US4283448A - Composite polytetrafluoroethylene article and a process for making the same - Google Patents

Composite polytetrafluoroethylene article and a process for making the same Download PDF

Info

Publication number
US4283448A
US4283448A US06121365 US12136580A US4283448A US 4283448 A US4283448 A US 4283448A US 06121365 US06121365 US 06121365 US 12136580 A US12136580 A US 12136580A US 4283448 A US4283448 A US 4283448A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
ptfe
segments
seam
sheets
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06121365
Inventor
Jeffery B. Bowman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gore W L and Associates Inc
Original Assignee
Gore W L and Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/12Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives
    • C08J5/121Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives by heating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/36Bending and joining, e.g. for making hollow articles
    • B29C53/38Bending and joining, e.g. for making hollow articles by bending sheets or strips at right angles to the longitudinal axis of the article being formed and joining the edges
    • B29C53/385Bending and joining, e.g. for making hollow articles by bending sheets or strips at right angles to the longitudinal axis of the article being formed and joining the edges using several sheets to form the circumference
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/006Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor the force created by the liberation of the internal stresses being used for compression moulding or for pressing preformed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/022Particular heating or welding methods not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8253Testing the joint by the use of waves or particle radiation, e.g. visual examination, scanning electron microscopy, or X-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/432Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/49Internally supporting the, e.g. tubular, article during joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/82Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
    • B29C66/826Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps without using a separate pressure application tool, e.g. the own weight of the parts to be joined
    • B29C66/8264Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps without using a separate pressure application tool, e.g. the own weight of the parts to be joined using the thermal expansion of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7371General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined oriented or heat-shrinkable
    • B29C66/73711General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined oriented or heat-shrinkable oriented
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7371General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined oriented or heat-shrinkable
    • B29C66/73711General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined oriented or heat-shrinkable oriented
    • B29C66/73712General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined oriented or heat-shrinkable oriented mono-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7377General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline
    • B29C66/73773General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being semi-crystalline
    • B29C66/73774General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being semi-crystalline the to-be-joined areas of both parts to be joined being semi-crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene, Gore Tex (R)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/14Filters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S138/00Pipes and tubular conduits
    • Y10S138/03Polytetrafluoroethylene, i.e. PTFE
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1328Shrinkable or shrunk [e.g., due to heat, solvent, volatile agent, restraint removal, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1328Shrinkable or shrunk [e.g., due to heat, solvent, volatile agent, restraint removal, etc.]
    • Y10T428/1331Single layer [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/19Sheets or webs edge spliced or joined
    • Y10T428/192Sheets or webs coplanar
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers

Abstract

A porous polytetrafluoroethylene (PTFE) article which is made up of a number of smaller articles with a microstructure of nodes interconnected by fibrils, these articles having been joined to one another such that their microstructure is virtually unaltered across the join. A process for producing such a PTFE article by closely abutting small-shaped PTFE segments and applying a force perpendicular to the seam while heating to a temperature above the crystalline melt point of the segments.

Description

FIELD OF THE INVENTION

This invention relates to a process for making a novel composite article of expanded polytetrafluoroethylene.

BACKGROUND OF THE INVENTION

Polytetrafluoroethylene (hereinafter "PTFE") has excellent heat resistance, chemical resistance, insulation resistance, non-adhesiveness and self-lubrication. This polymer has found wide use in medical, industrial and recreational fields.

A recent invention (U.S. Pat. No. 3,953,566) provides a process for manufacturing highly porous, yet high strength, shaped, PTFE articles. This process involves blending highly crystalline, fine powder PTFE with a liquid lubricant, extruding this mixture through a die which may have desired cross-sectional configuration, and subsequently expanding the shaped article in one or more directions at rates in excess of 10% per second.

Products produced by this process have found widespread acceptance in the industrial, medical, electrical, and clothing arts. The process is somewhat limited in that it is not readily adaptable to the production of large articles with complex cross-sections. A need for such articles is found, for example, in the industrial filtration arts and in large vessel vascular surgery. Although large composite articles can be manufactured by joining smaller articles together by such conventional methods as sewing, welding or gluing, such articles have a discontinuity at the seam. While in many applications this does not present any severe problems, in others such as filtration and body part replacement, it is extremely important that the structure be as uniform as possible over the entire article. If welding or gluing is used to produce large articles, a dense non-porous area is produced. On the other hand, sewing may produce areas which have a greater porosity than the rest of the article. It has been found that the microstructure of nodes and fibrils present in products produced by U.S. Pat. No. 3,953,566 is particularly desirable as both a filter media and as surface for contacting blood and other body fluids. It would, therefore, be desirable to produce composite, complex shapes by joining articles of expanded PTFE with this microstructure in such a manner that the microstructure remains virtually uninterrupted across the join or seam.

BRIEF DESCRIPTION OF THE INVENTION

An objective of the present invention is a process for producing a composite, shaped, PTFE article. Such an article is produced by joining segments of smaller-shaped articles. These smaller segments are held close together and their temperature raised to a temperature above the crystalline melt point of the segments. They are then allowed to cool to room temperature to facilitate handling of the article. A further objective of this invention is the production of a composite, shaped, PTFE article by the above process, with a virtually uninterrupted microstructure of nodes interconnected by fibrils across the join.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic illustration of one of the embodiments of the present invention.

FIGS. 2-4(b) are electromicroscopic photographs of various surfaces of a tube produced in accordance with the invention.

DETAILED DESCRIPTION OF THE INVENTION

Bonding of PTFE to PTFE by mechanically holding the two parts in contact and heating them above the crystalline melt point of PTFE is known in the art. Generally, however, this has resulted in a solid non-porous seam. The present invention utilizes a modification of the process to produce a product in which the node-fibril microstructure present in both parts is maintained virtually uninterrupted across the seam. The result is that a seam-free product is produced. In the present context, the term "edges" is used to refer to that portion of the expanded PTFE article which is to be bonded together and "seam" refers to the area so bonded. Articles refer to any shaped cross-section, e.g., tube, rod, sheet or segment.

PTFE material is available in a variety of shapes, including sheets, rods and tubes from W. L. Gore & Associates, Inc. The articles to be bonded are cut to the required size. Care must be taken to ensure that the edges to be joined are clean, that is neither ragged or dirty. The two edges are then placed in close proximity, i.e., touching one another.

If expanded PTFE is heated above its crystalline melt point while unrestrained, the material will tend to shrink and coalesce into a solid mass. In order, therefore, to ensure that the two articles to be bonded together remain in contact while being heated, mechanical means must be employed to so hold them.

For example, as illustrated in FIG. 1, a large tube can be made from sheets or sections from a number of smaller tubes. The sheets 4 are trimmed at their edges 6(a) and 6(b) to ensure that these edges are clean, that is, not ragged or dirty. The sheets 4 are then laid around a mandrel 2. The edges 6(a) and 6(b) of each sheet 4 are closely butted to the edges 6(a) and 6(b) of the adjoining sheet. The ends of the sheets, A and B, are fixed at these points to the mandrel. This can be achieved in a variety of ways, such as hose clamps or tying the sheets to the mandrel by wire. The reason for so fixing the tube, is to prevent longitudinal retraction of the PTFE on heating.

A strip of expanded PTFE film about 0.75 inches wide and having a longitudinal Matrix Tensile Strength of about 70,000 p.s.i. is spirally wound around the sheets on the mandrel and fastened at the end of the mandrel so it cannot unwrap. Upon heating, this restraining film shrinks, applying pressure on the sheets and keeping the edges 6(a) and 6(b) in close contact. A satisfactory film is commercially available as GORE-TEX expanded filament from W. L. Gore & Associates, Inc., P.O. Box 1220, Elkton, Md. 29121. Although wrapping with an expanded PTFE film is a preferred means of mechanically restraining and holding the edges of the sheets in contact during heating, other means may be used.

The important factor is that there must be some force perpendicular to the seam during sintering. When the film wrapped around the tube retracts, it supplies the necessary force.

The heating of the wrapped tube can be achieved in a salt bath, an air oven, a radiant oven or other heating means. A suitable salt bath can be a molten mixture of sodium nitrites and nitrates and is maintained at a temperature above the crystalline melt point of the segments. The tube is then removed and allowed to cool while still being held restrained. The time above the crystalline melt point will vary depending on the mass of material involved and resin properties. The exact time to produce an optimum bond will depend on a number of factors such as mass of material and the configuration of the shape being produced. Such a time, however, is easily determined with a minimum of experimentation. The following example is intended to illustrate and not limit the present invention. The technique can be used in any of a variety of shapes and sizes where it is important to maintain a virtually uninterrupted microstructure across any joining line or seam.

EXAMPLE I

Three 6.5 cm long, 120° segments were cut from 20 mm inside diameter tubes which had been produced according to the teachings of U.S. Pat. No. 3,953,566. The resin used was Fluon 123 which is a fine powder, PTFE resin commercially available from ICI America. These segments were carefully trimmed to ensure that the edges to be butted were clean. The segments were then carefully laid around a smooth, 20 mm O.D., stainless steel tube. The segments were arranged so that they butted closely together. They were then spirally wrapped with a 0.75 inch wide expanded PTFE film having a Matrix Tensile Strength of about 70,000 p.s.i. which was manufactured according to U.S. Pat. No. 3,962,153.

The mandrel was then placed in an air oven at 380° C. for 12 minutes. Upon removal from the air oven, the mandrel was allowed to cool to room temperature and the formed PTFE tube was carefully slid off the mandrel. For the purpose of this experiment, the wrapping film was carefully removed from the tube in order to photomicrograph the structure at the seam.

FIG. 2 is an angled electromicroscopic photograph of one of the seams made in Example I. The top portion 10, is a topographical view of the inside surface of the tube. The bottom portion 12, is a cross-section view of the tube. In FIG. 2, the seam runs from X to Y. The magnification is 146 times.

FIG. 3(a) is an electromicroscopic photograph of the inside surface of the tube made in Example I. The seam runs from X to Y. The magnification is 122 times. FIG. 3(b) is an electromicroscopic photograph of the inserted area in FIG. 3(a). The seam runs from X to Y and the magnification is 610 times.

FIG. 4(a) is an electromicroscopic photograph of the outside surface, after removal of the film, of the tube made in Example I. The seam runs from X to Y and the magnification is 90 times. FIG. 4(b) is an electromicroscopic photograph of the inserted area shown in FIG. 4(a). The seam runs from X to Y and the magnification is 450 times.

From these electromicroscopic photographs, it is surprising to observe that the node-fibril microstructure is virtually uninterrupted across the seam. Although a small scale example was used to illustrate this invention, this technique can be readily extended to cover large tubes up to several inches in diameter. Equally, the technique can be used with any of a variety of shapes and is not limited to tubular cross-sections. For example, sheets of uniaxially expanded PTFE with thicknesses ranging from about 0.005" to more than 0.100" could be joined together in the following manner. Restrain the PTFE sheets in the direction of their expansion, butt them in place between 1/16" thick sheets of 60 durometer silicon rubber (two sheets of rubber on each side of the PTFE that are not quite butted together with a gap of about 0.010" between them which corresponds to the seam in the PTFE sheets), and place the PTFE and rubber sheets in a press with platens heated to about 380° C. The press could be closed to apply a very small pressure to the sheets sitting on the rubber. This would supply the necessary perpendicular force to the seam, this time in a planar configuration. After an appropriate time, approximately 15 minutes, the electrical heaters on the press could be turned off and the platens cooled by a stream of compressed air. When the platens had cooled to room temperature, the pressure could be released and the sheets removed.

Claims (4)

I claim:
1. A process for joining a plurality of shrinkable expanded porous polytetrafluoroethylene segments, each having a microstructure of nodes interconnected by fibrils, such that the microstructure is virtually uninterrupted at the seam joining said segments, comprising the steps of:
(a) arranging said segments such that their edges are disposed in abutting relationship;
(b) causing a pressure to be applied perpindicular to said abutting edges;
(c) causing said segments to be restrained from shrinking in any direction;
(d) heating said segments while they are so held, to a temperature above the crystalline melt point of polytetrafluoroethylene for a predetermined time; and
(e) allowing said segments to cool while still being held restrained and under pressure.
2. A composite article made in accordance with claim 1.
3. A method for manufacturing a porous composite tube from a plurality of segments of shrinkable expanded porous polytetrafluoroethylene, each having a microstructure of nodes interconnected by fibrils such that the microstructure is virtually uninterrupted at the seam joining said segments comprising the steps of:
(a) forming a tube of expanded porous polytetrafluoroethylene segments by disposing said segments around a suitable mandrel in abutting relationship;
(b) winding a film of high strength shrinkable expanded porous polytetrafluoroethylene with a microstructure of nodes interconnected by fibrils around said segments;
(c) restraining said segments from shrinking longitudinally;
(d) bonding and shrinking said film to said segment, thereby applying pressure perpindicular to the edge of said segments by heating to a temperature above the crystalline melt point of polytetrafluoroethylene for a predetermined time; and
(e) allowing said wrapped bonded segments to cool.
4. A composite article made in accordance with claim 3.
US06121365 1980-02-14 1980-02-14 Composite polytetrafluoroethylene article and a process for making the same Expired - Lifetime US4283448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US06121365 US4283448A (en) 1980-02-14 1980-02-14 Composite polytetrafluoroethylene article and a process for making the same

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US06121365 US4283448A (en) 1980-02-14 1980-02-14 Composite polytetrafluoroethylene article and a process for making the same
DE19813104037 DE3104037C2 (en) 1980-02-14 1981-02-05
GB8103585A GB2068827B (en) 1980-02-14 1981-02-05 Composite polytetrafluoroethylene article and a method for its manufacture
DE19813153231 DE3153231C2 (en) 1980-02-14 1981-02-05
BE203784A BE887501A (en) 1980-02-14 1981-02-12 Manufacturing composite product in polytetrafluoroethylene and process for the manufacture
NL8100672A NL185906C (en) 1980-02-14 1981-02-12 A method of welding together a plurality of segments, and polytetrafluoroethylene complex product therefrom.
FI810449A FI72920C (en) 1980-02-14 1981-02-13 Foerfarande Foer framstaellning of a kombinationsprodukt of polytetrafluorethylene.
JP1916181A JPS6315904B2 (en) 1980-02-14 1981-02-13
CA 370903 CA1165080A (en) 1980-02-14 1981-02-13 Composite polytetrafluoroethylene article and a process for making the same
FR8102848A FR2475974B1 (en) 1980-02-14 1981-02-13 polyetrafluoroethylene composite article and method of preparing
DK63581A DK156419C (en) 1980-02-14 1981-02-13 A process for preparing a porous tube of stretched porous polytetrafluoroethylene

Publications (1)

Publication Number Publication Date
US4283448A true US4283448A (en) 1981-08-11

Family

ID=22396215

Family Applications (1)

Application Number Title Priority Date Filing Date
US06121365 Expired - Lifetime US4283448A (en) 1980-02-14 1980-02-14 Composite polytetrafluoroethylene article and a process for making the same

Country Status (10)

Country Link
US (1) US4283448A (en)
JP (1) JPS6315904B2 (en)
BE (1) BE887501A (en)
CA (1) CA1165080A (en)
DE (2) DE3153231C2 (en)
DK (1) DK156419C (en)
FI (1) FI72920C (en)
FR (1) FR2475974B1 (en)
GB (1) GB2068827B (en)
NL (1) NL185906C (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4371554A (en) * 1979-11-09 1983-02-01 Ashland Food Technology Holdings S.A. Method of making skinless sausage using reusable porous polytetrafluoroethylene casing
US4385093A (en) * 1980-11-06 1983-05-24 W. L. Gore & Associates, Inc. Multi-component, highly porous, high strength PTFE article and method for manufacturing same
US4463329A (en) * 1978-08-15 1984-07-31 Hirosuke Suzuki Dielectric waveguide
US4478665A (en) * 1980-11-06 1984-10-23 W. L. Gore & Associates, Inc. Method for manufacturing highly porous, high strength PTFE articles
US4547424A (en) * 1984-04-10 1985-10-15 Junkosha Company, Ltd. Compression resistant expanded, porous polytetrafluoroethylene composite
US4557957A (en) * 1983-03-18 1985-12-10 W. L. Gore & Associates, Inc. Microporous metal-plated polytetrafluoroethylene articles and method of manufacture
US4701291A (en) * 1986-07-25 1987-10-20 The Duriron Company, Inc. Process of isostatic molding and bonding fluoropolymers
US4787921A (en) * 1986-06-13 1988-11-29 Japan Gore-Tex, Inc. Degassing tube
US4790090A (en) * 1987-04-30 1988-12-13 Sharber Norman G Fish tag
US4973609A (en) * 1988-11-17 1990-11-27 Memron, Inc. Porous fluoropolymer alloy and process of manufacture
US4990296A (en) * 1989-08-21 1991-02-05 Garlock Inc. Welding of filled sintered polytetrafluoroethylene
US5219894A (en) * 1984-12-25 1993-06-15 Sumitomo Electric Industries, Ltd. Method for treating the surface of a thin porous film material
US5245134A (en) * 1990-08-29 1993-09-14 W. L. Gore & Associates, Inc. Polytetrafluoroethylene multiconductor cable and process for manufacture thereof
US5296510A (en) * 1984-12-25 1994-03-22 Sumitomo Electric Industries Ltd. Method for treating the surface of a thin porous film material of tetrafluoroethylene resin
US5474824A (en) * 1992-03-13 1995-12-12 Atrium Medical Corporation Process for expanding polytetrafluoroethylene and products produced thereby
US5478423A (en) * 1993-09-28 1995-12-26 W. L. Gore & Associates, Inc. Method for making a printer release agent supply wick
US5497809A (en) * 1994-01-05 1996-03-12 Wolf; Lawrence W. Vented bending sleeves for coaxial tubing systems
US5607478A (en) * 1996-03-14 1997-03-04 Meadox Medicals Inc. Yarn wrapped PTFE tubular prosthesis
US5609624A (en) * 1993-10-08 1997-03-11 Impra, Inc. Reinforced vascular graft and method of making same
US5746856A (en) * 1992-04-10 1998-05-05 W. L. Gore & Associates, Inc. Method of ultrasonically welding articles of porous polytetrafluoroethylene
US5814175A (en) * 1995-06-07 1998-09-29 Edlon Inc. Welded thermoplastic polymer article and a method and apparatus for making same
US5869156A (en) * 1991-06-04 1999-02-09 Donaldson Company, Inc. Porous products manufactured from polytetrafluoroethylene treated with a perfluoroether fluid and method of manufacturing such products
US6228204B1 (en) * 1998-02-05 2001-05-08 Crane Co. Method and apparatus for welding together fluoropolymer pipe liners
US6341625B1 (en) * 2000-01-10 2002-01-29 Kanagawa Toyota Motor Sales Co., Ltd. Hydraulic brake hose assembly for bicycles
US6620190B1 (en) 1994-05-06 2003-09-16 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Radially expandable polytetrafluoroethylene
US20040026819A1 (en) * 2002-08-09 2004-02-12 The Boeing Company Post-forming of thermoplastic ducts
US20040157024A1 (en) * 1994-06-27 2004-08-12 Colone William M. Radially expandable polytetrafluoroethylene
US20050153121A1 (en) * 1999-08-12 2005-07-14 Bridger Biomed, Inc. PTFE material with aggregations of nodes
US20090053371A1 (en) * 2007-08-21 2009-02-26 Carolie Hancock Package for storing, shipping, preparing and dispensing a meal
US20100131041A1 (en) * 1993-08-18 2010-05-27 Lewis James D Intraluminal Stent Graft
US20100219265A1 (en) * 2007-07-09 2010-09-02 Tanhum Feld Water irrigation system including drip irrigation emitters
US8029563B2 (en) 2004-11-29 2011-10-04 Gore Enterprise Holdings, Inc. Implantable devices with reduced needle puncture site leakage
CN105829415A (en) * 2013-11-29 2016-08-03 大金工业株式会社 Porous body, polymer electrolyte membrane, filter material for filter, and filter unit
US20170049928A1 (en) * 2015-08-17 2017-02-23 Vivex Biomedical, Inc. Umbilical cord transplant product
US9814560B2 (en) 2013-12-05 2017-11-14 W. L. Gore & Associates, Inc. Tapered implantable device and methods for making such devices

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134092A (en) * 1986-11-23 1988-06-06 Takanori Shigee Sterilizer for water of elevated water tank
FR2644103B1 (en) * 1989-03-10 1995-01-13 Eberle Jean Marie Method of manufacturing a body of a tubular wrapping, packing so obtained and apparatus for carrying out this method
DE69431302T2 (en) * 1993-08-18 2003-05-15 Gore & Ass Rohrfoermiges intraluminal usable tissue
US5641373A (en) * 1995-04-17 1997-06-24 Baxter International Inc. Method of manufacturing a radially-enlargeable PTFE tape-reinforced vascular graft
GB0511431D0 (en) 2005-06-04 2005-07-13 Vascutek Ltd Graft

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US612897A (en) * 1898-10-25 Construction of tubes and cylinders
US3207644A (en) * 1959-07-20 1965-09-21 Garlock Inc Method of making a fluorocarbon resin jacketed gasket
US3767500A (en) * 1971-12-28 1973-10-23 Tme Corp Method of laminating long strips of various materials
US3953566A (en) * 1970-05-21 1976-04-27 W. L. Gore & Associates, Inc. Process for producing porous products
US4061517A (en) * 1975-08-27 1977-12-06 Chemelec Products, Inc. Method of making fluorocarbon resin covered gaskets

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3356551A (en) * 1961-08-21 1967-12-05 Martin Marietta Corp Method of joining bodies of polytetrafluoroethylene
DE2549475C3 (en) * 1975-11-05 1979-04-19 Sigri Elektrographit Gmbh, 8901 Meitingen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US612897A (en) * 1898-10-25 Construction of tubes and cylinders
US3207644A (en) * 1959-07-20 1965-09-21 Garlock Inc Method of making a fluorocarbon resin jacketed gasket
US3953566A (en) * 1970-05-21 1976-04-27 W. L. Gore & Associates, Inc. Process for producing porous products
US3767500A (en) * 1971-12-28 1973-10-23 Tme Corp Method of laminating long strips of various materials
US4061517A (en) * 1975-08-27 1977-12-06 Chemelec Products, Inc. Method of making fluorocarbon resin covered gaskets

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4463329A (en) * 1978-08-15 1984-07-31 Hirosuke Suzuki Dielectric waveguide
US4371554A (en) * 1979-11-09 1983-02-01 Ashland Food Technology Holdings S.A. Method of making skinless sausage using reusable porous polytetrafluoroethylene casing
US4478665A (en) * 1980-11-06 1984-10-23 W. L. Gore & Associates, Inc. Method for manufacturing highly porous, high strength PTFE articles
US4385093A (en) * 1980-11-06 1983-05-24 W. L. Gore & Associates, Inc. Multi-component, highly porous, high strength PTFE article and method for manufacturing same
US4557957A (en) * 1983-03-18 1985-12-10 W. L. Gore & Associates, Inc. Microporous metal-plated polytetrafluoroethylene articles and method of manufacture
US4547424A (en) * 1984-04-10 1985-10-15 Junkosha Company, Ltd. Compression resistant expanded, porous polytetrafluoroethylene composite
US5252626A (en) * 1984-12-25 1993-10-12 Sumitomo Electric Industries Inc. Method for treating the surface of a thin porous film material
US5219894A (en) * 1984-12-25 1993-06-15 Sumitomo Electric Industries, Ltd. Method for treating the surface of a thin porous film material
US5296510A (en) * 1984-12-25 1994-03-22 Sumitomo Electric Industries Ltd. Method for treating the surface of a thin porous film material of tetrafluoroethylene resin
US4787921A (en) * 1986-06-13 1988-11-29 Japan Gore-Tex, Inc. Degassing tube
US4701291A (en) * 1986-07-25 1987-10-20 The Duriron Company, Inc. Process of isostatic molding and bonding fluoropolymers
US4790090A (en) * 1987-04-30 1988-12-13 Sharber Norman G Fish tag
US4973609A (en) * 1988-11-17 1990-11-27 Memron, Inc. Porous fluoropolymer alloy and process of manufacture
US4990296A (en) * 1989-08-21 1991-02-05 Garlock Inc. Welding of filled sintered polytetrafluoroethylene
DE4017691A1 (en) * 1989-08-21 1991-02-28 Garlock Inc Welding of sintered, they were full Polytetrafluoroethylene
US5245134A (en) * 1990-08-29 1993-09-14 W. L. Gore & Associates, Inc. Polytetrafluoroethylene multiconductor cable and process for manufacture thereof
US5869156A (en) * 1991-06-04 1999-02-09 Donaldson Company, Inc. Porous products manufactured from polytetrafluoroethylene treated with a perfluoroether fluid and method of manufacturing such products
US5972449A (en) * 1991-06-04 1999-10-26 Donaldson Company, Inc. Porous products manufactured from polytetrafluoroethylene treated with a perfluoroether fluid and methods of manufacturing such products
US5474824A (en) * 1992-03-13 1995-12-12 Atrium Medical Corporation Process for expanding polytetrafluoroethylene and products produced thereby
US5746856A (en) * 1992-04-10 1998-05-05 W. L. Gore & Associates, Inc. Method of ultrasonically welding articles of porous polytetrafluoroethylene
US20100131041A1 (en) * 1993-08-18 2010-05-27 Lewis James D Intraluminal Stent Graft
US8197530B2 (en) 1993-08-18 2012-06-12 W. L. Gore & Associates, Inc. Intraluminal stent graft
US8080051B2 (en) 1993-08-18 2011-12-20 Gore Enterprise Holdings, Inc. Intraluminal stent graft
US8197532B2 (en) 1993-08-18 2012-06-12 W. L. Gore & Associates, Inc. Intraluminal stent graft
US20100222874A1 (en) * 1993-08-18 2010-09-02 Lewis James D Intraluminal Stent Graft
US8197531B2 (en) 1993-08-18 2012-06-12 W.L. Gore & Associates, Inc. Intraluminal stent graft
US8221487B2 (en) 1993-08-18 2012-07-17 W. L. Gore & Associates, Inc. Intraluminal stent graft
US20100222865A1 (en) * 1993-08-18 2010-09-02 Lewis James D Intraluminal Stent Graft
US20100218882A1 (en) * 1993-08-18 2010-09-02 Lewis James D Intraluminal Stent Graft
US20100212809A1 (en) * 1993-08-18 2010-08-26 Lewis James D Intraluminal Stent Graft
US8221488B2 (en) 1993-08-18 2012-07-17 W. L. Gore & Associates, Inc. Intraluminal stent graft
US20100217375A1 (en) * 1993-08-18 2010-08-26 Lewis James D Intraluminal Stent Graft
US20100218885A1 (en) * 1993-08-18 2010-09-02 Lewis James D Intraluminal Stent Graft
US5478423A (en) * 1993-09-28 1995-12-26 W. L. Gore & Associates, Inc. Method for making a printer release agent supply wick
US5709748A (en) * 1993-09-28 1998-01-20 W. L. Gore & Associates, Inc. Release agent supply wick for printer apparatus
US5690739A (en) * 1993-09-28 1997-11-25 W. L. Gore & Associates, Inc. Release agent supply wick for printer apparatus and method for making and using same
US5609624A (en) * 1993-10-08 1997-03-11 Impra, Inc. Reinforced vascular graft and method of making same
US5497809A (en) * 1994-01-05 1996-03-12 Wolf; Lawrence W. Vented bending sleeves for coaxial tubing systems
US6620190B1 (en) 1994-05-06 2003-09-16 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Radially expandable polytetrafluoroethylene
US20080143011A1 (en) * 1994-06-27 2008-06-19 Colone William M Radially expandable polytetrafluoroethylene
US7465483B2 (en) 1994-06-27 2008-12-16 C.R.Bard Inc. Radially expandable polytetrafluoroethylene
US8158041B2 (en) 1994-06-27 2012-04-17 Bard Peripheral Vascular, Inc. Radially expandable polytetrafluoroethylene
US20040157024A1 (en) * 1994-06-27 2004-08-12 Colone William M. Radially expandable polytetrafluoroethylene
US5814175A (en) * 1995-06-07 1998-09-29 Edlon Inc. Welded thermoplastic polymer article and a method and apparatus for making same
US6080198A (en) * 1996-03-14 2000-06-27 Meadox Medicals, Inc. Method for forming a yarn wrapped PTFE tubular prosthesis
US5607478A (en) * 1996-03-14 1997-03-04 Meadox Medicals Inc. Yarn wrapped PTFE tubular prosthesis
US6228204B1 (en) * 1998-02-05 2001-05-08 Crane Co. Method and apparatus for welding together fluoropolymer pipe liners
US7306841B2 (en) 1999-08-12 2007-12-11 Bridger Biomed, Inc. PTFE material with aggregations of nodes
US20050153121A1 (en) * 1999-08-12 2005-07-14 Bridger Biomed, Inc. PTFE material with aggregations of nodes
US6341625B1 (en) * 2000-01-10 2002-01-29 Kanagawa Toyota Motor Sales Co., Ltd. Hydraulic brake hose assembly for bicycles
EP1388409A3 (en) * 2002-08-09 2004-05-19 The Boeing Company Apparatus and method for post-forming thermoplastic ducts
US20070013105A1 (en) * 2002-08-09 2007-01-18 The Boeing Company Post-Forming of Thermoplastic Ducts
US20040026819A1 (en) * 2002-08-09 2004-02-12 The Boeing Company Post-forming of thermoplastic ducts
US7128558B2 (en) 2002-08-09 2006-10-31 The Boeing Company Post-forming of thermoplastic ducts
US8906087B2 (en) 2004-11-29 2014-12-09 W. L. Gore & Associates, Inc. Method of making implantable devices with reduced needle puncture site leakage
US8029563B2 (en) 2004-11-29 2011-10-04 Gore Enterprise Holdings, Inc. Implantable devices with reduced needle puncture site leakage
US20100219265A1 (en) * 2007-07-09 2010-09-02 Tanhum Feld Water irrigation system including drip irrigation emitters
US20090053371A1 (en) * 2007-08-21 2009-02-26 Carolie Hancock Package for storing, shipping, preparing and dispensing a meal
CN105829415A (en) * 2013-11-29 2016-08-03 大金工业株式会社 Porous body, polymer electrolyte membrane, filter material for filter, and filter unit
US9814560B2 (en) 2013-12-05 2017-11-14 W. L. Gore & Associates, Inc. Tapered implantable device and methods for making such devices
US20170049928A1 (en) * 2015-08-17 2017-02-23 Vivex Biomedical, Inc. Umbilical cord transplant product

Also Published As

Publication number Publication date Type
DE3104037A1 (en) 1981-12-24 application
NL8100672A (en) 1981-09-16 application
DK156419C (en) 1990-01-22 grant
NL185906B (en) 1990-03-16 application
FR2475974A1 (en) 1981-08-21 application
BE887501A (en) 1981-06-01 grant
BE887501A1 (en) grant
DK63581A (en) 1981-08-15 application
FI810449L (en) 1981-08-15 grant
FI72920C (en) 1987-08-10 grant
FI72920B (en) 1987-04-30 application
JPS6315904B2 (en) 1988-04-06 grant
CA1165080A (en) 1984-04-10 grant
NL185906C (en) 1990-08-16 grant
CA1165080A1 (en) grant
DE3104037C2 (en) 1986-02-27 grant
DE3153231C2 (en) 1987-05-21 grant
JPS05746835A (en) application
GB2068827B (en) 1983-09-21 grant
JP1475447C (en) grant
FR2475974B1 (en) 1985-06-21 grant
JPS5746835A (en) 1982-03-17 application
DK156419B (en) 1989-08-21 grant
FI810449A (en) application
GB2068827A (en) 1981-08-19 application

Similar Documents

Publication Publication Date Title
US3390704A (en) Polyolefin fluid conduit laminates
US3225129A (en) Method of making memory re-shaped plastic tubes, especially fluorocarbon cylinder jackets
US3426115A (en) Method of making a self-coiling sheet
US3382121A (en) Process for providing heat recoverable sleeve with fusible insert in tightly held contact
US3317924A (en) Vascular prostheses
US5453235A (en) Method of forming dual porosity FTFE tubes by extrusion of concentric preforms
US5476589A (en) Porpous PTFE film and a manufacturing method therefor
US4211741A (en) Extrusion process for laminated medical-surgical tubing
US5381511A (en) Flexible electrically heatable hose
US5529820A (en) Flexible, non-porous tube and a method of making
US5861033A (en) Method of making controlled porosity expanded polytetrafluoroethylene products and fabrication
US3843761A (en) Process for preparing a thermoplastic microporous film involving a cold stretching step and multiple hot stretching steps
US2833686A (en) Bonding polytetrafluoroethylene resins
US5695702A (en) Thermoplastic hollow fiber membrane module and method of manufacture
US5789047A (en) Flexible, multilayered tube
US5928279A (en) Stented, radially expandable, tubular PTFE grafts
US2220545A (en) Method of welding thermoplastic materials
US5071609A (en) Process of manufacturing porous multi-expanded fluoropolymers
US5480711A (en) Nano-porous PTFE biomaterial
US5494301A (en) Wrapped composite gasket material
US20060233991A1 (en) PTFE layers and methods of manufacturing
US5972441A (en) Thin-wall polytetrafluoroethylene tube
US3049465A (en) Method for joining plastic articles
US5976192A (en) Method of forming an externally supported tape reinforced vascular graft
US6235377B1 (en) Microporous membrane with a stratified pore structure created in situ and process

Legal Events

Date Code Title Description
AS Assignment

Owner name: GORE ENTERPRISE HOLDINGS, INC., 555 PAPER MILL ROA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:W. L. GORE & ASSOCIATES, INC., A DE CORP.;REEL/FRAME:004233/0978

Effective date: 19830824

AS Assignment

Owner name: W. L. GORE & ASSOCIATES, INC., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GORE ENTERPRISE HOLDINGS, INC.;REEL/FRAME:027906/0508

Effective date: 20120130