4229097A (en) * 1977-06-03 1980-10-21 Agence Nationale De Valorisation De La Recherche (Anvar) Apparatus for the photographic reproduction of transparent documents

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IBM Technical Disclosure Bulletin, "Illumination Compensation for Cos4θ Lens Attenuation," G. W. Hobgood, Jr., vol. 14, No. 11, Apr. 1972, p. 3324.
Lenses in Photography, The Practical Guide to Optics for Photographers, CH. VIII, "Lens Attachments", Kingslake, published for Garden City Books, Garden City, N.Y., 1951, p. 143.

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4445774A (en) * 1982-04-30 1984-05-01 Xerox Corporation Document imaging system with improved exposure uniformity at image plane
DE3411894A1 (en) * 1983-03-31 1984-10-04 Fuji Photo Film Co., Ltd., Minami-Ashigara, Kanagawa READING / PRINTING DEVICE
US4593996A (en) * 1983-03-31 1986-06-10 Fuji Photo Film Co., Ltd. Reader-printer
US4653901A (en) * 1986-04-18 1987-03-31 Xerox Corporation Document imaging system using a three-dimensional relative illumination corrector
US4855277A (en) * 1986-06-16 1989-08-08 Hobart Corporation Thermosensitive recording material having recording layer containing fluorescent dye
US5077154A (en) * 1986-08-08 1991-12-31 Corley Ferrand D E Soft edge mask
US4783157A (en) * 1987-04-30 1988-11-08 Xerox Corporation Symmetrical wide angle lens with improved illumination uniformity

Similar Documents

Publication Publication Date Title
US4298275A (en) Radially varying transmission filter for wide angle copying device
US4298274A (en) Variable density filter for a multi-magnification copying device
US4118119A (en) Facetted edge fadeout reflector
US4171904A (en) Image forming device of copying apparatus of the variable duplicate size type
US4334763A (en) Electrophotographic copying apparatus
US4445774A (en) Document imaging system with improved exposure uniformity at image plane
JPS6010273A (en) Manuscript scanner
US4355891A (en) Reduction of lamp strobing effects in a reproducing apparatus
EP0033185B1 (en) Method and apparatus for compensating for illumination defects in an optical system
US4571058A (en) Flash illumination and optical imaging system
US4490034A (en) Apparatus for correcting an unevenness in an intensity of illumination of an original in a copying machine capable of variable magnification
US4260249A (en) Two slit illumination aperture
JPS5868062A (en) Image forming apparatus
GB2082334A (en) Line-by-line photocopying
US4653901A (en) Document imaging system using a three-dimensional relative illumination corrector
EP0022175B1 (en) Electrophotographic copier with variable original document to image size ratio
JPS6052838A (en) Exposing device of copying machine
JPH0255766B2 (en)
JPS5824135A (en) Reader printer
JP2651539B2 (en) Original illumination device for copier
JPH0114033Y2 (en)
JP2925348B2 (en) Copier
JPS6018972B2 (en) Exposure compensation device for copying machines
JPS6046538A (en) Adjusting device for quantity of light of variable magnification optical system of copying machine
JPH0652374B2 (en) Light quantity adjusting device for variable magnification optical system of copier

Legal Events

Date Code Title Description
AS Assignment

Owner name: XEROX CORPORATION, STAMFORD, CT A CORP. OF NY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:REES JAMES D.;ALTFATHER KENNETH W. JR.;LAMA WILLIAM L.;AND OTHERS;REEL/FRAME:003883/0877;SIGNING DATES FROM 19791228 TO 19801001

Owner name: XEROX CORPORATION, STAMFORD, CT A CORP. OF NY, CON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:REES JAMES D.;ALTFATHER KENNETH W. JR.;LAMA WILLIAM L.;AND OTHERS;SIGNING DATES FROM 19791228 TO 19801001;REEL/FRAME:003883/0877

STCF Information on status: patent grant

Free format text: PATENTED CASE