US4138299A - Process utilizing a photopolymerizable and moisture curable coating containing partially capped isocyanate prepolymers and acrylate monomers - Google Patents

Process utilizing a photopolymerizable and moisture curable coating containing partially capped isocyanate prepolymers and acrylate monomers Download PDF

Info

Publication number
US4138299A
US4138299A US05/863,844 US86384477A US4138299A US 4138299 A US4138299 A US 4138299A US 86384477 A US86384477 A US 86384477A US 4138299 A US4138299 A US 4138299A
Authority
US
United States
Prior art keywords
coating
acrylate
weight
accordance
nco
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/863,844
Inventor
Nicholas C. Bolgiano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Armstrong World Industries Inc
Original Assignee
Armstrong Cork Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Armstrong Cork Co filed Critical Armstrong Cork Co
Priority to US05/863,844 priority Critical patent/US4138299A/en
Priority to AU39359/78A priority patent/AU503537B1/en
Priority to CA311,004A priority patent/CA1101585A/en
Priority to DE2840582A priority patent/DE2840582C2/en
Priority to GB7849719A priority patent/GB2010880B/en
Application granted granted Critical
Publication of US4138299A publication Critical patent/US4138299A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4202Two or more polyesters of different physical or chemical nature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/04Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06N3/06Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds with polyvinylchloride or its copolymerisation products
    • D06N3/08Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds with polyvinylchloride or its copolymerisation products with a finishing layer consisting of polyacrylates, polyamides or polyurethanes or polyester
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/16Two dimensionally sectional layer
    • Y10T428/163Next to unitary web or sheet of equal or greater extent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos

Definitions

  • U.S. Pat. No. 3,056,760 discloses a 100% reactive terminally unsaturated polymer coating material which may be photopolymerized advantageously with the use of a catalyst and suggests the coating may be used for protectively coating articles such as linoleum.
  • U.S. Pat. No. 2,413,973 recognized that certain photocurable coating compositions could be used to upgrade articles made of a wide variety of resins including thermoplastics.
  • Still further radiation curable urethane modified binders are described in U.S. Pat. Nos. 3,891,523 and 3,509,234, and the application of photopolymerizable coatings to vinyl asbestos tile is described in U.S. Pat. Nos. 3,924,023.
  • 3,509,234 to include urethane type prepolymers in the 100% reactive system wherein the isocyanate terminated prepolymer is subsequently reacted with a hydroxyacrylate to provide the unsaturated site for cross-linking with acrylate diluents during the photopolymerization step.
  • Such systems form a durable film on curing by either photopolymerization or ionizing radiation and are resistant to conventional service conditions.
  • films of the prior art in general have a fatal drawback in that the original glossy surface, when utilized on a floor, is readily scratched and sometimes even gouged under extreme wear conditions experienced in such an environment. To the housewife, when considering a no-wax floor which is offered as a permanent installation, this is a serious drawback since such scratching reduces the gloss in a relatively short period of time.
  • the urethane prepolymer which is present together with the acrylate diluents in the reactive coating is essentially NCO terminated, although a small portion of the --NCO groups are capped with a monohydroxy acrylate to provide a limited degree of unsaturation at certain points of the prepolymer backbone structure.
  • a mixture of diols and triols are reacted with an excess of diisocyanate to form the NCO terminated prepolymer. This reaction is carried out in the presence of acrylated diluents.
  • the coated sheet or tile is then passed beneath an ultraviolet light source such as a medium pressure mercury lamp, and the unsaturated portion of the coating is cured and cross-linked.
  • the partially cured coating is then exposed to moisture by aging, which further chain extends and cross-links the coating by reaction of water with the --NCO groups.
  • the combination of the photopolymerized polymer component and the polyurethane component in the fully cured coating yields the desired tough, glossy, mar-resistant film.
  • liquid coating which may be factory applied and cured to form a clear film having the desired properties
  • the prepolymers are the partially capped by reaction with a sufficient amount of a monohydroxy acrylate to cap between about 5% and 15% of the available --NCO groups.
  • acrylate diluents having no reactive hydroxyl groups are used in the coating to provide a liquid of desired viscosity which, when subjected to a conventional photopolymerizable source, will react to give a non-tacky film.
  • acrylate diluents are utilized with 40 to 85 parts by weight of the partially capped --NCO terminated prepolymers together with a suitable photoinitiator when preparing coatins in accordance with this invention.
  • At least 10% by weight of the acrylate diluent is a diacrylate or triacrylate.
  • acrylates utilizable in the coating compositions of this invention include mono, di and triacrylates such as 2-ethylhexyl acrylate, phenoxyethyl, acrylate, isodecyl acrylate, ethoxyethyl acrylate, benzyl acrylate, tetrahydrofurfuryl acrylate, neopentyl glycol diacrylate, tetraethylene glycol diacrylate, 1,6hexanediol diacrylate, trimethylol propane triacrylate, and lauryl methacrylate.
  • mono, di and triacrylates such as 2-ethylhexyl acrylate, phenoxyethyl, acrylate, isodecyl acrylate, ethoxyethyl acrylate, benzyl acrylate, tetrahydrofurfuryl acrylate, neopentyl glycol diacrylate, tetraethylene glycol diacrylate, 1,
  • the preferred polyester triol is formed by reacting one mole of glycerol with 3 moles of dicarboxylic acids and 3 moles of aliphatic diols.
  • the triol will have a molecular weight of about 500 to 1,000 and a hydroxyl number between about 160 and 330.
  • a polycaprolactone diol prepared, for example, as described in U.S. Pat. No. 2,914,556, is generally preferred, although polyester diols such as 1,6 hexane dioladipate may also be used.
  • a polyester diol having a molecular weight between about 350 and 1000 and a hydroxyl member between about 110 and 320 is preferred.
  • polyester diol and triol mixture is reacted with an excess of an aliphatic diisocyanate to form fully --NCO terminated prepolymers.
  • aliphatic diisocyanates utilizable in the practice of this invention include hexamethylene diisocyanate; 1,4bis(betaisocyanato ethyl) cyclohexane; isophorone diisocyanate; and 4,4' diisocyanato dicyclohexylmethane. Generally, the latter is preferred.
  • Monohydroxy acrylates that may be used to partially cap the --NCO terminated prepolymers include 2-hydroxymethyl acrylate, 2-hydroxyethyl methacrylate, and 2-hydroxypropyl acrylate.
  • any of the compounds well known in the art for promoting free radical polymerization using conventional ultraviolet light sources may be used in the coating. They should be present in the formulations at least to the extent of 0.5% and preferably 1.0% or more.
  • photoinitiators are aromatic ketones such as benzophenone and benzoin ethers such as benzoin isobutyl ether.
  • conventional catalysts for promoting the moisture cure of the polyurethane should be added, for example, the dialkyl tin salts of a long chain fatty acid such as dibutyltin dilaurate in small amounts such as 0.1% to 0.5%. Such catalysts are also used in forming the --NCO terminated prepolymer.
  • Conventional light stabilizers are also advantageously added.
  • reaction mixture which is a mixture of the partially capped isocyanate terminated urethane prepolymer and the acrylate diluent mixture
  • benzophenone photoinitiator is added together with 0.1% by weight of polyethylene glycol siloxane (Dow Corning DC472) and 1/2% by weight of dibutyltin dilaurate catalyst.
  • the coating thus formed has a viscosity of approximately 9,000 centipoises at room temperature and is comprised of 35% reactive diluents and 65% partially acrylate capped urethane prepolymer.
  • a commercial vinyl asbestos tile was conveyed under conventional coating mechanisms such as a knife, roll or curtain coater, in this instance, under a curtain coater, which applied 2 to 21/2 mils of coating overall on the tile product.
  • the coating was first heated to about 130° F. to reduce the viscosity.
  • the coated tile was passed under four, in line, 200 watt per inch, medium pressure mercury lamps at a speed of about 16 feet per minute to partially polymerize the coating by photopolymerizing the ethylenically unsaturated components of the coating formulation. Surprisingly, there was no necessity to use an inerting blanket during the ultraviolet light cure.
  • the coating on the tile which is tack-free at this point, although not tough and mar-resistant, is then given a final moisture cure by allowing the coating to age at room conditions whereby the unreacted isocyanate end groups in the coating react with moisture and chain extend and cross-link to form the final durable, tough, glossy clear coat. At average room conditions, the coating develops its optimum properties within about 3 weeks.
  • Example 1 A series of coatings, applied and cured as above-described, were evaluated for a range of concentrations of 2-hydroxyethyl acrylate.
  • the 2-hydroxyethyl acrylate content was varied in the coating formulation of Example 1 from 0% to 40% (calculated on the basis of the number of equivalents of acrylate per equivalents of free --NCO's in the prepolymers).
  • Example 1 above has a 10% acrylate content on this basis. Results of varying acrylate levels on physical properties in the fully cured coatings is reported in Table I.
  • the gloss reduction data given above shows that, at about 15% 2-hydroxyethyl acrylate content, the 3 hours gloss reading begins to become large. At higher levels, the loss of gloss is progressively worse.
  • the loss of gloss was determined by subjecting tile samples to an accelerated traffic wear test using a rotating abrasive wheel. When the 2-hydroxyethyl acrylate was omitted from the formulation, the film was too tacky after the U-V cure, and this made handling of the coated tile difficult.
  • Example 1 The above reactants were charged into a reaction vessel and 132.3 grams of 4,4' diisocyanato dicyclohexylmethane and 0.4 grams of dibutyltin laurate were added and reacted as in Example 1. The 5.8 grams of 2-hydroxyethyl acrylate was then added and reacted following the procedure of Example 1.
  • the coating Based on 100 parts by weight of the reaction mixture, 2% by weight benzophenone, 0.2% 2,6-ditertiarybutyl paracresol antioxidant and 0.4% acrylic acid are added. At this point, the coating has a viscosity of about 4800 centipoises at 24° C. The coating is heated to reduce the viscosity and applied to a vinyl asbestos tile substrate and cured as described in Example 1. After aging for about three weeks, the coating cured to form durable, tough, mar-resistant clear film.

Abstract

A liquid radiation and moisture curable 100% reactive coating which cures to yield a clear, tough, glossy abrasion-resistant cured coating is described. The radiation and moisture curable 100% reactive coating composition comprises: 15 to 60 parts by weight acrylate diluents; and 40 to 85 parts by weight of isocyanate terminated urethane prepolymers formed by reacting a mixture of polyester diols and triols with excess aliphatic diisocyanate to form --NCO terminated prepolymer and then reacting the --NCO terminated prepolymers with sufficient hydroxy acrylate to cap between about 5% and 15% of the available --NCO sites to form addition polymerizable ethylenically unsaturated sites and a photoinitiator when light is the radiation source. When the coating is exposed to a source of radiation, the ethylenically unsaturated monomers and prepolymers polymerize to develop a tack-free surface coating, after which the partially reacted coating is further polymerized through the isocyanate terminated prepolymer portion by moisture curing to form the fully cured tough, glossy, abrasion-resistant coating. The coatings of this invention are particularly well adapted for providing a decorative thermoplastic surface covering with a clear, tough, glossy, abrasion-resistant, light-stable, no-wax wear layer.

Description

DESCRIPTION OF THE PRIOR ART
In order to provide decorative thermoplastic floor coverings with tough, glossy, abrasion-resistant coatings which are semi-permanent such that they do not require the home application of wax or polymeric compositions to retain their gloss, the resilient flooring industry has developed urethane coatings which are factory applied. Although some of these coatings have been satisfactory as to gloss and wear characteristics, one drawback is that these coatings are based on solvent systems and require the utilization of large amounts of energy to drive off the solvents as well as complicated solvent recovery systems. It has been proposed to provide coating compositions which may be cured on exposure to radiation and/or light, which coatings contain essentially 100% active ingredients together with conventional photopolymerization catalysts or initiators, as coatings for application to resilient thermoplastic floor products. These would hopefully overcome the disadvantages associated with solvent based coating systems. For example, U.S. Pat. No. 3,056,760 discloses a 100% reactive terminally unsaturated polymer coating material which may be photopolymerized advantageously with the use of a catalyst and suggests the coating may be used for protectively coating articles such as linoleum. An even earlier reference, U.S. Pat. No. 2,413,973, recognized that certain photocurable coating compositions could be used to upgrade articles made of a wide variety of resins including thermoplastics. Still further radiation curable urethane modified binders are described in U.S. Pat. Nos. 3,891,523 and 3,509,234, and the application of photopolymerizable coatings to vinyl asbestos tile is described in U.S. Pat. Nos. 3,924,023.
SUMMARY OF THE INVENTION
In view of the above, it seemed readily apparent that prime candidate materials for coatings would be found in the photopolymerizable coating art. Such coatings, when applied to resilient thermoplastic decorative floor coverings, should evidence superior resistance to soiling and staining and evidence superior scratch and abrasion resistance. They should be of a semi-permanent nature and should have the obvious low energy requirements needed for production requirements. A screening of a considerable number of the most advanced photopolymerizable coatings available failed to realize the apparent potential and, for one reason or another, such coatings were found deficient due to the stringent requirements placed on a glossy, semi-permanent, coating which is highly resistant to scratching and abrasion under normal conditions of floor covering usage. These disadvantages have now been overcome by utilizing the coating composition of this invention which combines in a 100% reactive system, a monomer and prepolymer system which is partially curable by a photopolymerization curing step with the remainder of the coating being isocyanate terminated prepolymer which is moisture curable through the terminal -NCO groups to form tough urea cross-links in the cured film. This coating yields a tough, glossy, clear coating which is resistant to soil and staining and is both abrasion and scratch resistant. It can be considered to be semi-permanent; thus providing a nowax floor requiring little of the maintenance associated with conventional resilient thermoplastic decorative vinyl floor coverings over a long lifetime.
Description of the Preferred Embodiment
Although radiation sources such as electron beams may be used to cure the coatings, the most popular method in use today is the use of a ultraviolet light source and a photoinitiator as a source of free radicals in radiation curing. Innumerable resin systems have been proposed as ultraviolet light curable coating systems. Most of these photopolymerizable coatings are essentially 100% reactive and when used as coatings, cure to a hard abrasion resistant film. Some of these coatings are based on acrylate type systems which are polymerized through the unsaturated acrylate groups on photopolymerization. It has been proposed, for example, in U.S. Pat. No. 3,509,234 to include urethane type prepolymers in the 100% reactive system wherein the isocyanate terminated prepolymer is subsequently reacted with a hydroxyacrylate to provide the unsaturated site for cross-linking with acrylate diluents during the photopolymerization step. Such systems form a durable film on curing by either photopolymerization or ionizing radiation and are resistant to conventional service conditions. However, although abrasive resistant to a considerable degree, films of the prior art in general have a fatal drawback in that the original glossy surface, when utilized on a floor, is readily scratched and sometimes even gouged under extreme wear conditions experienced in such an environment. To the housewife, when considering a no-wax floor which is offered as a permanent installation, this is a serious drawback since such scratching reduces the gloss in a relatively short period of time.
I have discovered that a 100% reactive system that can be used as a successful coating for resilient thermoplastic floor products. The urethane prepolymer which is present together with the acrylate diluents in the reactive coating is essentially NCO terminated, although a small portion of the --NCO groups are capped with a monohydroxy acrylate to provide a limited degree of unsaturation at certain points of the prepolymer backbone structure. Generally speaking, a mixture of diols and triols are reacted with an excess of diisocyanate to form the NCO terminated prepolymer. This reaction is carried out in the presence of acrylated diluents. To this mixture a small portion of the monohydroxy acrylate is added and reacted with a portion of the available --NCO groups on the isocyanate terminated prepolymer portion to form unsaturated sites on a portion thereof. The conventional photoinitiator is added to this mixture and the liquid thus formed is coated by a conventional means onto the decorative thermoplastic vinyl flooring product, either in tile or sheet form.
The coated sheet or tile is then passed beneath an ultraviolet light source such as a medium pressure mercury lamp, and the unsaturated portion of the coating is cured and cross-linked. The partially cured coating is then exposed to moisture by aging, which further chain extends and cross-links the coating by reaction of water with the --NCO groups. The combination of the photopolymerized polymer component and the polyurethane component in the fully cured coating yields the desired tough, glossy, mar-resistant film.
In order to form then liquid coating which may be factory applied and cured to form a clear film having the desired properties, I have found that it is necessary to base my polyurethane forming prepolymer component on a combination of polyester diols and triols reacted with excess aliphatic diisocyanate to form --NCO terminated prepolymers. The prepolymers are the partially capped by reaction with a sufficient amount of a monohydroxy acrylate to cap between about 5% and 15% of the available --NCO groups.
Sufficient acrylate diluents having no reactive hydroxyl groups are used in the coating to provide a liquid of desired viscosity which, when subjected to a conventional photopolymerizable source, will react to give a non-tacky film. Generally, from 15 to 60 parts by weight of acrylate diluents are utilized with 40 to 85 parts by weight of the partially capped --NCO terminated prepolymers together with a suitable photoinitiator when preparing coatins in accordance with this invention. At least 10% by weight of the acrylate diluent is a diacrylate or triacrylate.
Examples of acrylates utilizable in the coating compositions of this invention include mono, di and triacrylates such as 2-ethylhexyl acrylate, phenoxyethyl, acrylate, isodecyl acrylate, ethoxyethyl acrylate, benzyl acrylate, tetrahydrofurfuryl acrylate, neopentyl glycol diacrylate, tetraethylene glycol diacrylate, 1,6hexanediol diacrylate, trimethylol propane triacrylate, and lauryl methacrylate.
The preferred polyester triol is formed by reacting one mole of glycerol with 3 moles of dicarboxylic acids and 3 moles of aliphatic diols. Preferably, the triol will have a molecular weight of about 500 to 1,000 and a hydroxyl number between about 160 and 330. As the diol, a polycaprolactone diol, prepared, for example, as described in U.S. Pat. No. 2,914,556, is generally preferred, although polyester diols such as 1,6 hexane dioladipate may also be used. A polyester diol having a molecular weight between about 350 and 1000 and a hydroxyl member between about 110 and 320 is preferred.
As described above, the polyester diol and triol mixture is reacted with an excess of an aliphatic diisocyanate to form fully --NCO terminated prepolymers. Examples of aliphatic diisocyanates utilizable in the practice of this invention include hexamethylene diisocyanate; 1,4bis(betaisocyanato ethyl) cyclohexane; isophorone diisocyanate; and 4,4' diisocyanato dicyclohexylmethane. Generally, the latter is preferred.
Monohydroxy acrylates that may be used to partially cap the --NCO terminated prepolymers include 2-hydroxymethyl acrylate, 2-hydroxyethyl methacrylate, and 2-hydroxypropyl acrylate.
As the photoinitiator, any of the compounds well known in the art for promoting free radical polymerization using conventional ultraviolet light sources may be used in the coating. They should be present in the formulations at least to the extent of 0.5% and preferably 1.0% or more. Examples of such photoinitiators are aromatic ketones such as benzophenone and benzoin ethers such as benzoin isobutyl ether. Also conventional catalysts for promoting the moisture cure of the polyurethane should be added, for example, the dialkyl tin salts of a long chain fatty acid such as dibutyltin dilaurate in small amounts such as 0.1% to 0.5%. Such catalysts are also used in forming the --NCO terminated prepolymer. Conventional light stabilizers are also advantageously added.
The following examples will serve to more fully illustrate specific embodiments of this invention.
EXAMPLE 1
The following reactants were charged into a reaction vessel.
______________________________________                                    
Ingredients            Grams                                              
______________________________________                                    
Triol (Hooker F-1017-180) Reaction                                        
product of 1 mole glycerol, 3 moles                                       
of a 7/3 mixture of adipic acid and                                       
isophthalic acid, and 3 moles                                             
1,6 hexanediol MW 960; Hydroxyl No.                                       
175                    93                                                 
Diol (Union Carbide PCP0200) A poly-                                      
caprolactone diol having a MW of                                          
540 and a Hydroxyl No. of 207                                             
                       58                                                 
2-ethylhexylacrylate   94                                                 
Hexanediol diacrylate  62                                                 
______________________________________                                    
132.3 grams of 4,4' diisocyanato dicyclohexylmethane and 0.4 grams of dibutyltin dilaurate catalyst were then added and the mixture reacted at 45° C. to 50° C. After the reaction has proceeded for approximately 45 minutes, 5.8 grams of 2-hydroxyethylacrylate was added continuing the stirring and heating for an additional two hours at which point the isocyanate functionality is constant.
Based on 100 parts by weight of the reaction mixture which is a mixture of the partially capped isocyanate terminated urethane prepolymer and the acrylate diluent mixture, 2.0% by weight of benzophenone photoinitiator is added together with 0.1% by weight of polyethylene glycol siloxane (Dow Corning DC472) and 1/2% by weight of dibutyltin dilaurate catalyst.
At this point, the coating thus formed has a viscosity of approximately 9,000 centipoises at room temperature and is comprised of 35% reactive diluents and 65% partially acrylate capped urethane prepolymer.
A commercial vinyl asbestos tile was conveyed under conventional coating mechanisms such as a knife, roll or curtain coater, in this instance, under a curtain coater, which applied 2 to 21/2 mils of coating overall on the tile product. The coating was first heated to about 130° F. to reduce the viscosity.
The coated tile was passed under four, in line, 200 watt per inch, medium pressure mercury lamps at a speed of about 16 feet per minute to partially polymerize the coating by photopolymerizing the ethylenically unsaturated components of the coating formulation. Surprisingly, there was no necessity to use an inerting blanket during the ultraviolet light cure. The coating on the tile, which is tack-free at this point, although not tough and mar-resistant, is then given a final moisture cure by allowing the coating to age at room conditions whereby the unreacted isocyanate end groups in the coating react with moisture and chain extend and cross-link to form the final durable, tough, glossy clear coat. At average room conditions, the coating develops its optimum properties within about 3 weeks.
A series of coatings, applied and cured as above-described, were evaluated for a range of concentrations of 2-hydroxyethyl acrylate. In the series, the 2-hydroxyethyl acrylate content was varied in the coating formulation of Example 1 from 0% to 40% (calculated on the basis of the number of equivalents of acrylate per equivalents of free --NCO's in the prepolymers). Example 1 above has a 10% acrylate content on this basis. Results of varying acrylate levels on physical properties in the fully cured coatings is reported in Table I.
              Table I                                                     
______________________________________                                    
The Effect of Varying 2HEA Content on Physical                            
Properties, Tg, and Loss of Gloss                                         
2HEA  Tensile Elong.  Tg       Gloss                                      
(%)   (psi)   (%)     (DSC)    1 hr  2 hr  3 hr                           
______________________________________                                    
 0    2598    59.3    -17 to +24                                          
                               11    25    43                             
 5    3490    74.3    -12 to +25                                          
                               13    34    46                             
10    2576    56.0    -12 to +29                                          
                               10    26    44                             
15    3813    77.1    -12 to +39                                          
                               14    33    52                             
20    2913    56.5     -9 to +35                                          
                               11    32    54                             
40    2813    49.0     -8 to +42                                          
                               15    41    61                             
______________________________________                                    
The gloss reduction data given above shows that, at about 15% 2-hydroxyethyl acrylate content, the 3 hours gloss reading begins to become large. At higher levels, the loss of gloss is progressively worse. The loss of gloss was determined by subjecting tile samples to an accelerated traffic wear test using a rotating abrasive wheel. When the 2-hydroxyethyl acrylate was omitted from the formulation, the film was too tacky after the U-V cure, and this made handling of the coated tile difficult.
              Example 2                                                   
______________________________________                                    
Ingredients              Grams                                            
______________________________________                                    
Triol of Example 1       76.7                                             
1,6 hexanedioladipate (molecular                                          
weight 528; hydroxyl number 213)                                          
                         70.0                                             
2-ethylhexyl acrylate    92.5                                             
Hexanediol diacrylate    61.5                                             
______________________________________                                    
The above reactants were charged into a reaction vessel and 132.3 grams of 4,4' diisocyanato dicyclohexylmethane and 0.4 grams of dibutyltin laurate were added and reacted as in Example 1. The 5.8 grams of 2-hydroxyethyl acrylate was then added and reacted following the procedure of Example 1.
Based on 100 parts by weight of the reaction mixture, 2% by weight benzophenone, 0.2% 2,6-ditertiarybutyl paracresol antioxidant and 0.4% acrylic acid are added. At this point, the coating has a viscosity of about 4800 centipoises at 24° C. The coating is heated to reduce the viscosity and applied to a vinyl asbestos tile substrate and cured as described in Example 1. After aging for about three weeks, the coating cured to form durable, tough, mar-resistant clear film.

Claims (8)

What is claimed is:
1. In a process wherein a liquid coating is subjected to a combined radiation and moisture cure to yield a tough mar-resistant glossy film, the improvement comprising using a liquid coating consisting essentially of:
a. 15 to 60 parts by weight of acrylate diluents with 10 to 90% by weight being monoethylenically unsaturated and the balance di or tri-ethylenically unsaturated, said diluents have no reactive hydroxyl groups; and
b. 40 to 85 parts by weight --NCO terminated prepolymers prepared by reacting a mixture of 20 to 80% by weight polyester diol and 20 to 80% by weight polyester triol with an excess of an aliphatic diisocyanate, said prepolymer mixture being further reacted with sufficient hdyroxy acrylate to cap 5 to 15% of the available --NCO groups.
2. A process in accordance with claim 1 wherein said liquid coating contains sufficient photoinitiator to initiate photopolymerization and yield a non-tacky film when said coating is subjected to a photopolymerization source.
3. A process in accordance with claim 2, in which the polyester diol has a molecular weight of 350 to 1,000 and a hydroxyl number of between about 110 and 320, and in which the polyester triol has a molecular weight of about 500 to 1,000 and a hydroxyl number of between about 160 and 330.
4. A process in accordance with claim 3 in which the acrylate diluents are a mixture of 2-ethylhexyl acrylate and 1,6-hexane dioldiacrylate.
5. A process in accordance with claim 3 in which the hydroxy acrylate reacted with said --NCO terminated prepolymers is 2-- hydroxyethyl acrylate, said hydroxy acrylate being sufficient in amount to react with about 10% of the available --NCO groups.
6. A process in accordance with claim 3 in which the diisocyanate is 4,4'-diisocyanato dicyclohexyl methane.
7. A process in accordance with claim 4 in which the weight ratio of acrylate diluents to prepolymer mixture is about 35 parts by weight to 65 parts by weight.
8. A process in accordance with claim 7 in which the triol is the reaction product of 1 mole glycerol, 3 moles of a 7/3 mixture of adipic and isophthalic acids, and 3 moles 1,6-hexane diol, the diol is a polycaprolactone diol having a molecular weight of between 350 and 1,000 and a hydroxyl number of between 110 and 320 , and wherein the diiscoyanate is 4,4'-diisocyanato dicyclohexyl methane.
US05/863,844 1977-12-23 1977-12-23 Process utilizing a photopolymerizable and moisture curable coating containing partially capped isocyanate prepolymers and acrylate monomers Expired - Lifetime US4138299A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US05/863,844 US4138299A (en) 1977-12-23 1977-12-23 Process utilizing a photopolymerizable and moisture curable coating containing partially capped isocyanate prepolymers and acrylate monomers
AU39359/78A AU503537B1 (en) 1977-12-23 1978-08-29 Coating
CA311,004A CA1101585A (en) 1977-12-23 1978-09-11 Photopolymerizable and moisture curable coating containing partially capped isocyanate prepolymers and acrylate monomers
DE2840582A DE2840582C2 (en) 1977-12-23 1978-09-18 Liquid coating agent curable through combined radiation and moisture curing
GB7849719A GB2010880B (en) 1977-12-23 1978-12-21 Curable coating compositions and coatings obtained therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US05/863,844 US4138299A (en) 1977-12-23 1977-12-23 Process utilizing a photopolymerizable and moisture curable coating containing partially capped isocyanate prepolymers and acrylate monomers

Publications (1)

Publication Number Publication Date
US4138299A true US4138299A (en) 1979-02-06

Family

ID=25341917

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/863,844 Expired - Lifetime US4138299A (en) 1977-12-23 1977-12-23 Process utilizing a photopolymerizable and moisture curable coating containing partially capped isocyanate prepolymers and acrylate monomers

Country Status (5)

Country Link
US (1) US4138299A (en)
AU (1) AU503537B1 (en)
CA (1) CA1101585A (en)
DE (1) DE2840582C2 (en)
GB (1) GB2010880B (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4247578A (en) * 1977-01-14 1981-01-27 Henkel Corporation Interpenetrating dual cure resin compositions
US4260717A (en) * 1980-01-10 1981-04-07 Ehrhart Wendell A High performance urethane coating which is a solvent solution of a polyester containing hydroxyl groups and an aliphatic diisocyanate
FR2480335A1 (en) * 1980-04-14 1981-10-16 Armstrong World Ind Inc METHOD AND APPARATUS FOR REDUCING SURFACE GLOSS
US4329421A (en) * 1980-01-07 1982-05-11 Armstrong Cork Company Use of flashed radiant energy in producing relief images in resinous coating
US4364879A (en) * 1978-07-21 1982-12-21 Georg Fischer Aktiengesellschaft Method for forming a coated article including ultra-violet radiation of the coating
US4415604A (en) * 1982-11-12 1983-11-15 Loctite Corporation Conformal coating and potting system
US4451523A (en) * 1982-11-12 1984-05-29 Loctite Corporation Conformal coating systems
US4634644A (en) * 1983-12-20 1987-01-06 Ciba-Geigy Corporation Process for the production images using sequentially gaseous polymerizing agents and photocuring
US4751145A (en) * 1986-02-19 1988-06-14 Societa' Italiana Vetro - Siv - S.P.A. Process for manufacturing a safety glass for motor vehicles and buildings, and product so obtained
US4804569A (en) * 1987-05-19 1989-02-14 Yugen Kaisha Arisawa Unit tile
US4837126A (en) * 1985-06-07 1989-06-06 W. R. Grace & Co. Polymer composition for photoresist application
JPH01163274A (en) * 1982-11-12 1989-06-27 Loctite Corp One-component coating composition
US4983644A (en) * 1988-06-21 1991-01-08 Mitsubishi Rayon Company, Limited Dental adhesive composition
US5003026A (en) * 1989-06-22 1991-03-26 Armstrong World Industries, Inc. UV curable no-wax coating
US5128385A (en) * 1984-09-13 1992-07-07 Armstrong World Industries, Inc. Photocrosslinkable thermoplastic urethane coating system
EP0522250A1 (en) * 1991-07-01 1993-01-13 Hüls Aktiengesellschaft Sheet-forming photocurable and moisture curable laminating adhesive, process for the backing of textile ribbons by this laminating adhesive and textile material from textile ribbons and sheets of the laminating adhesive
EP0549116A2 (en) * 1991-12-20 1993-06-30 W.R. Grace & Co.-Conn. Dual curing composition and use thereof
US5409740A (en) * 1992-12-18 1995-04-25 Lord Corporation Dual-cure method of forming industrial threads
US5438080A (en) * 1986-05-27 1995-08-01 Nippon Oil And Fats Co., Ltd. Ultraviolet-curable coating composition
US5505808A (en) * 1989-02-02 1996-04-09 Armstrong World Industries, Inc. Method to produce an inorganic wear layer
US5578693A (en) * 1995-09-05 1996-11-26 Bomar Specialties Company Multifunctional terminally unsaturated urethane oligomers
US5719227A (en) * 1995-12-04 1998-02-17 Armstrong World Industries, Inc. Coating composition
WO1998020060A1 (en) * 1996-11-01 1998-05-14 The Dow Chemical Company A polyfunctional liquid urethane composition
US5965460A (en) * 1997-01-29 1999-10-12 Mac Dermid, Incorporated Polyurethane composition with (meth)acrylate end groups useful in the manufacture of polishing pads
US6316535B1 (en) 1999-05-18 2001-11-13 Armstrong World Industries, Inc. Coating system and method of applying the same
US6375786B1 (en) 1996-03-04 2002-04-23 Awi Licensing Company Surface covering having a precoated, E-beam cured wearlayer coated film and process of making the same
US6440500B1 (en) 1999-07-28 2002-08-27 Armstrong World Industries, Inc. Method for manufacturing a surface covering product having a controlled gloss surface coated wearlayer
US6562464B1 (en) 1999-03-24 2003-05-13 Basf Aktiengesellschaft Utilization of phenylglyoxalic acid esters as photoinitiators
US6599955B1 (en) 1999-11-23 2003-07-29 Bayer Aktiengesellschaft Radiation-curable urethane acrylates containing iso-cyanate groups and their use
US20030180509A1 (en) * 2000-11-15 2003-09-25 Armstrong World Industries, Inc. Pigmented radiation cured wear layer
EP1377647A1 (en) * 2001-04-01 2004-01-07 Dow Global Technologies Inc. Rigid polyurethane foams
US20040092006A1 (en) * 2001-03-30 2004-05-13 Luc Lindekens Substrates, preparation and use
US20040097642A1 (en) * 2001-03-23 2004-05-20 Reinhold Schwalm Unsaturated compounds containing carbamate terminal groups or urea terminal groups
US6765061B2 (en) * 2001-09-13 2004-07-20 Inphase Technologies, Inc. Environmentally durable, self-sealing optical articles
US20050079780A1 (en) * 2003-10-14 2005-04-14 Rowe Richard E. Fiber wear layer for resilient flooring and other products
US20090197000A1 (en) * 2006-06-14 2009-08-06 Huntsman International Llc Cross-linkable thermoplastic polyurethanes
US20090253050A1 (en) * 2002-04-11 2009-10-08 Inphase Technologies, Inc. Holographic storage media
US20090274919A1 (en) * 2008-04-30 2009-11-05 Dong Tian Biobased Resilient Floor Tile
US20110003913A1 (en) * 2008-02-01 2011-01-06 Durable Compliant Coatings B.V. Paint composition
US20160356669A1 (en) * 2015-06-08 2016-12-08 Corning Incorporated Integrated capstan and apparatus for screen testing an optical fiber
US10031045B2 (en) 2014-05-09 2018-07-24 Corning Incorporated Apparatuses for screen testing an optical fiber and methods for using the same
CN111479841A (en) * 2017-12-13 2020-07-31 Dic株式会社 Moisture-curable urethane hot-melt resin composition and laminate
CN112225868A (en) * 2020-09-30 2021-01-15 华南理工大学 Two-three functionality mixed polyurethane acrylate resin and preparation method thereof
CN115160920A (en) * 2022-08-11 2022-10-11 苏州合邦鑫材科技有限公司 Three-proofing paint and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2150938B (en) * 1983-12-05 1987-04-23 Tyndale Plains Hunter Limited Hydrophilic polyurethane acrylate compositions
US4598009A (en) * 1984-09-13 1986-07-01 Armstrong World Industries, Inc. Embossed material and method for producing the same from a photocrosslinkable polyurethane
GB8621835D0 (en) * 1986-09-10 1986-10-15 Courtaulds Plc Urethane polymer films
EP3489268A1 (en) * 2017-11-23 2019-05-29 Allnex Belgium, S.A. Radiation curable composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3935330A (en) * 1971-12-08 1976-01-27 Union Carbide Corporation Two-step coating process
US4025407A (en) * 1971-05-05 1977-05-24 Ppg Industries, Inc. Method for preparing high solids films employing a plurality of curing mechanisms

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3509234A (en) * 1965-08-13 1970-04-28 Ford Motor Co Radiation curable paint binders containing vinyl monomers and a hydroxylated polymer reacted with a polyisocyanate and an hydroxyl alkyl acrylate
GB1321372A (en) * 1970-01-19 1973-06-27 Dainippon Ink & Chemicals Photopolymerisable polyurethane compositions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4025407A (en) * 1971-05-05 1977-05-24 Ppg Industries, Inc. Method for preparing high solids films employing a plurality of curing mechanisms
US3935330A (en) * 1971-12-08 1976-01-27 Union Carbide Corporation Two-step coating process

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4247578A (en) * 1977-01-14 1981-01-27 Henkel Corporation Interpenetrating dual cure resin compositions
US4364879A (en) * 1978-07-21 1982-12-21 Georg Fischer Aktiengesellschaft Method for forming a coated article including ultra-violet radiation of the coating
US4329421A (en) * 1980-01-07 1982-05-11 Armstrong Cork Company Use of flashed radiant energy in producing relief images in resinous coating
US4260717A (en) * 1980-01-10 1981-04-07 Ehrhart Wendell A High performance urethane coating which is a solvent solution of a polyester containing hydroxyl groups and an aliphatic diisocyanate
FR2480335A1 (en) * 1980-04-14 1981-10-16 Armstrong World Ind Inc METHOD AND APPARATUS FOR REDUCING SURFACE GLOSS
JPH01163274A (en) * 1982-11-12 1989-06-27 Loctite Corp One-component coating composition
US4415604A (en) * 1982-11-12 1983-11-15 Loctite Corporation Conformal coating and potting system
US4451523A (en) * 1982-11-12 1984-05-29 Loctite Corporation Conformal coating systems
US4634644A (en) * 1983-12-20 1987-01-06 Ciba-Geigy Corporation Process for the production images using sequentially gaseous polymerizing agents and photocuring
US5128385A (en) * 1984-09-13 1992-07-07 Armstrong World Industries, Inc. Photocrosslinkable thermoplastic urethane coating system
US4837126A (en) * 1985-06-07 1989-06-06 W. R. Grace & Co. Polymer composition for photoresist application
US4751145A (en) * 1986-02-19 1988-06-14 Societa' Italiana Vetro - Siv - S.P.A. Process for manufacturing a safety glass for motor vehicles and buildings, and product so obtained
US5438080A (en) * 1986-05-27 1995-08-01 Nippon Oil And Fats Co., Ltd. Ultraviolet-curable coating composition
US4804569A (en) * 1987-05-19 1989-02-14 Yugen Kaisha Arisawa Unit tile
US4983644A (en) * 1988-06-21 1991-01-08 Mitsubishi Rayon Company, Limited Dental adhesive composition
US5505808A (en) * 1989-02-02 1996-04-09 Armstrong World Industries, Inc. Method to produce an inorganic wear layer
US5003026A (en) * 1989-06-22 1991-03-26 Armstrong World Industries, Inc. UV curable no-wax coating
EP0522250A1 (en) * 1991-07-01 1993-01-13 Hüls Aktiengesellschaft Sheet-forming photocurable and moisture curable laminating adhesive, process for the backing of textile ribbons by this laminating adhesive and textile material from textile ribbons and sheets of the laminating adhesive
US5234970A (en) * 1991-07-16 1993-08-10 W. R. Grace & Co.-Conn. Dual curing composition based on isocyanate trimer and use thereof
EP0549116A3 (en) * 1991-12-20 1993-08-04 W.R. Grace & Co.-Conn. Dual curing composition and use thereof
EP0549116A2 (en) * 1991-12-20 1993-06-30 W.R. Grace & Co.-Conn. Dual curing composition and use thereof
US5409740A (en) * 1992-12-18 1995-04-25 Lord Corporation Dual-cure method of forming industrial threads
US5578693A (en) * 1995-09-05 1996-11-26 Bomar Specialties Company Multifunctional terminally unsaturated urethane oligomers
US5719227A (en) * 1995-12-04 1998-02-17 Armstrong World Industries, Inc. Coating composition
US6375786B1 (en) 1996-03-04 2002-04-23 Awi Licensing Company Surface covering having a precoated, E-beam cured wearlayer coated film and process of making the same
US6616792B2 (en) 1996-03-04 2003-09-09 Awi Licensing Company Surface covering having a precoated, E-beam cured wearlayer coated film and process of making the same
WO1998020060A1 (en) * 1996-11-01 1998-05-14 The Dow Chemical Company A polyfunctional liquid urethane composition
AU730790B2 (en) * 1996-11-01 2001-03-15 Dow Chemical Company, The A polyfunctional liquid urethane composition
US5965460A (en) * 1997-01-29 1999-10-12 Mac Dermid, Incorporated Polyurethane composition with (meth)acrylate end groups useful in the manufacture of polishing pads
US6562464B1 (en) 1999-03-24 2003-05-13 Basf Aktiengesellschaft Utilization of phenylglyoxalic acid esters as photoinitiators
US6316535B1 (en) 1999-05-18 2001-11-13 Armstrong World Industries, Inc. Coating system and method of applying the same
US6440500B1 (en) 1999-07-28 2002-08-27 Armstrong World Industries, Inc. Method for manufacturing a surface covering product having a controlled gloss surface coated wearlayer
US6569500B1 (en) 1999-07-28 2003-05-27 Awi Licensing Company Method for controlling gloss level
US6599955B1 (en) 1999-11-23 2003-07-29 Bayer Aktiengesellschaft Radiation-curable urethane acrylates containing iso-cyanate groups and their use
US20050069681A1 (en) * 2000-11-15 2005-03-31 Wright Ralph W. Pigmented radiation cured wear layer
US20030180509A1 (en) * 2000-11-15 2003-09-25 Armstrong World Industries, Inc. Pigmented radiation cured wear layer
US6908663B1 (en) 2000-11-15 2005-06-21 Awi Licensing Company Pigmented radiation cured wear layer
US6908585B2 (en) 2000-11-15 2005-06-21 Awi Licensing Company Pigmented radiation cured wear layer
US6916854B2 (en) 2001-03-23 2005-07-12 Basf Aktiengesellschaft Unsaturated compounds containing carbamate terminal groups or urea terminal groups
US20040097642A1 (en) * 2001-03-23 2004-05-20 Reinhold Schwalm Unsaturated compounds containing carbamate terminal groups or urea terminal groups
US20040092006A1 (en) * 2001-03-30 2004-05-13 Luc Lindekens Substrates, preparation and use
US8304229B2 (en) * 2001-03-30 2012-11-06 Cytec Surface Specialties, S.A. Substrates, preparation and use
EP1377647A4 (en) * 2001-04-01 2004-11-17 Dow Global Technologies Inc Rigid polyurethane foams
EP1377647A1 (en) * 2001-04-01 2004-01-07 Dow Global Technologies Inc. Rigid polyurethane foams
US6765061B2 (en) * 2001-09-13 2004-07-20 Inphase Technologies, Inc. Environmentally durable, self-sealing optical articles
US8062809B2 (en) * 2002-04-11 2011-11-22 Inphase Technologies, Inc. Holographic storage media
US20090253050A1 (en) * 2002-04-11 2009-10-08 Inphase Technologies, Inc. Holographic storage media
US20050079780A1 (en) * 2003-10-14 2005-04-14 Rowe Richard E. Fiber wear layer for resilient flooring and other products
US20050176321A1 (en) * 2003-10-14 2005-08-11 Crette Stephanie A. Fiber wear layer for flooring and other products
US20090197000A1 (en) * 2006-06-14 2009-08-06 Huntsman International Llc Cross-linkable thermoplastic polyurethanes
US8168260B2 (en) 2006-06-14 2012-05-01 Huntsman International Llc Cross-linkable thermoplastic polyurethanes
US20110003913A1 (en) * 2008-02-01 2011-01-06 Durable Compliant Coatings B.V. Paint composition
US8889798B2 (en) 2008-02-01 2014-11-18 Durable Compliant Coatings B.V. Paint composition
EP2238210B1 (en) * 2008-02-01 2015-08-12 Durable Compliant Coatings B.V. Paint composition
US20090274919A1 (en) * 2008-04-30 2009-11-05 Dong Tian Biobased Resilient Floor Tile
US10031045B2 (en) 2014-05-09 2018-07-24 Corning Incorporated Apparatuses for screen testing an optical fiber and methods for using the same
US20160356669A1 (en) * 2015-06-08 2016-12-08 Corning Incorporated Integrated capstan and apparatus for screen testing an optical fiber
CN107850512A (en) * 2015-06-08 2018-03-27 康宁股份有限公司 The integrated capstan winch and equipment of filler test are carried out to optical fiber
CN111479841A (en) * 2017-12-13 2020-07-31 Dic株式会社 Moisture-curable urethane hot-melt resin composition and laminate
CN111479841B (en) * 2017-12-13 2022-05-06 Dic株式会社 Moisture-curable urethane hot-melt resin composition and laminate
CN112225868A (en) * 2020-09-30 2021-01-15 华南理工大学 Two-three functionality mixed polyurethane acrylate resin and preparation method thereof
CN115160920A (en) * 2022-08-11 2022-10-11 苏州合邦鑫材科技有限公司 Three-proofing paint and preparation method thereof

Also Published As

Publication number Publication date
GB2010880B (en) 1982-10-20
AU503537B1 (en) 1979-09-06
DE2840582A1 (en) 1979-06-28
DE2840582C2 (en) 1981-10-08
GB2010880A (en) 1979-07-04
CA1101585A (en) 1981-05-19

Similar Documents

Publication Publication Date Title
US4138299A (en) Process utilizing a photopolymerizable and moisture curable coating containing partially capped isocyanate prepolymers and acrylate monomers
US4072770A (en) U.V. curable poly(ester-urethane) polyacrylate polymers and wet look coatings therefrom
US4065587A (en) U.V. Curable poly(ether-urethane) polyacrylates and wet-look polymers prepared therefrom
US6277939B1 (en) Polyester resin-cured laminate and method of preparing
JP5105387B2 (en) Coating compositions curable by addition to isocyanate groups and radiation addition to activated C-C double bonds
US4288479A (en) Radiation curable release coatings
US5438080A (en) Ultraviolet-curable coating composition
JP2540708B2 (en) Radiation curable composition and method of use
JP3830974B2 (en) Coating systems and their use in making polyurethane acrylate surface coatings on laminated press plates
CA2271845C (en) Multifunctional polyacrylate-polyurethane oligomer, method and cured polymers and products
US4380604A (en) Radiation-hardenable acrylic acid esters containing urethane groups and their use
CA2650317A1 (en) Dual-cure coating compositions based on polyaspartates polyisocyanates and acrylate-containing compounds
KR20140048281A (en) Aqueous polyurethane resin dispersion and use thereof
US20050124714A1 (en) Coating compositions
CA2326370C (en) Radiation-curable urethane acrylates containing isocyanate groups and their use
EP0434741A4 (en) Ultraviolet-curable cationic vinyl ether polyurethane coating compositions
US4183796A (en) Radiation curable oligomers based on tris(2-hydroxyethyl) isocyanurate
CA2335258A1 (en) Process for preparing radiation-curable binders, and the coatings produced therewith
US5442090A (en) Radiation-curable urethane acrylate compounds containing amine and urea groups
JP2837144B2 (en) Active energy ray-curable aqueous resin composition
JP2016179966A (en) Photo-curing composition for nail makeup and nail cosmetics
JPH0351753B2 (en)
JP3135144B2 (en) Acryloyl or methacryloyl group-containing polyurethane
JPH0143769B2 (en)
EP1347003A1 (en) Radiation curable resin composition