US4018838A - Process of preparing alkenes - Google Patents

Process of preparing alkenes Download PDF

Info

Publication number
US4018838A
US4018838A US05/675,267 US67526776A US4018838A US 4018838 A US4018838 A US 4018838A US 67526776 A US67526776 A US 67526776A US 4018838 A US4018838 A US 4018838A
Authority
US
United States
Prior art keywords
formula
haloalcohol
zinc
range
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/675,267
Other languages
English (en)
Inventor
Peter John Vernon Cleare
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imperial Chemical Industries Ltd
Original Assignee
Imperial Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imperial Chemical Industries Ltd filed Critical Imperial Chemical Industries Ltd
Application granted granted Critical
Publication of US4018838A publication Critical patent/US4018838A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons

Definitions

  • This invention relates to reductive dehydrohalogenation of ⁇ -haloalcohols to give alkenes, and more particularly it relates to the reductive dehydrochlorination of chloral adducts with alkenes.
  • This procedure is not well suited to large scale preparation of the required diene because it involves a large number of separate steps, it uses a relatively large quantity of zinc dust which can give rise to problems of effluent disposal, and uses ether in conjunction with the zinc powder at one stage which makes that particular step potentially very hazardous because of the high flammability and low flash point of ether and the pyrophoric nature of finely powdered zinc dust.
  • an improved process for the preparation of a compound of formula: ##STR1## wherein X is halogeno and R is either a group of formula: ##STR2## or a group of formula: ##STR3## comprises treating a haloalcohol of formula: ##STR4## with powdered zinc in glacial acetic acid at a temperature within the range 25° to 110° C, wherein the zinc is used in an amount of from one to two moles per mole of haloalcohol.
  • the improved process is preferably conducted at a temperature within the range 40° to 60° C.
  • the quantity of zinc used is preferably within the range from 1.4 to 1.6 moles of zinc per mole of haloalcohol.
  • the use of zinc in the amounts specified in the invention process represents a considerable saving over the amounts proposed by Farkas et al. This saving is not only made as a result of using less zinc, which is in itself valuable, but also in the reduction of the cost involved in plant and processes to recover the spent zinc from the reaction mixture and also a reduction in the cost of providing adequate effluent control to prevent wastes contaminated with zinc or zinc salts from affecting the environment.
  • the improved process of the invention also represents an advance over the known process in that the haloalcohol itself may be directly reduced without the necessity of first converting it to the acetate.
  • 1,1-dihalo-4-methyl-1,3-pentadienes and 1,1-dihalo-4-methyl-1,4-pentadienes may be useful as monomeric intermediates in the preparation of copolymers with other ethylenically unsaturated monomers, for example, vinyl chloride, vinyl acetate, acrylonitrile, methyl methacrylate, and the like. They may also be useful in the preparation of resins, for example, alkyd resins.
  • halo or halogeno as used herein we mean fluoro, chloro, bromo and iodo.
  • 1,1-dihalo-4-methyl-1,3-pentadienes are also useful in the synthesis of certain insecticidal cyclopropane derivatives.
  • 1,1-Dichloro-4-methyl-1,3-pentadiene and 1,1-dibromo-4-methyl-1,3-pentadiene are particularly useful for this purpose, and can be reacted with alkyl diazoacetates to provide the alkyl esters of 2(2,2-dichlorovinyl)-3,3-dimethylcyclopropane caraboxylic acid, and 2(2,2-dibromovinyl)-3,3-dimethylcyclopropane carboxylic acid respectively.
  • Certain esters of these acids for example, the 3-phenoxybenzyl, and ⁇ -cyano-3-phenoxybenzyl esters, are extremely potent insecticides.
  • these conjugated dienes may be obtained from the corresponding unconjugated 1,4-dienes, for example by heating with an organic acid.
  • the invention provides a process for the preparation of a compound of formula: ##STR5## wherein X is chloro or bromo, which comprises (a) the step of treating a haloalcohol of formula: ##STR6## wherein R represents either the group of formula: ##STR7## or the group of formula: ##STR8## with powdered zinc in glacial acetic acid at a temperature within the range 25° to 110° C, wherein the zinc is used in an amount of from one to two moles per mole of haloalcohol; and (b) the additional step of subsequently heating the reaction mixture at a temperature within the range 80° to 120° C with a catalytic quantity of an organic acid (other than acetic acid), to cause isomerisation of any of the unconjugated 1,4-diene formed in the first stage to the conjugated 1,3-diene. It is particularly convenient to raise the temperature of the reaction mixture for this additional step to the reflux point.
  • haloalcohols of formula: ##STR9## wherein X and R are as defined hereinable, may be obtained by a procedure analogous to that of Colonge et al (loc. cit.), from trihaloacetaldehyde and isobutylene in the presence of a Friedel-Crafts catalyst, for example aluminium chloride.
  • a Friedel-Crafts catalyst for example aluminium chloride.
  • the invention is illustrated by the following example.
  • This example illustrates the condensation of chloral and isobutylene.
  • This example illustrates the preparation of 1,1-dichloro-4-methyl-1,3-pentadiene.
  • a stirred mixture of 1,1,1-trichloro-2-hydroxy-4-methyl-4-pentene (671 g) and glacial acetic acid (792 g) was heated to 50° C and powdered zinc (324 g) was added in small portions over a period of 100 minutes, the temperature of the mixture during the addition being maintained in the range 47° to 50° C. When the addition was complete the mixture was stirred at 50° C for a further 4.5 hours.
  • p-Toluenesulphonic acid (4.0 g) was then added to the mixture at the temperature raised 108° C, whilst purging the mixture with nitrogen.
  • the mixture was then heated under a nitrogen atomosphere within the range 105° to 108° C for 8.5 hours, following which acetic acid (ca. 160 ml) was removed from the mixture by distillation, and the residual mixture cooled to the ambient temperature, and diluted with water (900 ml) and light petroleum (boiling range 60° to 80° C, 250 ml). After vigorous stirring the phases were separated. The aqueous phase was washed with more light petroleum (3 ⁇ 250 ml) and the washings combined with the original petroleum phase. The combined petroleum phase was washed with saturated aqueous sodium bicarbonate solution (2 ⁇ 250 ml), and with water (1 ⁇ 250 ml), and finally dried over anhydrous magnesium sulphate.
  • acetic acid ca. 160 ml
  • the solvent was removed by evaporation under reduced pressure and the residual oil distilled yielding 1,1-dichloro-4-methyl-1,3-pentadiene, as a fraction boiling within the range 56° -65° C/ 10-11 mm Hg.
  • the product was identified by n.m.r. spectroscopy and was shown to be identical with an authentic sample.
  • Example 2 The procedure of Example 2 was followed except that the step of distilling off the acetic acid was omitted. This resulted in a slightly higher yield of the product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
US05/675,267 1975-04-17 1976-04-09 Process of preparing alkenes Expired - Lifetime US4018838A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
UK15862/75 1975-04-17
GB15862/75A GB1480671A (en) 1975-04-17 1975-04-17 Process for the preparation of 1,1-dihalo-4-methyl pentadienes

Publications (1)

Publication Number Publication Date
US4018838A true US4018838A (en) 1977-04-19

Family

ID=10066867

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/675,267 Expired - Lifetime US4018838A (en) 1975-04-17 1976-04-09 Process of preparing alkenes

Country Status (5)

Country Link
US (1) US4018838A (xx)
JP (1) JPS51128902A (xx)
DE (1) DE2616681A1 (xx)
FR (1) FR2307784A1 (xx)
GB (1) GB1480671A (xx)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4070404A (en) * 1976-03-26 1978-01-24 Fmc Corporation Process to 1,1-dihalo-4-methyl-1,3-pentadienes, pyrethroid insecticide intermediates
US4078008A (en) * 1975-08-16 1978-03-07 Bayer Aktiengesellschaft Process for the preparation of dienes
US4098657A (en) * 1975-12-17 1978-07-04 Imperial Chemical Industries Limited Electrolyte dehydrohalogenation of α-haloalcohols
FR2483404A1 (fr) * 1980-05-30 1981-12-04 Shell Int Research Procede de preparation de 2,2-dihalovinyl-cyclopropanecarboxylates
US4307243A (en) * 1979-03-27 1981-12-22 Shell Oil Company Process of preparing dihalovinyl compounds
US4681977A (en) * 1984-06-28 1987-07-21 Basf Aktiengesellschaft Preparation of chloro-olefins

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU183505B (en) * 1981-07-03 1984-05-28 Chinoin Gyogyszer Es Vegyeszet Process for cleaving 1-substituted 2,2,2-trihalogenoethyl-esters
HU188157B (en) * 1981-11-10 1986-03-28 Chinoin Gyogyszer Es Vegyeszeti Termekek Gyara,Hu Process for producing 1,1-dichloro-4-methyl-1,3-pentadiene
FR2518987A1 (fr) * 1981-12-29 1983-07-01 Ugine Kuhlmann Procede de preparation d'hydrocarbures acetyleriques vrais a chaine perfluoree
FR2536744B1 (fr) * 1982-11-26 1988-04-08 Chinoin Gyogyszer Es Vegyeszet Procede de preparation de 1,1-dichloro-4-methyl-1,3-pentadiene
HU193487B (en) * 1983-04-15 1987-10-28 Chinoin Gyogyszer Es Vegyeszet Process for production of 1-substituated-2,2-dichloreaevinile compound with reductive elimination

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4211041Y1 (xx) * 1963-12-30 1967-06-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4211041Y1 (xx) * 1963-12-30 1967-06-20

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4078008A (en) * 1975-08-16 1978-03-07 Bayer Aktiengesellschaft Process for the preparation of dienes
US4098657A (en) * 1975-12-17 1978-07-04 Imperial Chemical Industries Limited Electrolyte dehydrohalogenation of α-haloalcohols
US4070404A (en) * 1976-03-26 1978-01-24 Fmc Corporation Process to 1,1-dihalo-4-methyl-1,3-pentadienes, pyrethroid insecticide intermediates
US4307243A (en) * 1979-03-27 1981-12-22 Shell Oil Company Process of preparing dihalovinyl compounds
FR2483404A1 (fr) * 1980-05-30 1981-12-04 Shell Int Research Procede de preparation de 2,2-dihalovinyl-cyclopropanecarboxylates
DE3120969A1 (de) * 1980-05-30 1982-02-04 Shell Internationale Research Maatschappij B.V., 2596 's-Gravenhage Verfahren zur herstellung von 2,2-dihalogenvinylsubstituierten cyclopropancarbonsaeure-estern
US4335253A (en) * 1980-05-30 1982-06-15 Shell Oil Company Preparation of dihalovinyl compounds
US4681977A (en) * 1984-06-28 1987-07-21 Basf Aktiengesellschaft Preparation of chloro-olefins

Also Published As

Publication number Publication date
DE2616681A1 (de) 1976-10-28
JPS51128902A (en) 1976-11-10
FR2307784B1 (xx) 1980-01-25
AU1311976A (en) 1977-10-27
FR2307784A1 (fr) 1976-11-12
GB1480671A (en) 1977-07-20

Similar Documents

Publication Publication Date Title
US4018838A (en) Process of preparing alkenes
Elad et al. The photoanilide rearrangement
US4513147A (en) Process for preparing cis-3-(2,2-dihalovinyl)-2,2-dimethylcyclopropanecarboxylic acid
Schwarz et al. Insect sex pheromones. Stereospecific synthesis of (E)-13, 13-dimethyl-11-tetradecen-1-ol acetate via a thiophenol-mediated olefin inversion
Truce et al. The Stereochemistry of the Addition of Mesitylenethiol to Mesitylacetylene1-3
Kauer et al. Bridgehead-substituted bicyclo [2.2. 2] octanes. I. Addition of ethylene to cyclohexa-1, 3-diene-1, 4-dicarboxylic acid derivatives
Wyman et al. The chlorination of active hydrogen compounds with sulfuryl chloride. II. Esters, nitriles, nitro compounds, and aldehydes
US3836568A (en) Process for production of lower alkyl esters of cis-chrysanthemum monocarboxylic acid
US4098657A (en) Electrolyte dehydrohalogenation of α-haloalcohols
Rossi et al. Stereospecific synthesis of (Z)-13-hexadecen-11-YN-1-YL acetate: The sex pheromone of the processionary moth, and of (5z, 7e)-5, 7-dodecadien-1-ol, a sex pheromone component of the forest tent caterpillar
US3989654A (en) Process for preparing cis-chrysanthemic acid
US3493590A (en) Triethylenic esters and acids and their preparation
US4284796A (en) Preparation of 4-acyloxy-2-methyl-crotonaldehydes
Liapis et al. Improved total synthesis of (±)-drimenin
Brace Facile elimination of fluoride ion in the dehydrohalogenation of 3-iodo-4-(perfluoroalkyl) butanoic acids. Preparation of fluorinated sorbic acid analogs
US4229353A (en) (2,2-Disubstituted vinyl)γ-butyrolactones
Jacobson Constituents of Heliopsis Species. V. Heliopsin, a Second Insecticidal Amide from the Roots of H. helianthoides var. scabra.
US3711527A (en) Process for the production of 3,4-unsaturated nitriles
Miyano et al. Carbon-carbon bond formation by the use of chloroiodomethane as a C1 unit. II. The preparation and synthetic application of 1-chloro-3-iodoheptane.
Greene et al. A synthesis of. beta.-methylene-. gamma.-butyrolactones.
Brace Lactone Formation in the Free-Radical Addition of Iodoperfluoroalkanes to Alkenoic Acids and Esters
US4083855A (en) Method for producing a γ-lactone
FR2698872A1 (fr) Procédé de préparation de la vitamine A et composés intermédiaires utiles pour ce procédé.
US4212830A (en) Process for preparing insect pheromones
US3444161A (en) Alkyl cyano aluminum compounds and process for introducing a cyano group into an alpha,beta unsaturated carbonyl compound