US4214894A - Method for producing cobalt metal powder - Google Patents
Method for producing cobalt metal powder Download PDFInfo
- Publication number
- US4214894A US4214894A US06/038,968 US3896879A US4214894A US 4214894 A US4214894 A US 4214894A US 3896879 A US3896879 A US 3896879A US 4214894 A US4214894 A US 4214894A
- Authority
- US
- United States
- Prior art keywords
- cobalt
- solution
- chloride
- precipitate
- metal powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 title claims abstract description 124
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 239000010941 cobalt Substances 0.000 claims abstract description 93
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 93
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims abstract description 44
- 239000002244 precipitate Substances 0.000 claims abstract description 40
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 23
- 230000029087 digestion Effects 0.000 claims abstract description 18
- 239000007787 solid Substances 0.000 claims abstract description 18
- 239000012452 mother liquor Substances 0.000 claims abstract description 15
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 12
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 10
- 239000011347 resin Substances 0.000 claims abstract description 8
- 229920005989 resin Polymers 0.000 claims abstract description 8
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims abstract description 7
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims abstract description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000010438 heat treatment Methods 0.000 claims abstract description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 7
- 239000001257 hydrogen Substances 0.000 claims abstract description 7
- 239000003456 ion exchange resin Substances 0.000 claims abstract description 7
- 229920003303 ion-exchange polymer Polymers 0.000 claims abstract description 7
- 239000000908 ammonium hydroxide Substances 0.000 claims abstract description 4
- 239000000243 solution Substances 0.000 claims description 65
- 238000000034 method Methods 0.000 claims description 41
- 239000012535 impurity Substances 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 8
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 7
- 238000003916 acid precipitation Methods 0.000 claims description 7
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 6
- 230000006872 improvement Effects 0.000 claims description 5
- 239000010802 sludge Substances 0.000 claims description 5
- 239000007864 aqueous solution Substances 0.000 claims description 4
- 150000001340 alkali metals Chemical class 0.000 claims description 2
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 claims description 2
- 239000003729 cation exchange resin Substances 0.000 claims description 2
- MPMSMUBQXQALQI-UHFFFAOYSA-N cobalt phthalocyanine Chemical compound [Co+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 MPMSMUBQXQALQI-UHFFFAOYSA-N 0.000 claims 2
- 229910052783 alkali metal Inorganic materials 0.000 claims 1
- 230000001590 oxidative effect Effects 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 5
- 150000001247 metal acetylides Chemical class 0.000 abstract description 3
- 238000004064 recycling Methods 0.000 abstract description 3
- 239000007858 starting material Substances 0.000 abstract description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 239000010419 fine particle Substances 0.000 description 7
- 241000894007 species Species 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 229910021529 ammonia Inorganic materials 0.000 description 4
- 125000002091 cationic group Chemical group 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229920002125 Sokalan® Polymers 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 229910000428 cobalt oxide Inorganic materials 0.000 description 2
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 240000005020 Acaciella glauca Species 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- -1 NaOH Chemical compound 0.000 description 1
- 235000008098 Oxalis acetosella Nutrition 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 244000126309 Trifolium dubium Species 0.000 description 1
- 238000000184 acid digestion Methods 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 150000001869 cobalt compounds Chemical class 0.000 description 1
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 1
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 235000003499 redwood Nutrition 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B23/00—Obtaining nickel or cobalt
- C22B23/04—Obtaining nickel or cobalt by wet processes
- C22B23/0453—Treatment or purification of solutions, e.g. obtained by leaching
- C22B23/0461—Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
- C22B23/0469—Treatment or purification of solutions, e.g. obtained by leaching by chemical methods by chemical substitution, e.g. by cementation
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/42—Treatment or purification of solutions, e.g. obtained by leaching by ion-exchange extraction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- This invention relates to an improved method for obtaining cobalt metal powder from a cobalt source, and more particularly relates to an improved method for obtaining such powder by the thermal reduction of a precipitate obtained by the digestion of a cobalt pentammine chloride solution.
- Application 038,972 also filed concurrently herewith, describes a method for the production of cobalt metal powder involving the recycling of ammonia.
- Application 038,971 also filed concurrently herewith, describes a method for the production of cobalt metal powder from a precipitate obtained by treatment of a cobalt ammine complex with a metallic hydroxide.
- Application 038,970 also filed concurrently herewith, describes a method for producing cobalt hexammine compounds and cobalt metal powder.
- German Patent No. 2,319,703 it is known to separate cobalt from nickel by a method which includes forming pentammine sulfate complexes of the two ions in solution.
- soluble cobalt ammine sulfates can only be reduced while still in solution, under pressure, and with the aid of catalysts.
- the resulting cobalt powder is not fine particle size.
- U.S. Pat. No. 4,093,450 to Doyle et al. describes a method for producing fine particle size cobalt metal powder by the hydrogen reduction of cobalt oxide obtained from a cobalt pentammine carbonate solution.
- the precipitate was formed by heating the solution to drive off ammonia and carbon dioxide to form a precipitate of cobalt oxide.
- This method requires a solution of approximately four grams per liter of cobalt to produce a sized metal powder having a particle size less than one micron. Note that the final resulting particle size is highly dependent on the concentration of cobalt employed in the aqueous solution.
- U.S. Pat. No. 2,879,137 to Bare et al. discloses the treatment of an ammoniacal ammonium carbonate solution, obtained from leaching an ore and containing nickel wherein the cobalt present in the cobaltic state is treated with an alkali metal or alkaline earth metal hydroxide under controlled temperature conditions to precipitate the nickel free of cobalt.
- U.S. Pat. No. 3,928,530 to Bakker et al. discloses a method for the separation of nickel and cobalt by forming pentammine chloride complexes and solution containing a high concentration of ammonium chloride, and precipitating cobalt pentammine chloride.
- U.S. Pat. No. 4,108,640 to Wallace discloses a method for recovering metallic cobalt from an aqueous ammoniacal solution wherein the solution is contacted with a water immiscible liquid ion exchange reagent dissolved in an inert organic diluent to selectively extract the other metal from the solution and produce an organic extract loaded with the other metals in an aqueous cobalt bearing raffinate substantially free of the other metals.
- the efficiency of the method is improved by: (a) contacting the mother liquor from at least the digestion step with an ion exchange resin to remove residual cobalt species; (b) stripping the resin with a solution of a strong mineral acid such as HCl; (c) separating solid cobalt hexammine chloride from the stripping solution; (d) forming an aqueous solution of the solid cobalt hexammine chloride; (e) adding a metallic hydroxide to the solution to form a cobalt-containing precipitate; and (f) either heating the precipitate in a reducing atmosphere to convert it to cobalt metal powder, or recycling the precipitate.
- a strong mineral acid such as HCl
- the final cobalt metal powder is useful, for example, as a starting material in the manufacture of cemented carbides.
- the FIGURE is a flow diagram of one embodiment of the method of the invention.
- Cobalt pentammine chloride in solution is obtained by a method including the steps of: (1) digestion of a cobalt source in hydrochloric acid solution to obtain a solution of typically about 60 to 150 grams per liter of cobalt; (2) addition of ammonium hydroxide to result in a concentration of about 100 to 150 grams per liter of ammonium chloride and a pH of about 9.2 to 10; (3) oxidation of the cobaltous ion to cobaltic to form soluble cobaltic pentammine chloride, such as by aeration or contact with an oxidizing agent such as hydrogen peroxide or a combination of these, typically for a time of about 1 to 10 hours, and preferably about 2 to 8 hours; and (4) optional heating of the solution to a moderate temperature, for example about 80° to 90° C., in order to dissolve substantially all of the cobalt pentammine chloride.
- a moderate temperature for example about 80° to 90° C.
- Cobalt metal powder is then obtained by: (1) digesting the cobalt pentammine chloride solution, typically for about 2 to 10 hours at a temperature of about 80° C. to 105° C., in order to decompose the cobalt pentammine chloride and form a cobalt-containing precipitate; (2) separating the precipitate from the solution; and (3) heating the precipitate in a reducing atmosphere for a time and temperature sufficient to reduce the precipitate to cobalt metal powder, typically having a Fisher (FSSS) of 1.7 or less.
- FSSS Fisher
- Cation impurities may be removed from the cobalt pentammine chloride solution prior to digestion to obtain the cobalt-containing precipitate by the addition of sufficient hydrochloric acid to precipitate solid cobalt pentammine chloride, followed by separation of the solid and addition to an (e.g. 1 to 6%) ammonia solution. After dissolving cobalt pentammine chloride in ammonia solution and prior to digestion, it may again be necessary to remove insoluble sludge. At this stage, cation impurities other than iron in the solution will usually be in the range of about 100 parts per million to 1 weight percent. Iron will usually be less than 1000 parts per million.
- Cationic impurities of less than 100 parts per million may also be achieved by one or more optional "recrystallizations” (i.e., acid precipitation followed by ammonia dissolution) of the cobalt pentammine chloride prior to digestion to form the cobalt-containing precipitate.
- recrystallizations i.e., acid precipitation followed by ammonia dissolution
- Reduction is typically carried out in a hydrogen atmosphere for a time of from about 1 to 6 hours at a temperature within the range of about 350° C. to 600° C.
- mother liquor from the acid precipitation steps and the second digestion step contain various cobalt species in solution.
- species may include cobalt pentammine chloride, due to incomplete conversion to the cobalt-containing precipitate, and cobalt haxammine chloride, which is incidentally formed during formation of the pentammine species, and is not converted to precipitate during digestion.
- the mother liquor typically contains up to 0.5 weight percent of cobalt.
- the present invention is an improvement of the above-described basic method wherein the mother liquor from the second digestion step and any acid precipitation steps is treated to convert solid cobalt hexammine chloride to a cobalt-containing precipitate, and the precipitate either reduced to cobalt metal powder or recycled by adding it to the cobalt source for repetition of the basic method.
- the basic method is depicted as a multi-step method on the left-hand side of the diagram, beginning with digestion of the cobalt source in HCl solution and ending with heating to reduce the cobalt-containing precipitate to cobalt metal powder.
- the acid precipitation, "recrystallization" and the second digestion step of this method leaves residual cobalt species in the mother liquor.
- the mother liquors from the above steps are combined, the pH adjusted to about 5.5 to 7, and any solids are removed by filtering.
- the mother liquor is then contacted with a weak cationic ion exchange resin such as Duolite C-464 or Duolite C-433, both weak carboxylic cationic resins, in order to remove cobalt species.
- the resin is periodically stripped with a strong mineral acid solution, such as an HCl solution containing about 2 to 10 weight percent HCl. As the concentration of HCl in the stripping solution increases to about 3 to 10 percent, cobaltic hexammine chloride becomes insoluble and precipitates as a yellow solid.
- This solid cobaltic hexammine chloride is then separated from the stripping solution, dissolved in water, typically in concentration of about 1 to 5 weight percent, and the resultant solution treated with an alkali or alkaline earth hydroxide such as NaOH, typically in the amount of about 3 to 15 weight percent, to form the cobalt-containing precipitate.
- This precipitate depending upon its impurity content and the final end use envisioned for the cobalt metal powder, may after separation, either be: heated in a reducing atmosphere to form cobalt metal powder; redissolved in HCl and reprecipitated with hydroxide to remove impurities, followed by reducing to cobalt metal powder; or recycled by adding it to the cobalt source for reprocessing.
- the mother liquor from the stripping solution which remains after removal of the solid cobalt hexammine chloride may be combined with the mother liquors from subsequent acid precipitation and digestion steps for treatment with the ion exchange resin.
- the cobalt species-depleted effluent from the ion exchange column is typically treated to remove NH 3 prior to being discarded.
- the cobalt was then removed from the resin with a stripping solution of about 4 to 10 weight percent solution of HCl.
- This stripping solution was used repeatedly to strip cobalt, by periodically replenishing the HCl consumed during each stripping cycle. After ten to fifteen cycles, solid material precipitated from the stripping solution. A 21.9 gram sample of this solid was separated from the stripping solution by filtration. To the solid was added 1.3 liters of water, the resultant slurry was heated to about 80° C., and the pH adjusted to about 7 with concentrated NH 4 OH.
- This solid was dissolved in about 1.2 liters of hot (90° C.) water, and the resulting hot solution was treated with 0.11 liters of 50 weight percent sodium hydroxide solution over a period of 9 hours to give 20.2 grams of insoluble cobalt-containing precipitate, for a yield of 92 percent.
- This precipitate was heated at 400° C. in hydrogen atmosphere to obtain extra fine particle size cobalt metal powder having a Fisher Sub Sieve Size (FSSS) of about 1.0.
- FSSS Fisher Sub Sieve Size
- FSSS extra fine particle size,
- Cation impurities of less than 100 parts per million
- cobalt metal powder which is useful, for example, as a starting material in the formation of cemented carbides, e.g., tungsten carbide.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
A method for producing extra fine cobalt metal powder (up to 1.7 FSSS) by the digestion of cobalt pentammine chloride in a dilute ammonium hydroxide solution to form a cobalt-containing precipitate, followed by reducing the precipitate in a hydrogen atmosphere to cobalt metal powder, is improved by: (a) treating the mother liquor with an ion exchange resin to remove cobalt species; (b) stripping the resin with an HCl solution; (c) recovering solid cobalt hexammine chloride from the stripping solution; (d) forming a solution of the solid in water; (e) adding NaOH to the solution to form a cobalt-containing precipitate; and (f) either heating the precipitate in hydrogen to reduce it to cobalt metal powder or recycling the precipitate as a cobalt source for the formation of cobalt pentammine chloride. The final cobalt metal powder is useful, for example, as a starting material in the manufacture of cemented carbides.
Description
This invention relates to an improved method for obtaining cobalt metal powder from a cobalt source, and more particularly relates to an improved method for obtaining such powder by the thermal reduction of a precipitate obtained by the digestion of a cobalt pentammine chloride solution.
Co-pending U.S. patent application Ser. No. 010,769, filed, Feb. 9, 1979, a continuation of Ser. No. 911,595, now abandoned, describes a method for obtaining fine particle size cobalt by hydrogen reduction of a precipitate obtained from a cobalt pentammine chloride solution. Co-pending U.S. patent application Ser. No. 038,973, filed concurrently herewith, describes an improvement of the method of Ser. No. 010,769, involving removal of cobalt from solution by addition of a metal hydroxide. Application 038,972, also filed concurrently herewith, describes a method for the production of cobalt metal powder involving the recycling of ammonia. Application 038,971, also filed concurrently herewith, describes a method for the production of cobalt metal powder from a precipitate obtained by treatment of a cobalt ammine complex with a metallic hydroxide. Application 038,970, also filed concurrently herewith, describes a method for producing cobalt hexammine compounds and cobalt metal powder.
According to German Patent No. 2,319,703, it is known to separate cobalt from nickel by a method which includes forming pentammine sulfate complexes of the two ions in solution. However, it has been found that soluble cobalt ammine sulfates can only be reduced while still in solution, under pressure, and with the aid of catalysts. Furthermore, the resulting cobalt powder is not fine particle size.
U.S. Pat. No. 4,093,450 to Doyle et al. describes a method for producing fine particle size cobalt metal powder by the hydrogen reduction of cobalt oxide obtained from a cobalt pentammine carbonate solution. The precipitate was formed by heating the solution to drive off ammonia and carbon dioxide to form a precipitate of cobalt oxide. This method requires a solution of approximately four grams per liter of cobalt to produce a sized metal powder having a particle size less than one micron. Note that the final resulting particle size is highly dependent on the concentration of cobalt employed in the aqueous solution.
The following patents are directed to the separation of cobalt from other cations, especially nickel. The resulting cobalt compounds are not disclosed as being sources for forming fine particle size cobalt.
U.S. Pat. No. 2,879,137 to Bare et al. discloses the treatment of an ammoniacal ammonium carbonate solution, obtained from leaching an ore and containing nickel wherein the cobalt present in the cobaltic state is treated with an alkali metal or alkaline earth metal hydroxide under controlled temperature conditions to precipitate the nickel free of cobalt.
U.S. Pat. No. 3,928,530 to Bakker et al. discloses a method for the separation of nickel and cobalt by forming pentammine chloride complexes and solution containing a high concentration of ammonium chloride, and precipitating cobalt pentammine chloride.
In German Patent No. 1,583,864, cobalt is recovered from scrap by digestion of the scrap in HCl and MgCl2 solution, followed by removal of iron and chromium impurities by precipitation at a moderately acid pH followed by extracting a cobalt chloride complex with a long chain tertiary ammine in an aromatic solvent.
U.S. Pat. No. 4,108,640 to Wallace discloses a method for recovering metallic cobalt from an aqueous ammoniacal solution wherein the solution is contacted with a water immiscible liquid ion exchange reagent dissolved in an inert organic diluent to selectively extract the other metal from the solution and produce an organic extract loaded with the other metals in an aqueous cobalt bearing raffinate substantially free of the other metals.
In a method for the production of cobalt metal powder by the thermal reduction of a cobalt-containing precipitate obtained by the digestion of a cobalt pentammine chloride solution, the efficiency of the method is improved by: (a) contacting the mother liquor from at least the digestion step with an ion exchange resin to remove residual cobalt species; (b) stripping the resin with a solution of a strong mineral acid such as HCl; (c) separating solid cobalt hexammine chloride from the stripping solution; (d) forming an aqueous solution of the solid cobalt hexammine chloride; (e) adding a metallic hydroxide to the solution to form a cobalt-containing precipitate; and (f) either heating the precipitate in a reducing atmosphere to convert it to cobalt metal powder, or recycling the precipitate.
The final cobalt metal powder is useful, for example, as a starting material in the manufacture of cemented carbides.
The FIGURE is a flow diagram of one embodiment of the method of the invention.
For a better understanding of the present invention, together with other and further objects, advantages and capabilities thereof, reference is made to the following disclosure and appended claims in connection with the above described drawing.
The method for producing fine particle size cobalt metal powder, herein referred to as the "basic" method, of which the present invention is an improvement, is described and claimed in copending patent application Ser. No. 010,769, filed Feb. 9, 1979, and assigned to the present assignee. However, a brief summary of one embodiment of that method will be set forth to aid the practitioner.
Cobalt pentammine chloride in solution is obtained by a method including the steps of: (1) digestion of a cobalt source in hydrochloric acid solution to obtain a solution of typically about 60 to 150 grams per liter of cobalt; (2) addition of ammonium hydroxide to result in a concentration of about 100 to 150 grams per liter of ammonium chloride and a pH of about 9.2 to 10; (3) oxidation of the cobaltous ion to cobaltic to form soluble cobaltic pentammine chloride, such as by aeration or contact with an oxidizing agent such as hydrogen peroxide or a combination of these, typically for a time of about 1 to 10 hours, and preferably about 2 to 8 hours; and (4) optional heating of the solution to a moderate temperature, for example about 80° to 90° C., in order to dissolve substantially all of the cobalt pentammine chloride.
Cobalt metal powder is then obtained by: (1) digesting the cobalt pentammine chloride solution, typically for about 2 to 10 hours at a temperature of about 80° C. to 105° C., in order to decompose the cobalt pentammine chloride and form a cobalt-containing precipitate; (2) separating the precipitate from the solution; and (3) heating the precipitate in a reducing atmosphere for a time and temperature sufficient to reduce the precipitate to cobalt metal powder, typically having a Fisher (FSSS) of 1.7 or less.
Depending upon the composition of the cobalt source and the purity desired for the final cobalt metal powder, several additional steps may be carried out. For example, after the initial digestion of the cobalt source and prior to the addition of ammonium hydroxide to the solution, it may be necessary to remove insoluble sludge, typically containing tantalum, titanium and tungsten from cobalt sources including significant amounts of scrap or sludge from cemented carbide recovery operations. Separation of precipitates or sludges from solutions in any of the above or subsequent steps may be accomplished by filtering followed by washing the filtrate. Cation impurities may be removed from the cobalt pentammine chloride solution prior to digestion to obtain the cobalt-containing precipitate by the addition of sufficient hydrochloric acid to precipitate solid cobalt pentammine chloride, followed by separation of the solid and addition to an (e.g. 1 to 6%) ammonia solution. After dissolving cobalt pentammine chloride in ammonia solution and prior to digestion, it may again be necessary to remove insoluble sludge. At this stage, cation impurities other than iron in the solution will usually be in the range of about 100 parts per million to 1 weight percent. Iron will usually be less than 1000 parts per million. Cationic impurities of less than 100 parts per million may also be achieved by one or more optional "recrystallizations" (i.e., acid precipitation followed by ammonia dissolution) of the cobalt pentammine chloride prior to digestion to form the cobalt-containing precipitate.
Reduction is typically carried out in a hydrogen atmosphere for a time of from about 1 to 6 hours at a temperature within the range of about 350° C. to 600° C.
In the above-described basic method, mother liquor from the acid precipitation steps and the second digestion step contain various cobalt species in solution. Such species may include cobalt pentammine chloride, due to incomplete conversion to the cobalt-containing precipitate, and cobalt haxammine chloride, which is incidentally formed during formation of the pentammine species, and is not converted to precipitate during digestion. The mother liquor typically contains up to 0.5 weight percent of cobalt.
Accordingly, the present invention is an improvement of the above-described basic method wherein the mother liquor from the second digestion step and any acid precipitation steps is treated to convert solid cobalt hexammine chloride to a cobalt-containing precipitate, and the precipitate either reduced to cobalt metal powder or recycled by adding it to the cobalt source for repetition of the basic method.
Referring now to the Drawing, which is a flow diagram of one embodiment of the overall method, the basic method is depicted as a multi-step method on the left-hand side of the diagram, beginning with digestion of the cobalt source in HCl solution and ending with heating to reduce the cobalt-containing precipitate to cobalt metal powder. The acid precipitation, "recrystallization" and the second digestion step of this method leaves residual cobalt species in the mother liquor.
According to one embodiment of an improvement of this method, the mother liquors from the above steps are combined, the pH adjusted to about 5.5 to 7, and any solids are removed by filtering. The mother liquor is then contacted with a weak cationic ion exchange resin such as Duolite C-464 or Duolite C-433, both weak carboxylic cationic resins, in order to remove cobalt species. The resin is periodically stripped with a strong mineral acid solution, such as an HCl solution containing about 2 to 10 weight percent HCl. As the concentration of HCl in the stripping solution increases to about 3 to 10 percent, cobaltic hexammine chloride becomes insoluble and precipitates as a yellow solid. This solid cobaltic hexammine chloride is then separated from the stripping solution, dissolved in water, typically in concentration of about 1 to 5 weight percent, and the resultant solution treated with an alkali or alkaline earth hydroxide such as NaOH, typically in the amount of about 3 to 15 weight percent, to form the cobalt-containing precipitate. This precipitate, depending upon its impurity content and the final end use envisioned for the cobalt metal powder, may after separation, either be: heated in a reducing atmosphere to form cobalt metal powder; redissolved in HCl and reprecipitated with hydroxide to remove impurities, followed by reducing to cobalt metal powder; or recycled by adding it to the cobalt source for reprocessing.
The mother liquor from the stripping solution which remains after removal of the solid cobalt hexammine chloride may be combined with the mother liquors from subsequent acid precipitation and digestion steps for treatment with the ion exchange resin.
The cobalt species-depleted effluent from the ion exchange column is typically treated to remove NH3 prior to being discarded.
Mother liquors from the acid precipitation steps and the second digestion step of the basic process were combined, the pH adjusted to about 5.8 to 6.3 with NH4 OH solution, and the resulting solution filtered to remove insolubles. The filtered solution was then loaded onto an ion exchange column containing Duolite C-433 weak carboxylic cationic exchange resin, manufactured by Diamond Shamrock, Redwood, Calif. The resin had previously been converted to the ammonia cycle by treatment with a 2 to 6 weight percent NH4 OH solution. The effluent from the column, which contained less than than 10 parts per million of cobalt, was then loaded onto another column to reduce the cobalt level even further. The effluent from the second column contained less than 5 parts per million of cobalt. The cobalt was then removed from the resin with a stripping solution of about 4 to 10 weight percent solution of HCl. This stripping solution was used repeatedly to strip cobalt, by periodically replenishing the HCl consumed during each stripping cycle. After ten to fifteen cycles, solid material precipitated from the stripping solution. A 21.9 gram sample of this solid was separated from the stripping solution by filtration. To the solid was added 1.3 liters of water, the resultant slurry was heated to about 80° C., and the pH adjusted to about 7 with concentrated NH4 OH. Insoluble impurities were filtered, and the resultant cobalt hexammine chloride solution was treated with 0.9 liters of concentrated HCl solution at 80° C., cooled to 25° C., and the mother liquor from the insoluble solid cobalt hexammine chloride removed. The solid was washed with 6 Normal HCl solution to yield 20.7 grams of cobalt hexammine chloride containing the following cationic impurities:
______________________________________
ppm
______________________________________
Ca 4.0
Cu 3.0
Mg 2.1
Mn 3.0
Ni 10
Si 14
Cr 8.0
Fe 10
______________________________________
This solid was dissolved in about 1.2 liters of hot (90° C.) water, and the resulting hot solution was treated with 0.11 liters of 50 weight percent sodium hydroxide solution over a period of 9 hours to give 20.2 grams of insoluble cobalt-containing precipitate, for a yield of 92 percent. This precipitate was heated at 400° C. in hydrogen atmosphere to obtain extra fine particle size cobalt metal powder having a Fisher Sub Sieve Size (FSSS) of about 1.0.
While there has been shown and described what are at present considered the preferred embodiments of the invention it will be obvious to those skilled in the art that various changes and modifications may be made therein without departing from the invention as defined by the appended claims.
The method described and claimed herein is particularly useful in the formation of extra fine particle size, (FSSS) of up to 1.7) high purity (cation impurities of less than 100 parts per million) cobalt metal powder, which is useful, for example, as a starting material in the formation of cemented carbides, e.g., tungsten carbide.
Claims (14)
1. An improved method for producing cobalt metal powder, the basic method comprising: digesting a cobalt source in an HCl solution, adding ammonium hydroxide to form cobaltous pentammine chloride in solution; oxidizing the solution to form cobaltic pentammine chloride; digesting the solution to form a cobalt-containing precipitate; and heating the precipitate in a reducing atmosphere to obtain cobalt metal powder;
characterized by the improvement comprising:
(a) treating the mother liquor remaining after formation of the cobalt-containing precipitate with an ion exchange resin to remove residual cobalt species from the mother liquor;
(b) stripping the resin with a stripping solution of hydrochloric acid;
(c) removing solid cobalt hexammine chloride from the stripping solution;
(d) forming an aqueous solution of cobalt hexammine chloride; and
(e) adding a hydroxide selected from the group consisting of alkali metal and and alkaline earth metal hydroxides to the solution of cobalt hexammine chloride to form a cobalt-containing precipitate.
2. The method of claim 1 wherein the precipitate formed by the addition of the hydroxide to the cobalt hexammine chloride solution is heated in a reducing atmosphere to obtain cobalt metal powder.
3. The method of claim 1 wherein the precipitate formed by the addition of the hydroxide to the cobalt hexammine chloride solution is added to the cobalt source and recycled by repeating at least the basic method of claim 1 to obtain cobalt metal powder.
4. The method of claim 2 or 3 wherein the ion exchange resin is a weak carboxylic cationic ion exchange resin.
5. The method of claim 1 wherein the stripping solution contains hydrochloric acid in the amount of about 2 to 10 weight percent.
6. The method of claim 1 wherein the cobalt hexammine chloride is present in the aqueous solution in the amount of about 1 to 5 percent.
7. The method of claim 1 wherein the hydroxide is sodium hydroxide and is added to the aqueous cobalt hexammine chloride solution in the amount of about 3 to 15 percent.
8. The method of claim 2 or 3 wherein the cobalt-containing precipitate is heated in a hydrogen atmosphere for about 1 to 6 hours at a temperature of about 350° C. to 600° C.
9. The method of claim 1 wherein following digestion of the cobalt source, and prior to formation of cobaltous pentammine chloride solution, insoluble impurity-containing sludge is removed.
10. The method of claim 1 wherein following formation of the cobaltic pentammine chloride, the solution is heated to dissolve substantially all of the cobaltic pentammine chloride.
11. The method of claim 1 wherein following formation of the cobaltic pentammine chloride, hydrochloric acid is added to the solution to precipitate cobaltic pentammine chloride, the precipitate is redissolved in ammonia solution, and insoluble impurity-containing sludge is removed.
12. The method of claim 11 wherein the steps of claim 11 are repeated one or more times to remove further impurities from the cobaltic pentammine chloride.
13. The method of claim 11 or 12 wherein the mother liquor remaining from the acid precipitation of cobaltic pentammine chloride, is combined with the mother liquor remaining after formation of the cobalt-containing precipitate, and the pH of the combined mother liquors 9 is adjusted to about 5.5 to 7, prior to treatment with the ion exchange resin.
14. The method of claim 1 wherein the mother liquor remaining after removal of the solid cobalt hexammine chloride from the stripping solution, is combined with the mother liquor remaining after formation of the cobalt-containing precipitate, prior to treatment with the ion exchange resin.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US06/038,968 US4214894A (en) | 1979-05-14 | 1979-05-14 | Method for producing cobalt metal powder |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US06/038,968 US4214894A (en) | 1979-05-14 | 1979-05-14 | Method for producing cobalt metal powder |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US4214894A true US4214894A (en) | 1980-07-29 |
Family
ID=21902956
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US06/038,968 Expired - Lifetime US4214894A (en) | 1979-05-14 | 1979-05-14 | Method for producing cobalt metal powder |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US4214894A (en) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4348224A (en) * | 1981-09-10 | 1982-09-07 | Gte Products Corporation | Method for producing cobalt metal powder |
| US4452633A (en) * | 1983-10-31 | 1984-06-05 | Gte Products Corporation | Method for producing cobalt metal powder |
| US4612039A (en) * | 1985-10-31 | 1986-09-16 | Gte Products Corporation | Production of pure cobalt metal powder |
| US4690710A (en) * | 1985-10-31 | 1987-09-01 | Gte Products Corporation | Process for producing cobalt metal powder |
| US4798623A (en) * | 1988-02-19 | 1989-01-17 | Gte Products Corporation | Method for producing fine cobalt metal powder |
| US4804407A (en) * | 1988-05-13 | 1989-02-14 | Gte Products Corporation | Method for recovering cobalt from hexammine cobaltic (111) solutions |
| US4840775A (en) * | 1987-10-13 | 1989-06-20 | Gte Products Corporation | Method for removing sodium and chloride from cobaltic hydroxide |
| US4840776A (en) * | 1987-10-13 | 1989-06-20 | Gte Products Corporation | Method for removing sodium and ammonia from cobalt |
| US5102633A (en) * | 1991-05-20 | 1992-04-07 | Gte Products Corporation | Method for reducing impurities in hexammine cobalt halide compounds |
| US20070180953A1 (en) * | 2000-09-29 | 2007-08-09 | Masahito Uchikoshi | High purity cobalt, method of manufacturing thereof, and high purity cobalt targets |
Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2826499A (en) * | 1949-02-22 | 1958-03-11 | Basf Ag | Process for producing sintered metal articles |
| US2879137A (en) * | 1956-10-12 | 1959-03-24 | Bethlehem Steel Corp | Nickel and cobalt recovery from ammoniacal solutions |
| DE1583864A1 (en) | 1966-11-14 | 1970-09-10 | Brandhurst Co Ltd | Process for the recovery of components from metal waste, scrap and the like. |
| US3751558A (en) * | 1972-01-14 | 1973-08-07 | American Metal Climax Inc | Process of separating cobalt from nickel by means of ammonia |
| DE2319703A1 (en) | 1972-04-18 | 1973-10-25 | Nat Res Dev | RECOVERY OF NICKEL AND / OR COBALT |
| US3903235A (en) * | 1970-05-26 | 1975-09-02 | Deepsea Ventures Inc | Method for separating nickel from cobalt |
| US3903246A (en) * | 1969-08-12 | 1975-09-02 | Nickel Le | Removal of cobalt from nickel salt solutions |
| US3928530A (en) * | 1973-07-19 | 1975-12-23 | Int Nickel Co | Selective precipitation of cobalt and nickel amine complexes |
| US3933975A (en) * | 1974-02-08 | 1976-01-20 | Amax Inc. | Nickel-cobalt separation |
| US3933976A (en) * | 1974-02-08 | 1976-01-20 | Amax Inc. | Nickel-cobalt separation |
| US4093450A (en) * | 1977-03-07 | 1978-06-06 | Sherritt Gordon Mines Limited | Production of ultrafine cobalt powder from dilute solution |
| US4108640A (en) * | 1975-08-25 | 1978-08-22 | Sherritt Gordon Mines Limited | Hydrometallurgical process for the production of cobalt powder from mixed metal sulphides |
| US4148816A (en) * | 1977-09-08 | 1979-04-10 | Kennecott Copper Corporation | Alkali metal mercaptide solvent extraction of cobalt, nickel |
-
1979
- 1979-05-14 US US06/038,968 patent/US4214894A/en not_active Expired - Lifetime
Patent Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2826499A (en) * | 1949-02-22 | 1958-03-11 | Basf Ag | Process for producing sintered metal articles |
| US2879137A (en) * | 1956-10-12 | 1959-03-24 | Bethlehem Steel Corp | Nickel and cobalt recovery from ammoniacal solutions |
| DE1583864A1 (en) | 1966-11-14 | 1970-09-10 | Brandhurst Co Ltd | Process for the recovery of components from metal waste, scrap and the like. |
| US3903246A (en) * | 1969-08-12 | 1975-09-02 | Nickel Le | Removal of cobalt from nickel salt solutions |
| US3903235A (en) * | 1970-05-26 | 1975-09-02 | Deepsea Ventures Inc | Method for separating nickel from cobalt |
| US3751558A (en) * | 1972-01-14 | 1973-08-07 | American Metal Climax Inc | Process of separating cobalt from nickel by means of ammonia |
| DE2319703A1 (en) | 1972-04-18 | 1973-10-25 | Nat Res Dev | RECOVERY OF NICKEL AND / OR COBALT |
| US3928530A (en) * | 1973-07-19 | 1975-12-23 | Int Nickel Co | Selective precipitation of cobalt and nickel amine complexes |
| US3933975A (en) * | 1974-02-08 | 1976-01-20 | Amax Inc. | Nickel-cobalt separation |
| US3933976A (en) * | 1974-02-08 | 1976-01-20 | Amax Inc. | Nickel-cobalt separation |
| US4108640A (en) * | 1975-08-25 | 1978-08-22 | Sherritt Gordon Mines Limited | Hydrometallurgical process for the production of cobalt powder from mixed metal sulphides |
| US4093450A (en) * | 1977-03-07 | 1978-06-06 | Sherritt Gordon Mines Limited | Production of ultrafine cobalt powder from dilute solution |
| US4148816A (en) * | 1977-09-08 | 1979-04-10 | Kennecott Copper Corporation | Alkali metal mercaptide solvent extraction of cobalt, nickel |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4348224A (en) * | 1981-09-10 | 1982-09-07 | Gte Products Corporation | Method for producing cobalt metal powder |
| US4452633A (en) * | 1983-10-31 | 1984-06-05 | Gte Products Corporation | Method for producing cobalt metal powder |
| US4612039A (en) * | 1985-10-31 | 1986-09-16 | Gte Products Corporation | Production of pure cobalt metal powder |
| US4690710A (en) * | 1985-10-31 | 1987-09-01 | Gte Products Corporation | Process for producing cobalt metal powder |
| US4840775A (en) * | 1987-10-13 | 1989-06-20 | Gte Products Corporation | Method for removing sodium and chloride from cobaltic hydroxide |
| US4840776A (en) * | 1987-10-13 | 1989-06-20 | Gte Products Corporation | Method for removing sodium and ammonia from cobalt |
| US4798623A (en) * | 1988-02-19 | 1989-01-17 | Gte Products Corporation | Method for producing fine cobalt metal powder |
| US4804407A (en) * | 1988-05-13 | 1989-02-14 | Gte Products Corporation | Method for recovering cobalt from hexammine cobaltic (111) solutions |
| US5102633A (en) * | 1991-05-20 | 1992-04-07 | Gte Products Corporation | Method for reducing impurities in hexammine cobalt halide compounds |
| US20070180953A1 (en) * | 2000-09-29 | 2007-08-09 | Masahito Uchikoshi | High purity cobalt, method of manufacturing thereof, and high purity cobalt targets |
| US7279024B2 (en) * | 2000-09-29 | 2007-10-09 | Sony Corporation | High purity cobalt, method of manufacturing thereof, and high purity cobalt targets |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4233063A (en) | Process for producing cobalt powder | |
| EP0028634B1 (en) | Method for producing cobalt metal powder | |
| US4162294A (en) | Process for working up nonferrous metal hydroxide sludge waste | |
| US4278463A (en) | Process for recovering cobalt | |
| US4214896A (en) | Process for producing cobalt metal powder | |
| US4214894A (en) | Method for producing cobalt metal powder | |
| US3933975A (en) | Nickel-cobalt separation | |
| US3988418A (en) | Hydrometallurgical production of technical grade molybdic oxide from molybdenite concentrates | |
| EP0028638B1 (en) | Method for producing cobalt metal powder | |
| US4123260A (en) | Selective recovery of nickel and cobalt or copper and zinc from solution | |
| US4184868A (en) | Method for producing extra fine cobalt metal powder | |
| US4469505A (en) | Method for producing cobalt metal powder | |
| US3082080A (en) | Leaching of chromium, nickel, cobalt and manganese from ores | |
| US5468281A (en) | Process for the separation of cobalt from nickel | |
| GB2171686A (en) | Purification of molybdenum trioxide | |
| US3933976A (en) | Nickel-cobalt separation | |
| WO2001062989A1 (en) | Method for the recovery of nickel and/or cobalt | |
| US4395278A (en) | Method for producing cobalt metal powder | |
| US4401630A (en) | Process for cobalt recovery from mixed sulfides | |
| US4329169A (en) | Method for producing cobalt metal powder | |
| US4100043A (en) | Atmospheric leach ion-exchange process for treating iron-containing nickel-copper matte | |
| US4814149A (en) | Process for recovering molybdenum from solution in a form that is substantially free from vanadium | |
| US3787301A (en) | Electrolytic method for producing high-purity nickel from nickel oxide ores | |
| US3975190A (en) | Hydrometallurgical treatment of nickel and copper bearing intermediates | |
| US4148632A (en) | Treatment of dissolved basic nickel carbonate to obtain nickel |