US4018045A - Regulating device for a prime mover, more particularly for a single-spool gas turbine - Google Patents

Regulating device for a prime mover, more particularly for a single-spool gas turbine Download PDF

Info

Publication number
US4018045A
US4018045A US05/523,801 US52380174A US4018045A US 4018045 A US4018045 A US 4018045A US 52380174 A US52380174 A US 52380174A US 4018045 A US4018045 A US 4018045A
Authority
US
United States
Prior art keywords
speed
prime mover
governor
governors
regulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/523,801
Inventor
Christian Greune
Bruno Herrmann
Siegfried Steuer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Motoren und Turbinen Union Muenchen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19712131524 external-priority patent/DE2131524C3/en
Application filed by MTU Motoren und Turbinen Union Muenchen GmbH filed Critical MTU Motoren und Turbinen Union Muenchen GmbH
Priority to US05/523,801 priority Critical patent/US4018045A/en
Application granted granted Critical
Publication of US4018045A publication Critical patent/US4018045A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/48Control of fuel supply conjointly with another control of the plant
    • F02C9/56Control of fuel supply conjointly with another control of the plant with power transmission control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S74/00Machine element or mechanism
    • Y10S74/05Gas turbine with gearing

Definitions

  • This invention relates to a system or device for regulating a prime mover and more particularly to a system for regulating a single-spool gas turbine for use in propelling a motor vehicle or aircraft, wherein the system includes a speed governor for controlling the fuel flow.
  • prime movers are conventionally fitted with a speed governor to stabilize their speeds under fluctuating loads. Constant speed is obtained by providing a system in which any disturbance of the balanced power condition causes a change in speed and thus provides the speed governor with a signal for increasing or decreasing the fuel flow and thereby the input power. Additionally, arrangements are known wherein the speed governor operates to regulate the power output in order to stabilize the prime mover speed. This latter system is generally utilized in conjunction with, for example, aircraft combustion engines connected with propellers, where the speed governor is employed to vary the pitch of the propeller blades to conform the power output with the commonly pilot-selected power input.
  • a regulating device for a prime mover including two speed governors, one of which regulates the power input while the other regulates the power output.
  • the two governors act concurrently and independently for eliminating the above-cited disadvantages found in conventional regulating devices.
  • FIG. 1 is a schematic representation of an embodiment of a regulating device in accordance with the present invention with FIGS. 1a and 1b illustrating the utilization of the regulating device for a motor vehicle and an aircraft, respectively;
  • FIG. 2 is a power versus speed graph in which are plotted the characteristic curves of the respective governors controlling the power input and power output;
  • FIG. 3 is a schematic representation of another embodiment of a regulating device for use with a turbo-prop engine.
  • FIG. 4 is a power versus speed graph, wherein several characteristic curves relating to aircraft applications are plotted.
  • FIG. 1 a regulating system for a prime mover including a fuel pump 1 delivering fuel under pressure to a pressure regulator and overflow valve 2.
  • the valve serves to stabilize the differential pressure across a throttle 18 and a maximum/minimum limiter device 4 which limits the fuel flow within the known limits of the system.
  • the fuel flows from the valve 2 to the control valve 17.
  • the valve includes a piston, the movement of which is conditioned by the equilibrium resulting from the interacting forces of flyweights 16 and springs 14 and 15.
  • the main spring 15 serves as a constant force while the force of the spring 14 is adjusted positively through the accelerator 12 to increase the flow and negatively through the decelerator 13 to decrease it.
  • the fuel issuing through the throttle 18 arranged in the control sleeve 3 of the governor is thus proportional to the sum of the engine speed and the accelerator or decelerator position.
  • the fuel After passing through the maximum/minimum fuel flow limiter 4, which controls the fuel flow in accordance with the engine limits, the fuel enters the combustion chamber 5 a, is transformed into shaft horsepower in the turbine 5, and transmitted to a hydrostatic transmission in a motor vehicle (FIG. 1a) or to a propeller (FIG. 1b) through a coupling 6.
  • the output governor operates to vary, through a separate oil-actuated servomechanism, the ratio of the transmission 11a or the pitch of the propeller 11b so that the speed and hence the load selected by the input governor may be maintained without positive or negative fluctuations or deviations.
  • This is achieved with the aid of an oil pump 7 the output pressure of which is controlled by means of the valving piston 21 in dependence upon the speed difference in unit time sensed by the spring and flyweight pendulum 19, 20 through the throttle 22 in the control sleeve 8 of the governor and on to the single-acting cylinder 10a and 10b in accordance with the output device utilized.
  • the cylinders 10a and 10b are made reversible with the aid of changeover means 9a and 9b operated by selector levers 23 and 24, respectively, to permit both forward and reverse motion of a motor vehicle or, in the case of an aircraft, both positive and negative thrust.
  • a first governor for influencing the fuel flow or input power and a second governor for influencing the power output which operate independently of one another.
  • Figure 2 is a graph of power versus speed on which are plotted the characteristic curves of the respective governors controlling the power input and output in accordance with the present invention, as well as curved of the accelerator range and the decelerator range.
  • the input governor is a proportional action type and the output governor is an integral action type.
  • the output governor can also be a proportional type, or the nominal speed value can be the same magnitude and adjustable simultaneously and in the same sense or direction for both governors.
  • FIG. 3 is another embodiment of the present invention for use with a turbo-prop engine.
  • the accelerator 12 and the decelerator 13 are in this embodiment combined into a thrust lever 25.
  • a ⁇ -selector lever 27 is provided for manually overriding the output control valve 26 of the governor.
  • the output governor remains operatively engaged in order to avert overloading.
  • FIG. 4 is a graph of power versus speed on which are plotted several characteristic curves relating particularly to aircraft applications.
  • the arrangement of FIG. 3 operates in a similar manner to that of FIG. 1, except that the blade angle ⁇ can additionally be used to bias the power output in this arrangement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

A regulating system for a prime mover, especially a single-spool gas turbine for use in propelling a motor vehicle or aircraft, in which system there is provided a first speed governor for controlling the fuel flow or input power and a second speed governor for controlling the power output. The two speed governors act concurrently in response to the speed of the prime mover and regulate the power input and power output independently of one another.

Description

This is a continuation, of application Ser. No. 265,478 filed June 23, 1972, now abandoned.
This invention relates to a system or device for regulating a prime mover and more particularly to a system for regulating a single-spool gas turbine for use in propelling a motor vehicle or aircraft, wherein the system includes a speed governor for controlling the fuel flow.
In prior art systems, prime movers are conventionally fitted with a speed governor to stabilize their speeds under fluctuating loads. Constant speed is obtained by providing a system in which any disturbance of the balanced power condition causes a change in speed and thus provides the speed governor with a signal for increasing or decreasing the fuel flow and thereby the input power. Additionally, arrangements are known wherein the speed governor operates to regulate the power output in order to stabilize the prime mover speed. This latter system is generally utilized in conjunction with, for example, aircraft combustion engines connected with propellers, where the speed governor is employed to vary the pitch of the propeller blades to conform the power output with the commonly pilot-selected power input.
Both of the above-noted systems and methods of regulation have their specific disadvantages. In particular, when the first system is utilized, the externally imposed load may exceed the capacity of the prime mover and overload it, whereas the utilization of the latter system and method avoids the possibility of overloading. However, this latter system does not avoid certain operating conditions which may still cause overspeeding. For example, overspeeding of the prime move may result when the power consuming device or load (airframe or motor vehicle proper) begins to supply power rather than consume it. This condition exists when an aircraft utilizes the propeller at a given blade angle to function as a passive brake to promote rapid rates of decent, or when an engine is put to use for retarding a motor vehicle as on long downgrades.
In systems utilizing gas turbines for propulsion, it is a basic desire to avoid overspeeding and the attendant excessive loading of the blade material. However, considering the fact that single-spool gas turbines will not give substantial amounts of power until they have reached the nominal speed range, it is equally desirable that their normal operating speed be maintained as near as practicable.
It is therefore an object of the present invention to provide a regulation device for a prime mover which overcomes the disadvantages of prior art devices.
It is another object of the present invention to provide a regulating device for governing a prime mover so that the speed as well as the load selected by the input governor may be maintained without positive or negative fluctuations.
It is a further object of the present invention to provide a regulating device having a first speed governor for controlling fuel flow and a second speed governor which influences the power output, the two concurrently acting speed governors being responsive to engine speed, whereby their actuating members regulate the power input and the power output, respectively, independently of one another.
In accordance with the present invention there is provided a regulating device for a prime mover including two speed governors, one of which regulates the power input while the other regulates the power output. The two governors act concurrently and independently for eliminating the above-cited disadvantages found in conventional regulating devices.
These and further features, objects and advantages of the present invention will become more apparent from the following description when taken in conjunction with the accompanying drawings which show, for purposes of illustration only, several embodiments of the present invention and wherein:
FIG. 1 is a schematic representation of an embodiment of a regulating device in accordance with the present invention with FIGS. 1a and 1b illustrating the utilization of the regulating device for a motor vehicle and an aircraft, respectively;
FIG. 2 is a power versus speed graph in which are plotted the characteristic curves of the respective governors controlling the power input and power output;
FIG. 3 is a schematic representation of another embodiment of a regulating device for use with a turbo-prop engine; and
FIG. 4 is a power versus speed graph, wherein several characteristic curves relating to aircraft applications are plotted.
Referring now to the drawings, there is shown in FIG. 1 a regulating system for a prime mover including a fuel pump 1 delivering fuel under pressure to a pressure regulator and overflow valve 2. The valve serves to stabilize the differential pressure across a throttle 18 and a maximum/minimum limiter device 4 which limits the fuel flow within the known limits of the system. The fuel flows from the valve 2 to the control valve 17. The valve includes a piston, the movement of which is conditioned by the equilibrium resulting from the interacting forces of flyweights 16 and springs 14 and 15. The main spring 15 serves as a constant force while the force of the spring 14 is adjusted positively through the accelerator 12 to increase the flow and negatively through the decelerator 13 to decrease it. The fuel issuing through the throttle 18 arranged in the control sleeve 3 of the governor is thus proportional to the sum of the engine speed and the accelerator or decelerator position. After passing through the maximum/minimum fuel flow limiter 4, which controls the fuel flow in accordance with the engine limits, the fuel enters the combustion chamber 5 a, is transformed into shaft horsepower in the turbine 5, and transmitted to a hydrostatic transmission in a motor vehicle (FIG. 1a) or to a propeller (FIG. 1b) through a coupling 6.
As shown in FIGS. 1a and 1b the output governor operates to vary, through a separate oil-actuated servomechanism, the ratio of the transmission 11a or the pitch of the propeller 11b so that the speed and hence the load selected by the input governor may be maintained without positive or negative fluctuations or deviations. This is achieved with the aid of an oil pump 7 the output pressure of which is controlled by means of the valving piston 21 in dependence upon the speed difference in unit time sensed by the spring and flyweight pendulum 19, 20 through the throttle 22 in the control sleeve 8 of the governor and on to the single-acting cylinder 10a and 10b in accordance with the output device utilized. The cylinders 10a and 10b are made reversible with the aid of changeover means 9a and 9b operated by selector levers 23 and 24, respectively, to permit both forward and reverse motion of a motor vehicle or, in the case of an aircraft, both positive and negative thrust. Thus, there is provided a first governor for influencing the fuel flow or input power and a second governor for influencing the power output which operate independently of one another.
Figure 2 is a graph of power versus speed on which are plotted the characteristic curves of the respective governors controlling the power input and output in accordance with the present invention, as well as curved of the accelerator range and the decelerator range. As shown by the characteristic curves, the input governor is a proportional action type and the output governor is an integral action type. However, the output governor can also be a proportional type, or the nominal speed value can be the same magnitude and adjustable simultaneously and in the same sense or direction for both governors.
FIG. 3 is another embodiment of the present invention for use with a turbo-prop engine. In contradistinction to the embodiment of FIG. 1 the accelerator 12 and the decelerator 13 are in this embodiment combined into a thrust lever 25. Additionally, a β-selector lever 27 is provided for manually overriding the output control valve 26 of the governor. However, the output governor remains operatively engaged in order to avert overloading.
FIG. 4 is a graph of power versus speed on which are plotted several characteristic curves relating particularly to aircraft applications. The arrangement of FIG. 3 operates in a similar manner to that of FIG. 1, except that the blade angle β can additionally be used to bias the power output in this arrangement.
Obviously, many modification and variations of the present invention are possible in the light of the above teachings. It should therefore be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.

Claims (11)

We claim:
1. System for regulating a prime mover for propelling a vehicle in which the prime mover includes means providing fuel therefore and means providing a speed signal indicative of the speed of the prime mover, the regulating system comprising a first governor operatively connected with said speed means and directly responsive to the speed signal thereof for continuously controlling the flow of fuel to regulate the power input of the prime mover independently of other operating parameters of the prime mover over at least a predetermined range of the other operating parameters of the prime mover, and a second governor operatively connected with said speed means and directly responsive to the speed signal thereof for regulating the load of the prime mover, said first and second speed governors operating concurrently and independently of one another over the entire operating range of the prime mover.
2. System according to claim 1, wherein said first and second governors are proportional speed governors.
3. System according to claim 1, wherein one of said first and second governors is a proportional speed governor and the other of said first and second governors is an integral speed governor.
4. System according to claim 1, further comprising means for manually overriding the output control of said second governor, said second governor remaining operatively engaged with said prime mover for limiting the load thereon.
5. System according to claim 1, wherein the nominal speed values of said first and second governors are simultaneously adjustable in the same sense.
6. System according to claim 1, wherein said second governor includes servomechanism means for controlling the load of the prime mover.
7. System according to claim 6, wherein said servomechanism means includes a reversible single acting cylinder, said cylinder being reversible in accordance with one of the direction of motion and thrust of the propelled vehicle.
8. System according to claim 1, wherein said prime mover includes a gas turbine having a compressor, a combustion chamber receiving the fuel regulated by said first governor, and a power turbine, said speed means providing a speed signal of the output speed of said power turbine to said first and second governors.
9. System according to claim 8, wherein said gas turbine is a single spool gas turbine, said power turbine having an output shaft, and said speed means providing the speed signal indicative of the rotational speed of said output shaft.
10. System according to claim 9, further comprising transmission means coupled to said output shaft of said power turbine, said second governor including servomechanism means for controlling the ratio of said transmission means for regulating the load of the prime mover.
11. System according to claim 9, wherein the vehicle is an aircraft, and further comprising propeller means coupled to said output shaft of said power turbine, said second governor including servomechanism means for controlling the pitch of the propeller means for regulating the load of the prime mover.
US05/523,801 1971-06-25 1974-11-14 Regulating device for a prime mover, more particularly for a single-spool gas turbine Expired - Lifetime US4018045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05/523,801 US4018045A (en) 1971-06-25 1974-11-14 Regulating device for a prime mover, more particularly for a single-spool gas turbine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DT2331524 1971-06-25
DE19712131524 DE2131524C3 (en) 1971-06-25 Control device for an internal combustion engine, in particular a single-shaft gas turbine, for driving a vehicle or aircraft
US26547872A 1972-06-23 1972-06-23
US05/523,801 US4018045A (en) 1971-06-25 1974-11-14 Regulating device for a prime mover, more particularly for a single-spool gas turbine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US26547872A Continuation 1971-06-25 1972-06-23

Publications (1)

Publication Number Publication Date
US4018045A true US4018045A (en) 1977-04-19

Family

ID=27183519

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/523,801 Expired - Lifetime US4018045A (en) 1971-06-25 1974-11-14 Regulating device for a prime mover, more particularly for a single-spool gas turbine

Country Status (1)

Country Link
US (1) US4018045A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4532763A (en) * 1983-01-28 1985-08-06 General Electric Company Isochronous gas turbine speed control
US4672806A (en) * 1983-01-28 1987-06-16 General Electric Company Isochronous gas turbine speed control
US5005354A (en) * 1989-04-11 1991-04-09 United Technologies Corporation Fuel control having reset of propeller overspeed and underspeed governors
US20090067984A1 (en) * 2007-07-04 2009-03-12 Alstom Technology Ltd. Gas turbine with axial thrust balance
US20090224543A1 (en) * 2008-03-06 2009-09-10 Repower Systems Ag Method for the operation of a wind power plant and wind power plant
US8607576B1 (en) 2012-06-07 2013-12-17 United Technologies Corporation Single turbine driving dual compressors
US9316159B2 (en) 2013-01-30 2016-04-19 Pratt & Whitney Canada Corp. Gas turbine engine with transmission
US9752500B2 (en) 2013-03-14 2017-09-05 Pratt & Whitney Canada Corp. Gas turbine engine with transmission and method of adjusting rotational speed

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2941601A (en) * 1954-12-21 1960-06-21 United Aircraft Corp Fuel control
US3078670A (en) * 1958-07-16 1963-02-26 Bmw Triebwerkbau Gmbh Fuel control system responsive to ambient conditions for combustion turbine power plants
US3095701A (en) * 1960-04-04 1963-07-02 Garrett Corp Gas turbine power plant control systems
US3097700A (en) * 1959-03-27 1963-07-16 Szydlowski Joseph Gas turbine control method and system
US3255586A (en) * 1962-09-12 1966-06-14 Dresser Ind Gas turbine capable of rapidly accepting or rejecting a load with minimum speed deviation
US3266248A (en) * 1964-03-06 1966-08-16 Gen Motors Corp Gas turbine engine fuel and power regulating system
US3485042A (en) * 1968-01-02 1969-12-23 Ford Motor Co Gas turbine control system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2941601A (en) * 1954-12-21 1960-06-21 United Aircraft Corp Fuel control
US3078670A (en) * 1958-07-16 1963-02-26 Bmw Triebwerkbau Gmbh Fuel control system responsive to ambient conditions for combustion turbine power plants
US3097700A (en) * 1959-03-27 1963-07-16 Szydlowski Joseph Gas turbine control method and system
US3095701A (en) * 1960-04-04 1963-07-02 Garrett Corp Gas turbine power plant control systems
US3255586A (en) * 1962-09-12 1966-06-14 Dresser Ind Gas turbine capable of rapidly accepting or rejecting a load with minimum speed deviation
US3266248A (en) * 1964-03-06 1966-08-16 Gen Motors Corp Gas turbine engine fuel and power regulating system
US3485042A (en) * 1968-01-02 1969-12-23 Ford Motor Co Gas turbine control system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4532763A (en) * 1983-01-28 1985-08-06 General Electric Company Isochronous gas turbine speed control
US4672806A (en) * 1983-01-28 1987-06-16 General Electric Company Isochronous gas turbine speed control
US5005354A (en) * 1989-04-11 1991-04-09 United Technologies Corporation Fuel control having reset of propeller overspeed and underspeed governors
US20090067984A1 (en) * 2007-07-04 2009-03-12 Alstom Technology Ltd. Gas turbine with axial thrust balance
US8092150B2 (en) * 2007-07-04 2012-01-10 Alstom Technology Ltd. Gas turbine with axial thrust balance
US20090224543A1 (en) * 2008-03-06 2009-09-10 Repower Systems Ag Method for the operation of a wind power plant and wind power plant
US8143734B2 (en) * 2008-03-06 2012-03-27 Repower Systems Ag Wind plant and method of initiating braking actions in different operating modes
US8607576B1 (en) 2012-06-07 2013-12-17 United Technologies Corporation Single turbine driving dual compressors
US9316159B2 (en) 2013-01-30 2016-04-19 Pratt & Whitney Canada Corp. Gas turbine engine with transmission
US9752500B2 (en) 2013-03-14 2017-09-05 Pratt & Whitney Canada Corp. Gas turbine engine with transmission and method of adjusting rotational speed

Similar Documents

Publication Publication Date Title
US2947141A (en) Fuel feed and power control system for gas turbine engines
US2306953A (en) Gas turbine plant for propulsion of water and air craft
GB2151817A (en) A torque or force control system
US4018045A (en) Regulating device for a prime mover, more particularly for a single-spool gas turbine
US2857741A (en) Fuel control with feedback
US3309868A (en) Engine control with anticipator
US2720752A (en) Turbo-jet engine control
US4142364A (en) Back-up control for gas turbine engine
US2205625A (en) Aircraft propulsion
US2959002A (en) Turbine engine fuel control
US3103785A (en) Fuel feed and power control system for gas turbine engines
US2874764A (en) Speed control for combustion engines and turbines
US2668414A (en) Control apparatus for jet engines
US2923128A (en) Fuel control for a split turbine type power plant
US2782769A (en) Hydraulic servo system for fuel control
US3078670A (en) Fuel control system responsive to ambient conditions for combustion turbine power plants
US2949957A (en) Fuel control system for gas turbine engines
US3195308A (en) Fuel control for combustion engine
US2988881A (en) Engine liquid fuel controller
US2931442A (en) Fuel supply systems for propeller turbine engines
US2896598A (en) Engine air induction control apparatus
US3516250A (en) Fuel control system for turbo-shaft engines
US3808797A (en) Fuel systems for aircraft gas turbine engines
US2841130A (en) Variable maximum fuel limiting device
US3155165A (en) Turboprop engine control with underspeed governor