US4228307A - Removal of bromine from acetic acid - Google Patents

Removal of bromine from acetic acid Download PDF

Info

Publication number
US4228307A
US4228307A US05/970,226 US97022678A US4228307A US 4228307 A US4228307 A US 4228307A US 97022678 A US97022678 A US 97022678A US 4228307 A US4228307 A US 4228307A
Authority
US
United States
Prior art keywords
acetic acid
bromine
absorbant
contaminated
weight percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/970,226
Inventor
Wilford J. Zimmerschied
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BP Corp North America Inc
Original Assignee
BP Corp North America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BP Corp North America Inc filed Critical BP Corp North America Inc
Priority to US05/970,226 priority Critical patent/US4228307A/en
Application granted granted Critical
Publication of US4228307A publication Critical patent/US4228307A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/487Separation; Purification; Stabilisation; Use of additives by treatment giving rise to chemical modification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/47Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption

Definitions

  • This invention relates to the removal of bromine from acetic acid and more specifically pertains to the removal of bromine from acetic acid obtained by the catalytic liquid phase oxidation of butane in the presence of catalysis provided by a combination of a source of bromine with one or more transition metal oxidation catalysts, more specifically cobalt, manganese or cobalt and manganese.
  • acetic acid can be prepared by contacting a sufficient concentration of oxygen-containing gas (e.g., oxygen gas at at least 5 liters per hour per 100 grams of butane) with normal liquid butane in the presence of an acetic acid solution of components of catalysis consisting essentially of cobalt (e.g., 1 to 50 milliequivalents per mole of butane) and bromine (2 to 500 milliequivalents per mole of butane).
  • oxygen-containing gas e.g., oxygen gas at at least 5 liters per hour per 100 grams of butane
  • an acetic acid solution of components of catalysis consisting essentially of cobalt (e.g., 1 to 50 milliequivalents per mole of butane) and bromine (2 to 500 milliequivalents per mole of butane).
  • cobalt e.g., 1 to 50 milliequivalents per mole of butane
  • bromine e.g., 2,4-di
  • Concentrated acetic acid (even glacial) distilled from the effluent produced by the foregoing liquid phase oxidation processes is contaminated with bromine-containing compounds and is not generally suitable as an article of commerce even though the commercial specification for glacial acetic acid or acetic anhydride do not set a maximum allowable value for bromine concentration.
  • acetic acid becomes contaminated with bromides when used as solvent or reaction medium for the liquid phase oxidation of alkyl-substituted aromatic compounds (e.g., xylenes, toluene, trimethyl benzenes) with air to the corresponding aromatic carboxylic acids in the presence of catalysis provided by the components comprising a combination of one or more transition metal oxidation metal catalyst and a source of bromine (e.g., Br 2 , HBr, inorganic bromide salt, organic bromide such as tetrabromoethane).
  • alkyl-substituted aromatic compounds e.g., xylenes, toluene, trimethyl benzenes
  • a source of bromine e.g., Br 2 , HBr, inorganic bromide salt, organic bromide such as tetrabromoethane.
  • the bromine contaminated acetic acid is treated by reaction with a metal having electrochemical potential between manganese and iron, inclusive and then contacting the acetic acid through an anion exchanger to remove the bromine or bromides.
  • bromine contaminated acetic acids can contain both ionic and coordinate forms (e.g., bromine attached to carbon) of bromine which are not entirely removed by distillation or fractionation but rather carry through to the 97-100% acetic acid fraction in amounts of from 0.0005 up to 0.015 weight percent total of said two forms of bromine.
  • ionic and coordinate forms e.g., bromine attached to carbon
  • acetic acid can be purified to a bromine content below the present analytical detectability which is, on a weight basis, 3 parts bromine per 1 ⁇ 10 6 parts (i.e., 3 ppm) acetic acid.
  • the foregoing removal of bromine to a concentration of less than 3 ppm bromine by weight on acetic acid can be accomplished by (a) contacting the concentrated (95 to 100%) acetic acid containing from 0.0005 up to 0.015 weight percent bromine and hydrogen gas with a palladium catalyst, preferably a palladium catalyst having palladium crystallites dispersed on the surface of activated carbon; and (b) then contacting the concentrated acetic acid with a solid absorbant.
  • Such palladium on activated carbon (“Pd/C”) catalyst can have, on a weight basis, from 0.01 up to 1.0 percent palladium.
  • the activated carbon should have a high surface area per unit of mass, desirably at least 800 m 2 /g and preferably 1000 to 3000 m 2 /g and a low extraneous metal content.
  • the solid absorbant for example can be any one of the low metal content activated carbons or alumina.
  • the step of contacting the bromine contaminated concentrated acetic acid and hydrogen with the Pd/C catalyst can be conducted with acetic acid in the liquid phase at a temperature of at least 50° C. or under vapor phase conditions at a temperature of at least 115° C.
  • the liquid phase process is conducted by adding Br-contaminated concentrated acetic acid, particulate catalyst (2 to 20 mesh U.S. Standard Sieve) and hydrogen to a closed, pressure controlled vessel stirred zone at a temperature of from 50 up to 120° C. wherein the hydrogen partial pressure of from 0.35 up to 7 kg/cm 2 which will, at temperatures above 115° C., maintain the acetic acid in the liquid phase.
  • the hydrogen-treated acetic acid can be withdrawn by decantation leaving the Pd/C catalyst in the reaction vessel or the suspension of Pd/C can be withdrawn through a filter.
  • the liquid phase contacting also can be conducted by flow of acetic acid upward or downward through a fixed bed of Pd/C catalyst together with a hydrogen gas flow concurrent with or countercurrent to the flow of acetic acid through the fixed bed of Pd/C catalyst.
  • the vapor phase contact of acetic acid and hydrogen with Pd/C catalyst can be conducted by mixing hydrogen gas at a partial pressure of 0.35 to 7 kg/cm 2 and vaporized (115° to 125° C.) concentrated acetic contaminated with bromine and passing the vapor-gas mixture upward or downward through a bed of Pd/C catalyst.
  • the contacting of concentrated acetic acid with the solid absorbent can also be conducted with the acetic acid in the liquid or in the vapor phase.
  • the liquid phase contacting with the solid absorbant can be carried out at a temperature of from about 20° up to 115° C. at 0 kg/cm gauge pressure or at a higher temperature and under elevated pressure to maintain acetic acid in the liquid phase.
  • Such liquid phase contacting can be accomplished by a flow process wherein the liquid acetic acid is permitted to flow downward or upward through a fixed bed of particulated solid absorbant.
  • the liquid acetic acid can be stirred with particulated solid absorbant and then separated by decantation, filtration, centrifugation or other means for solid-liquid separation.
  • a single lot of bromine contaminated concentrated acetic acid (99 wt. % acetic acid) containing 58 ppm total of ionic and coordinate bromine is used in the following 5 examples, two of which are illustrative of the best mode of contact presently contemplated for the practice of the present invention.
  • Ten milliliters of the 58 ppm bromine contaminated concentrated acetic acid are percolated through 1.0 gram of activated carbon of low metal content, i.e., 0.65 weight percent total metals.
  • the recovered acetic acid is found by X-ray diffraction analysis to contain 41 ppm total ionic and coordinate bromine.
  • Comparative Example III The process of Comparative Example III is repeated. After the 2 hours of stirring the acetic acid is separated from the Pd/C catalyst and divided into two equal volume portions. The first portion is percolated through 1.0 gram of activated alumina and is found by X-ray diffraction to contain thereafter less than 3 ppm total ionic and coordinate bromine. The second portion is percolated through the low metal content activated carbon described in Comparative Example II and is found by X-ray diffraction analysis thereafter to contain less than 3 ppm total ionic and coordinate bromine.
  • the amount of Pd/C catalyst and the solid absorbants used in Illustrative Examples 1 and 2 are not the optimum with respect to the quantity of acetic acid therein used. However, one of ordinary skill in this art can readily determine the optimum Pd/C catalyst and absorbant to use per unit weight or volume of bromine contaminated concentrated acetic acid relative to the amount of total bromine contaminant therein to achieve the benefits of this invention as exemplified above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Acetic acid of 95 to 100 weight percent strength containing ionic and coordinate bromide impurities can be purified to a bromine content of less than 3 ppm by the sequence of steps comprising catalytic hydrogenating said acetic acid, treating the hydrogenated acetic acid with a solid absorbant and separating acetic acid therefrom.

Description

FIELD OF THE INVENTION
This invention relates to the removal of bromine from acetic acid and more specifically pertains to the removal of bromine from acetic acid obtained by the catalytic liquid phase oxidation of butane in the presence of catalysis provided by a combination of a source of bromine with one or more transition metal oxidation catalysts, more specifically cobalt, manganese or cobalt and manganese.
PRIOR ART BACKGROUND
According to the U.S. Pat. No. 3,293,292 it is essential for the preparation of acetic acid to use both manganese and cobalt (e.g., in their 2+ form acetate tetrahydrates) with a source of bromine (e.g., ammonium bromide) to oxidize butane with oxygen gas in the liquid phase at 176°-177° C. and a gauge pressure of 65.4 kg/cm2 in the presence of acetic acid as reaction solvent.
More recently U.S. Pat. No. 4,111,986 discloses that acetic acid can be prepared by contacting a sufficient concentration of oxygen-containing gas (e.g., oxygen gas at at least 5 liters per hour per 100 grams of butane) with normal liquid butane in the presence of an acetic acid solution of components of catalysis consisting essentially of cobalt (e.g., 1 to 50 milliequivalents per mole of butane) and bromine (2 to 500 milliequivalents per mole of butane). For this process reaction temperatures of at least 176°-177° C. are preferred at gauge pressures of from 35 up to 211 kg/cm2, preferably from 56 up to 105.5 kg/cm2.
Concentrated acetic acid (even glacial) distilled from the effluent produced by the foregoing liquid phase oxidation processes is contaminated with bromine-containing compounds and is not generally suitable as an article of commerce even though the commercial specification for glacial acetic acid or acetic anhydride do not set a maximum allowable value for bromine concentration.
Also acetic acid becomes contaminated with bromides when used as solvent or reaction medium for the liquid phase oxidation of alkyl-substituted aromatic compounds (e.g., xylenes, toluene, trimethyl benzenes) with air to the corresponding aromatic carboxylic acids in the presence of catalysis provided by the components comprising a combination of one or more transition metal oxidation metal catalyst and a source of bromine (e.g., Br2, HBr, inorganic bromide salt, organic bromide such as tetrabromoethane). While some who practice such process for the production of aromatic carboxylic acids reuse the bromine-contaminated acetic acid in the oxidation process, others (e.g., the assignee of U.S. Pat. No. 3,578,706) prefer to remove the bromine or bromine-containing contaminants before resuing the acetic acid in the oxidation process.
According to said U.S. Pat. No. 3,578,706, the bromine contaminated acetic acid is treated by reaction with a metal having electrochemical potential between manganese and iron, inclusive and then contacting the acetic acid through an anion exchanger to remove the bromine or bromides.
Such bromine contaminated acetic acids can contain both ionic and coordinate forms (e.g., bromine attached to carbon) of bromine which are not entirely removed by distillation or fractionation but rather carry through to the 97-100% acetic acid fraction in amounts of from 0.0005 up to 0.015 weight percent total of said two forms of bromine. We have found that by a single two step process the concentrated acetic acid can be purified to a bromine content below the present analytical detectability which is, on a weight basis, 3 parts bromine per 1×106 parts (i.e., 3 ppm) acetic acid.
STATEMENT OF THE INVENTION
The foregoing removal of bromine to a concentration of less than 3 ppm bromine by weight on acetic acid can be accomplished by (a) contacting the concentrated (95 to 100%) acetic acid containing from 0.0005 up to 0.015 weight percent bromine and hydrogen gas with a palladium catalyst, preferably a palladium catalyst having palladium crystallites dispersed on the surface of activated carbon; and (b) then contacting the concentrated acetic acid with a solid absorbant.
Such palladium on activated carbon ("Pd/C") catalyst can have, on a weight basis, from 0.01 up to 1.0 percent palladium. The activated carbon should have a high surface area per unit of mass, desirably at least 800 m2 /g and preferably 1000 to 3000 m2 /g and a low extraneous metal content.
The solid absorbant, for example can be any one of the low metal content activated carbons or alumina.
The step of contacting the bromine contaminated concentrated acetic acid and hydrogen with the Pd/C catalyst can be conducted with acetic acid in the liquid phase at a temperature of at least 50° C. or under vapor phase conditions at a temperature of at least 115° C. The liquid phase process is conducted by adding Br-contaminated concentrated acetic acid, particulate catalyst (2 to 20 mesh U.S. Standard Sieve) and hydrogen to a closed, pressure controlled vessel stirred zone at a temperature of from 50 up to 120° C. wherein the hydrogen partial pressure of from 0.35 up to 7 kg/cm2 which will, at temperatures above 115° C., maintain the acetic acid in the liquid phase. The hydrogen-treated acetic acid can be withdrawn by decantation leaving the Pd/C catalyst in the reaction vessel or the suspension of Pd/C can be withdrawn through a filter. The liquid phase contacting also can be conducted by flow of acetic acid upward or downward through a fixed bed of Pd/C catalyst together with a hydrogen gas flow concurrent with or countercurrent to the flow of acetic acid through the fixed bed of Pd/C catalyst.
The vapor phase contact of acetic acid and hydrogen with Pd/C catalyst can be conducted by mixing hydrogen gas at a partial pressure of 0.35 to 7 kg/cm2 and vaporized (115° to 125° C.) concentrated acetic contaminated with bromine and passing the vapor-gas mixture upward or downward through a bed of Pd/C catalyst.
The contacting of concentrated acetic acid with the solid absorbent can also be conducted with the acetic acid in the liquid or in the vapor phase. The liquid phase contacting with the solid absorbant can be carried out at a temperature of from about 20° up to 115° C. at 0 kg/cm gauge pressure or at a higher temperature and under elevated pressure to maintain acetic acid in the liquid phase. Such liquid phase contacting can be accomplished by a flow process wherein the liquid acetic acid is permitted to flow downward or upward through a fixed bed of particulated solid absorbant. Or the liquid acetic acid can be stirred with particulated solid absorbant and then separated by decantation, filtration, centrifugation or other means for solid-liquid separation.
A single lot of bromine contaminated concentrated acetic acid (99 wt. % acetic acid) containing 58 ppm total of ionic and coordinate bromine is used in the following 5 examples, two of which are illustrative of the best mode of contact presently contemplated for the practice of the present invention.
COMPARATIVE EXAMPLE I
Ten milliliters of the 58 ppm bromine contaminated bromine is percolated through 1.0 gram of activated alumina at a temperature between 20° and 22° C. By X-ray diffraction analysis the acetic acid recovered is found to contain 54 ppm total of ionic and coordinate bromine.
COMPARATIVE EXAMPLE II
Ten milliliters of the 58 ppm bromine contaminated concentrated acetic acid are percolated through 1.0 gram of activated carbon of low metal content, i.e., 0.65 weight percent total metals. The recovered acetic acid is found by X-ray diffraction analysis to contain 41 ppm total ionic and coordinate bromine.
COMPARATIVE EXAMPLE III
Five grams of the 58 ppm bromine contaminated concentrated acetic acid are charged to a Fisher-Porter Bottle together with 5.0 grams of 4×8 mesh (U.S. Standard Sieve) Pd/C particulate catalyst having a Pd crystallite content of 0.5 weight percent on 1100 m2 /g surface area to mass activated carbon. The bottle is charged with hydrogen to a gauge pressure of 1.75 kg/cm2 and heated by a water bath to 100° C. for 2 hours while the bottle's contents are stirred. The acetic acid so treated is separated from the catalyst and is analyzed by X-ray diffraction. The recovered acetic acid is found to contain 20 ppm total ionic and coordinate bromine.
ILLUSTRATIVE EXAMPLES 1 AND 2
The process of Comparative Example III is repeated. After the 2 hours of stirring the acetic acid is separated from the Pd/C catalyst and divided into two equal volume portions. The first portion is percolated through 1.0 gram of activated alumina and is found by X-ray diffraction to contain thereafter less than 3 ppm total ionic and coordinate bromine. The second portion is percolated through the low metal content activated carbon described in Comparative Example II and is found by X-ray diffraction analysis thereafter to contain less than 3 ppm total ionic and coordinate bromine.
The amount of Pd/C catalyst and the solid absorbants used in Illustrative Examples 1 and 2 are not the optimum with respect to the quantity of acetic acid therein used. However, one of ordinary skill in this art can readily determine the optimum Pd/C catalyst and absorbant to use per unit weight or volume of bromine contaminated concentrated acetic acid relative to the amount of total bromine contaminant therein to achieve the benefits of this invention as exemplified above.

Claims (5)

The invention claimed is:
1. The method of removing bromine from acetic acid of 95 to 100 weight percent concentration contaminated with ionic and co-ordinate bromine in a total amount of from 0.0005 to 0.015 weight percent by contacting hydrogen and said contaminated acetic acid with a palladium catalyst having Pd crystallites dispersed on the surface of low extraneous metal content activated carbon having a surface area to unit mass ratio of at least 800 m2 /g, separating the acetic acid from the catalyst, contacting the separated acetic acid with a solid absorbant, and separating acetic acid from the absorbant.
2. The method of claim 1 wherein the palladium catalyst is contacted with the contaminated acetic acid in the vapor phase and the absorbant is contacted with a vapor phase of acetic acid.
3. The method of claim 1 wherein the palladium catalyst in particulate form is contacted with the contaminated acetic acid in the liquid phase and thereafter the liquid acetic acid is contacted with particulate solid absorbant.
4. The method of claim 3 wherein the palladium catalyst contains 0.5 weight percent palladium and the solid absorbant is activated alumina.
5. The method of claim 3 wherein the palladium catalyst contains 0.5 weight percent palladium and the solid absorbant is low metal content activated carbon.
US05/970,226 1978-12-18 1978-12-18 Removal of bromine from acetic acid Expired - Lifetime US4228307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05/970,226 US4228307A (en) 1978-12-18 1978-12-18 Removal of bromine from acetic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US05/970,226 US4228307A (en) 1978-12-18 1978-12-18 Removal of bromine from acetic acid

Publications (1)

Publication Number Publication Date
US4228307A true US4228307A (en) 1980-10-14

Family

ID=25516616

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/970,226 Expired - Lifetime US4228307A (en) 1978-12-18 1978-12-18 Removal of bromine from acetic acid

Country Status (1)

Country Link
US (1) US4228307A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100121114A1 (en) * 2008-07-31 2010-05-13 Heiko Weiner Tunable catalyst gas phase hydrogenation of carboxylic acids
US20100197985A1 (en) * 2008-07-31 2010-08-05 Celanese International Corporation Processes for making ethanol from acetic acid
US8211821B2 (en) 2010-02-01 2012-07-03 Celanese International Corporation Processes for making tin-containing catalysts
US8222466B2 (en) 2010-02-02 2012-07-17 Celanese International Corporation Process for producing a water stream from ethanol production
US8304586B2 (en) 2010-02-02 2012-11-06 Celanese International Corporation Process for purifying ethanol
US8309773B2 (en) 2010-02-02 2012-11-13 Calanese International Corporation Process for recovering ethanol
US8314272B2 (en) 2010-02-02 2012-11-20 Celanese International Corporation Process for recovering ethanol with vapor separation
US8338650B2 (en) 2008-07-31 2012-12-25 Celanese International Corporation Palladium catalysts for making ethanol from acetic acid
US8344186B2 (en) 2010-02-02 2013-01-01 Celanese International Corporation Processes for producing ethanol from acetaldehyde
US8350098B2 (en) 2011-04-04 2013-01-08 Celanese International Corporation Ethanol production from acetic acid utilizing a molybdenum carbide catalyst
US8450535B2 (en) 2009-07-20 2013-05-28 Celanese International Corporation Ethanol production from acetic acid utilizing a cobalt catalyst
US8501652B2 (en) 2008-07-31 2013-08-06 Celanese International Corporation Catalysts for making ethanol from acetic acid
US8536382B2 (en) 2011-10-06 2013-09-17 Celanese International Corporation Processes for hydrogenating alkanoic acids using catalyst comprising tungsten
US8546622B2 (en) 2008-07-31 2013-10-01 Celanese International Corporation Process for making ethanol from acetic acid using acidic catalysts
US8569551B2 (en) 2010-05-07 2013-10-29 Celanese International Corporation Alcohol production process integrating acetic acid feed stream comprising water from carbonylation process
US8569549B2 (en) 2010-02-02 2013-10-29 Celanese International Corporation Catalyst supports having crystalline support modifiers
US8637714B2 (en) 2008-07-31 2014-01-28 Celanese International Corporation Process for producing ethanol over catalysts containing platinum and palladium
US8658843B2 (en) 2011-10-06 2014-02-25 Celanese International Corporation Hydrogenation catalysts prepared from polyoxometalate precursors and process for using same to produce ethanol while minimizing diethyl ether formation
US8680343B2 (en) 2010-02-02 2014-03-25 Celanese International Corporation Process for purifying ethanol
US8680321B2 (en) 2009-10-26 2014-03-25 Celanese International Corporation Processes for making ethanol from acetic acid using bimetallic catalysts
US8680342B2 (en) 2010-05-07 2014-03-25 Celanese International Corporation Process for recovering alcohol produced by hydrogenating an acetic acid feed stream comprising water
US8680317B2 (en) 2008-07-31 2014-03-25 Celanese International Corporation Processes for making ethyl acetate from acetic acid
US8703868B2 (en) 2011-11-28 2014-04-22 Celanese International Corporation Integrated process for producing polyvinyl alcohol or a copolymer thereof and ethanol
US8710277B2 (en) 2009-10-26 2014-04-29 Celanese International Corporation Process for making diethyl ether from acetic acid
US8754267B2 (en) 2010-05-07 2014-06-17 Celanese International Corporation Process for separating acetaldehyde from ethanol-containing mixtures
US8907142B2 (en) 2011-12-29 2014-12-09 Celanese International Corporation Process for promoting catalyst activity for ethyl acetate conversion
US9000234B2 (en) 2011-12-22 2015-04-07 Celanese International Corporation Calcination of modified support to prepare hydrogenation catalysts
US9233899B2 (en) 2011-12-22 2016-01-12 Celanese International Corporation Hydrogenation catalysts having an amorphous support

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2884451A (en) * 1955-12-09 1959-04-28 Distillers Co Yeast Ltd Purification of aliphatic acids
US3084109A (en) * 1958-04-03 1963-04-02 Ici Ltd Recovery of monocarboxylic acids

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2884451A (en) * 1955-12-09 1959-04-28 Distillers Co Yeast Ltd Purification of aliphatic acids
US3084109A (en) * 1958-04-03 1963-04-02 Ici Ltd Recovery of monocarboxylic acids

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9024087B2 (en) 2008-07-31 2015-05-05 Celanese International Corporation Process for making ethanol from acetic acid using acidic catalysts
US8309772B2 (en) 2008-07-31 2012-11-13 Celanese International Corporation Tunable catalyst gas phase hydrogenation of carboxylic acids
US8080694B2 (en) 2008-07-31 2011-12-20 Celanese International Corporation Catalyst for gas phase hydrogenation of carboxylic acids having a support modified with a reducible metal oxide
US8501652B2 (en) 2008-07-31 2013-08-06 Celanese International Corporation Catalysts for making ethanol from acetic acid
US8802904B2 (en) 2008-07-31 2014-08-12 Celanese International Corporation Processes for making ethanol from acetic acid
US8680317B2 (en) 2008-07-31 2014-03-25 Celanese International Corporation Processes for making ethyl acetate from acetic acid
US8993815B2 (en) 2008-07-31 2015-03-31 Celanese International Corporation Process for vapor phase hydrogenation
US9040443B2 (en) 2008-07-31 2015-05-26 Celanese International Corporation Catalysts for making ethanol from acetic acid
US8754270B2 (en) 2008-07-31 2014-06-17 Celanese International Corporation Process for vapor phase hydrogenation
US8338650B2 (en) 2008-07-31 2012-12-25 Celanese International Corporation Palladium catalysts for making ethanol from acetic acid
US8637714B2 (en) 2008-07-31 2014-01-28 Celanese International Corporation Process for producing ethanol over catalysts containing platinum and palladium
US20100121114A1 (en) * 2008-07-31 2010-05-13 Heiko Weiner Tunable catalyst gas phase hydrogenation of carboxylic acids
US20100197985A1 (en) * 2008-07-31 2010-08-05 Celanese International Corporation Processes for making ethanol from acetic acid
US8546622B2 (en) 2008-07-31 2013-10-01 Celanese International Corporation Process for making ethanol from acetic acid using acidic catalysts
US8471075B2 (en) 2008-07-31 2013-06-25 Celanese International Corporation Processes for making ethanol from acetic acid
US8450535B2 (en) 2009-07-20 2013-05-28 Celanese International Corporation Ethanol production from acetic acid utilizing a cobalt catalyst
US8680321B2 (en) 2009-10-26 2014-03-25 Celanese International Corporation Processes for making ethanol from acetic acid using bimetallic catalysts
US8710277B2 (en) 2009-10-26 2014-04-29 Celanese International Corporation Process for making diethyl ether from acetic acid
US8569203B2 (en) 2010-02-01 2013-10-29 Celanese International Corporation Processes for making tin-containing catalysts
US8211821B2 (en) 2010-02-01 2012-07-03 Celanese International Corporation Processes for making tin-containing catalysts
US8314272B2 (en) 2010-02-02 2012-11-20 Celanese International Corporation Process for recovering ethanol with vapor separation
US8569549B2 (en) 2010-02-02 2013-10-29 Celanese International Corporation Catalyst supports having crystalline support modifiers
US9051238B2 (en) 2010-02-02 2015-06-09 Celanese International Corporation Process for recovering ethanol
US8399719B2 (en) 2010-02-02 2013-03-19 Celanese International Corporation Process for producing a water stream from ethanol production
US8680343B2 (en) 2010-02-02 2014-03-25 Celanese International Corporation Process for purifying ethanol
US8426652B2 (en) 2010-02-02 2013-04-23 Celanese International Corporation Processes for producing ethanol from acetaldehyde
US8344186B2 (en) 2010-02-02 2013-01-01 Celanese International Corporation Processes for producing ethanol from acetaldehyde
US8309773B2 (en) 2010-02-02 2012-11-13 Calanese International Corporation Process for recovering ethanol
US8304586B2 (en) 2010-02-02 2012-11-06 Celanese International Corporation Process for purifying ethanol
US8704014B2 (en) 2010-02-02 2014-04-22 Celansese International Corporation Process for purifying ethanol
US8222466B2 (en) 2010-02-02 2012-07-17 Celanese International Corporation Process for producing a water stream from ethanol production
US8704015B2 (en) 2010-02-02 2014-04-22 Celanese International Corporation Process for recovering ethanol
US8653308B2 (en) 2010-02-02 2014-02-18 Celanese International Corporation Process for utilizing a water stream in a hydrolysis reaction to form ethanol
US8569551B2 (en) 2010-05-07 2013-10-29 Celanese International Corporation Alcohol production process integrating acetic acid feed stream comprising water from carbonylation process
US8754267B2 (en) 2010-05-07 2014-06-17 Celanese International Corporation Process for separating acetaldehyde from ethanol-containing mixtures
US8680342B2 (en) 2010-05-07 2014-03-25 Celanese International Corporation Process for recovering alcohol produced by hydrogenating an acetic acid feed stream comprising water
US8350098B2 (en) 2011-04-04 2013-01-08 Celanese International Corporation Ethanol production from acetic acid utilizing a molybdenum carbide catalyst
US8658843B2 (en) 2011-10-06 2014-02-25 Celanese International Corporation Hydrogenation catalysts prepared from polyoxometalate precursors and process for using same to produce ethanol while minimizing diethyl ether formation
US8536382B2 (en) 2011-10-06 2013-09-17 Celanese International Corporation Processes for hydrogenating alkanoic acids using catalyst comprising tungsten
US8703868B2 (en) 2011-11-28 2014-04-22 Celanese International Corporation Integrated process for producing polyvinyl alcohol or a copolymer thereof and ethanol
US9000234B2 (en) 2011-12-22 2015-04-07 Celanese International Corporation Calcination of modified support to prepare hydrogenation catalysts
US9233899B2 (en) 2011-12-22 2016-01-12 Celanese International Corporation Hydrogenation catalysts having an amorphous support
US8907142B2 (en) 2011-12-29 2014-12-09 Celanese International Corporation Process for promoting catalyst activity for ethyl acetate conversion

Similar Documents

Publication Publication Date Title
US4228307A (en) Removal of bromine from acetic acid
US3673154A (en) Process for the recovery of cobalt catalyst
US4986898A (en) Method of removing mercury from hydrocarbon oils
GB1559149A (en) Method and catalysts for removing mercaptans and mercaptidide compounds from aqueous alkaline solutions
EP0322215B2 (en) Purification of acetic acid with ozone
US3978148A (en) Process for removal of rhodium compounds from process streams
RU2258693C2 (en) Method for purifying naphthalene carboxylic acid
US4317923A (en) Purification of dicarboxylic aromatic acids
US4227971A (en) Bromine removal from acetic acid
US5840643A (en) Recovery of oxidation catalysts used for the production of trimellitic acid
AU669217B2 (en) Method of recovery acid catalyst from acid catalyzed processes
US5202481A (en) Purification of acetic acid produced by the low water carbonylation of methanol by treatment with ozone
US3919306A (en) Purification of recirculated stream for isophthalic acid production
EP0083224A1 (en) Process for producing aromatic polycarboxylic acid with high purity
JPS6328659B2 (en)
CA1126292A (en) Catalyst metal separation from saturated aliphatic monocarboxylic acids
US4243551A (en) Catalyst for oxidizing mercaptans and mercaptide compounds and method for preparing
JPS58124516A (en) Separation of carbon monooxide from mixed gas
EP0182649A2 (en) Process for purifying carbon dioxide
US6565754B1 (en) Process for the production and purification of aromatic acids
US3725459A (en) Process for purifying adiponitrile
JP4440773B2 (en) Removal of peroxide impurities
US2892686A (en) Conversion of hydrogen iodide to iodine
IL28902A (en) Oxidation of soluble sulfide compounds
US4792420A (en) Purification of carboxylic acid anhydrides