US4018045A - Regulating device for a prime mover, more particularly for a single-spool gas turbine - Google Patents
Regulating device for a prime mover, more particularly for a single-spool gas turbine Download PDFInfo
- Publication number
- US4018045A US4018045A US05/523,801 US52380174A US4018045A US 4018045 A US4018045 A US 4018045A US 52380174 A US52380174 A US 52380174A US 4018045 A US4018045 A US 4018045A
- Authority
- US
- United States
- Prior art keywords
- speed
- prime mover
- governor
- governors
- regulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000001105 regulatory effect Effects 0.000 title claims abstract description 18
- 239000000446 fuel Substances 0.000 claims abstract description 16
- 230000001276 controlling effect Effects 0.000 claims abstract description 10
- 230000005540 biological transmission Effects 0.000 claims description 4
- 230000002441 reversible effect Effects 0.000 claims description 4
- 238000002485 combustion reaction Methods 0.000 claims description 3
- 230000033001 locomotion Effects 0.000 claims description 3
- 230000009471 action Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/48—Control of fuel supply conjointly with another control of the plant
- F02C9/56—Control of fuel supply conjointly with another control of the plant with power transmission control
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S74/00—Machine element or mechanism
- Y10S74/05—Gas turbine with gearing
Definitions
- This invention relates to a system or device for regulating a prime mover and more particularly to a system for regulating a single-spool gas turbine for use in propelling a motor vehicle or aircraft, wherein the system includes a speed governor for controlling the fuel flow.
- prime movers are conventionally fitted with a speed governor to stabilize their speeds under fluctuating loads. Constant speed is obtained by providing a system in which any disturbance of the balanced power condition causes a change in speed and thus provides the speed governor with a signal for increasing or decreasing the fuel flow and thereby the input power. Additionally, arrangements are known wherein the speed governor operates to regulate the power output in order to stabilize the prime mover speed. This latter system is generally utilized in conjunction with, for example, aircraft combustion engines connected with propellers, where the speed governor is employed to vary the pitch of the propeller blades to conform the power output with the commonly pilot-selected power input.
- a regulating device for a prime mover including two speed governors, one of which regulates the power input while the other regulates the power output.
- the two governors act concurrently and independently for eliminating the above-cited disadvantages found in conventional regulating devices.
- FIG. 1 is a schematic representation of an embodiment of a regulating device in accordance with the present invention with FIGS. 1a and 1b illustrating the utilization of the regulating device for a motor vehicle and an aircraft, respectively;
- FIG. 2 is a power versus speed graph in which are plotted the characteristic curves of the respective governors controlling the power input and power output;
- FIG. 3 is a schematic representation of another embodiment of a regulating device for use with a turbo-prop engine.
- FIG. 4 is a power versus speed graph, wherein several characteristic curves relating to aircraft applications are plotted.
- FIG. 1 a regulating system for a prime mover including a fuel pump 1 delivering fuel under pressure to a pressure regulator and overflow valve 2.
- the valve serves to stabilize the differential pressure across a throttle 18 and a maximum/minimum limiter device 4 which limits the fuel flow within the known limits of the system.
- the fuel flows from the valve 2 to the control valve 17.
- the valve includes a piston, the movement of which is conditioned by the equilibrium resulting from the interacting forces of flyweights 16 and springs 14 and 15.
- the main spring 15 serves as a constant force while the force of the spring 14 is adjusted positively through the accelerator 12 to increase the flow and negatively through the decelerator 13 to decrease it.
- the fuel issuing through the throttle 18 arranged in the control sleeve 3 of the governor is thus proportional to the sum of the engine speed and the accelerator or decelerator position.
- the fuel After passing through the maximum/minimum fuel flow limiter 4, which controls the fuel flow in accordance with the engine limits, the fuel enters the combustion chamber 5 a, is transformed into shaft horsepower in the turbine 5, and transmitted to a hydrostatic transmission in a motor vehicle (FIG. 1a) or to a propeller (FIG. 1b) through a coupling 6.
- the output governor operates to vary, through a separate oil-actuated servomechanism, the ratio of the transmission 11a or the pitch of the propeller 11b so that the speed and hence the load selected by the input governor may be maintained without positive or negative fluctuations or deviations.
- This is achieved with the aid of an oil pump 7 the output pressure of which is controlled by means of the valving piston 21 in dependence upon the speed difference in unit time sensed by the spring and flyweight pendulum 19, 20 through the throttle 22 in the control sleeve 8 of the governor and on to the single-acting cylinder 10a and 10b in accordance with the output device utilized.
- the cylinders 10a and 10b are made reversible with the aid of changeover means 9a and 9b operated by selector levers 23 and 24, respectively, to permit both forward and reverse motion of a motor vehicle or, in the case of an aircraft, both positive and negative thrust.
- a first governor for influencing the fuel flow or input power and a second governor for influencing the power output which operate independently of one another.
- Figure 2 is a graph of power versus speed on which are plotted the characteristic curves of the respective governors controlling the power input and output in accordance with the present invention, as well as curved of the accelerator range and the decelerator range.
- the input governor is a proportional action type and the output governor is an integral action type.
- the output governor can also be a proportional type, or the nominal speed value can be the same magnitude and adjustable simultaneously and in the same sense or direction for both governors.
- FIG. 3 is another embodiment of the present invention for use with a turbo-prop engine.
- the accelerator 12 and the decelerator 13 are in this embodiment combined into a thrust lever 25.
- a ⁇ -selector lever 27 is provided for manually overriding the output control valve 26 of the governor.
- the output governor remains operatively engaged in order to avert overloading.
- FIG. 4 is a graph of power versus speed on which are plotted several characteristic curves relating particularly to aircraft applications.
- the arrangement of FIG. 3 operates in a similar manner to that of FIG. 1, except that the blade angle ⁇ can additionally be used to bias the power output in this arrangement.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
Abstract
A regulating system for a prime mover, especially a single-spool gas turbine for use in propelling a motor vehicle or aircraft, in which system there is provided a first speed governor for controlling the fuel flow or input power and a second speed governor for controlling the power output. The two speed governors act concurrently in response to the speed of the prime mover and regulate the power input and power output independently of one another.
Description
This is a continuation, of application Ser. No. 265,478 filed June 23, 1972, now abandoned.
This invention relates to a system or device for regulating a prime mover and more particularly to a system for regulating a single-spool gas turbine for use in propelling a motor vehicle or aircraft, wherein the system includes a speed governor for controlling the fuel flow.
In prior art systems, prime movers are conventionally fitted with a speed governor to stabilize their speeds under fluctuating loads. Constant speed is obtained by providing a system in which any disturbance of the balanced power condition causes a change in speed and thus provides the speed governor with a signal for increasing or decreasing the fuel flow and thereby the input power. Additionally, arrangements are known wherein the speed governor operates to regulate the power output in order to stabilize the prime mover speed. This latter system is generally utilized in conjunction with, for example, aircraft combustion engines connected with propellers, where the speed governor is employed to vary the pitch of the propeller blades to conform the power output with the commonly pilot-selected power input.
Both of the above-noted systems and methods of regulation have their specific disadvantages. In particular, when the first system is utilized, the externally imposed load may exceed the capacity of the prime mover and overload it, whereas the utilization of the latter system and method avoids the possibility of overloading. However, this latter system does not avoid certain operating conditions which may still cause overspeeding. For example, overspeeding of the prime move may result when the power consuming device or load (airframe or motor vehicle proper) begins to supply power rather than consume it. This condition exists when an aircraft utilizes the propeller at a given blade angle to function as a passive brake to promote rapid rates of decent, or when an engine is put to use for retarding a motor vehicle as on long downgrades.
In systems utilizing gas turbines for propulsion, it is a basic desire to avoid overspeeding and the attendant excessive loading of the blade material. However, considering the fact that single-spool gas turbines will not give substantial amounts of power until they have reached the nominal speed range, it is equally desirable that their normal operating speed be maintained as near as practicable.
It is therefore an object of the present invention to provide a regulation device for a prime mover which overcomes the disadvantages of prior art devices.
It is another object of the present invention to provide a regulating device for governing a prime mover so that the speed as well as the load selected by the input governor may be maintained without positive or negative fluctuations.
It is a further object of the present invention to provide a regulating device having a first speed governor for controlling fuel flow and a second speed governor which influences the power output, the two concurrently acting speed governors being responsive to engine speed, whereby their actuating members regulate the power input and the power output, respectively, independently of one another.
In accordance with the present invention there is provided a regulating device for a prime mover including two speed governors, one of which regulates the power input while the other regulates the power output. The two governors act concurrently and independently for eliminating the above-cited disadvantages found in conventional regulating devices.
These and further features, objects and advantages of the present invention will become more apparent from the following description when taken in conjunction with the accompanying drawings which show, for purposes of illustration only, several embodiments of the present invention and wherein:
FIG. 1 is a schematic representation of an embodiment of a regulating device in accordance with the present invention with FIGS. 1a and 1b illustrating the utilization of the regulating device for a motor vehicle and an aircraft, respectively;
FIG. 2 is a power versus speed graph in which are plotted the characteristic curves of the respective governors controlling the power input and power output;
FIG. 3 is a schematic representation of another embodiment of a regulating device for use with a turbo-prop engine; and
FIG. 4 is a power versus speed graph, wherein several characteristic curves relating to aircraft applications are plotted.
Referring now to the drawings, there is shown in FIG. 1 a regulating system for a prime mover including a fuel pump 1 delivering fuel under pressure to a pressure regulator and overflow valve 2. The valve serves to stabilize the differential pressure across a throttle 18 and a maximum/minimum limiter device 4 which limits the fuel flow within the known limits of the system. The fuel flows from the valve 2 to the control valve 17. The valve includes a piston, the movement of which is conditioned by the equilibrium resulting from the interacting forces of flyweights 16 and springs 14 and 15. The main spring 15 serves as a constant force while the force of the spring 14 is adjusted positively through the accelerator 12 to increase the flow and negatively through the decelerator 13 to decrease it. The fuel issuing through the throttle 18 arranged in the control sleeve 3 of the governor is thus proportional to the sum of the engine speed and the accelerator or decelerator position. After passing through the maximum/minimum fuel flow limiter 4, which controls the fuel flow in accordance with the engine limits, the fuel enters the combustion chamber 5 a, is transformed into shaft horsepower in the turbine 5, and transmitted to a hydrostatic transmission in a motor vehicle (FIG. 1a) or to a propeller (FIG. 1b) through a coupling 6.
As shown in FIGS. 1a and 1b the output governor operates to vary, through a separate oil-actuated servomechanism, the ratio of the transmission 11a or the pitch of the propeller 11b so that the speed and hence the load selected by the input governor may be maintained without positive or negative fluctuations or deviations. This is achieved with the aid of an oil pump 7 the output pressure of which is controlled by means of the valving piston 21 in dependence upon the speed difference in unit time sensed by the spring and flyweight pendulum 19, 20 through the throttle 22 in the control sleeve 8 of the governor and on to the single-acting cylinder 10a and 10b in accordance with the output device utilized. The cylinders 10a and 10b are made reversible with the aid of changeover means 9a and 9b operated by selector levers 23 and 24, respectively, to permit both forward and reverse motion of a motor vehicle or, in the case of an aircraft, both positive and negative thrust. Thus, there is provided a first governor for influencing the fuel flow or input power and a second governor for influencing the power output which operate independently of one another.
Figure 2 is a graph of power versus speed on which are plotted the characteristic curves of the respective governors controlling the power input and output in accordance with the present invention, as well as curved of the accelerator range and the decelerator range. As shown by the characteristic curves, the input governor is a proportional action type and the output governor is an integral action type. However, the output governor can also be a proportional type, or the nominal speed value can be the same magnitude and adjustable simultaneously and in the same sense or direction for both governors.
FIG. 3 is another embodiment of the present invention for use with a turbo-prop engine. In contradistinction to the embodiment of FIG. 1 the accelerator 12 and the decelerator 13 are in this embodiment combined into a thrust lever 25. Additionally, a β-selector lever 27 is provided for manually overriding the output control valve 26 of the governor. However, the output governor remains operatively engaged in order to avert overloading.
FIG. 4 is a graph of power versus speed on which are plotted several characteristic curves relating particularly to aircraft applications. The arrangement of FIG. 3 operates in a similar manner to that of FIG. 1, except that the blade angle β can additionally be used to bias the power output in this arrangement.
Obviously, many modification and variations of the present invention are possible in the light of the above teachings. It should therefore be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.
Claims (11)
1. System for regulating a prime mover for propelling a vehicle in which the prime mover includes means providing fuel therefore and means providing a speed signal indicative of the speed of the prime mover, the regulating system comprising a first governor operatively connected with said speed means and directly responsive to the speed signal thereof for continuously controlling the flow of fuel to regulate the power input of the prime mover independently of other operating parameters of the prime mover over at least a predetermined range of the other operating parameters of the prime mover, and a second governor operatively connected with said speed means and directly responsive to the speed signal thereof for regulating the load of the prime mover, said first and second speed governors operating concurrently and independently of one another over the entire operating range of the prime mover.
2. System according to claim 1, wherein said first and second governors are proportional speed governors.
3. System according to claim 1, wherein one of said first and second governors is a proportional speed governor and the other of said first and second governors is an integral speed governor.
4. System according to claim 1, further comprising means for manually overriding the output control of said second governor, said second governor remaining operatively engaged with said prime mover for limiting the load thereon.
5. System according to claim 1, wherein the nominal speed values of said first and second governors are simultaneously adjustable in the same sense.
6. System according to claim 1, wherein said second governor includes servomechanism means for controlling the load of the prime mover.
7. System according to claim 6, wherein said servomechanism means includes a reversible single acting cylinder, said cylinder being reversible in accordance with one of the direction of motion and thrust of the propelled vehicle.
8. System according to claim 1, wherein said prime mover includes a gas turbine having a compressor, a combustion chamber receiving the fuel regulated by said first governor, and a power turbine, said speed means providing a speed signal of the output speed of said power turbine to said first and second governors.
9. System according to claim 8, wherein said gas turbine is a single spool gas turbine, said power turbine having an output shaft, and said speed means providing the speed signal indicative of the rotational speed of said output shaft.
10. System according to claim 9, further comprising transmission means coupled to said output shaft of said power turbine, said second governor including servomechanism means for controlling the ratio of said transmission means for regulating the load of the prime mover.
11. System according to claim 9, wherein the vehicle is an aircraft, and further comprising propeller means coupled to said output shaft of said power turbine, said second governor including servomechanism means for controlling the pitch of the propeller means for regulating the load of the prime mover.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US05/523,801 US4018045A (en) | 1971-06-25 | 1974-11-14 | Regulating device for a prime mover, more particularly for a single-spool gas turbine |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DT2331524 | 1971-06-25 | ||
DE19712131524 DE2131524C3 (en) | 1971-06-25 | Control device for an internal combustion engine, in particular a single-shaft gas turbine, for driving a vehicle or aircraft | |
US26547872A | 1972-06-23 | 1972-06-23 | |
US05/523,801 US4018045A (en) | 1971-06-25 | 1974-11-14 | Regulating device for a prime mover, more particularly for a single-spool gas turbine |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US26547872A Continuation | 1971-06-25 | 1972-06-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
US4018045A true US4018045A (en) | 1977-04-19 |
Family
ID=27183519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/523,801 Expired - Lifetime US4018045A (en) | 1971-06-25 | 1974-11-14 | Regulating device for a prime mover, more particularly for a single-spool gas turbine |
Country Status (1)
Country | Link |
---|---|
US (1) | US4018045A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4532763A (en) * | 1983-01-28 | 1985-08-06 | General Electric Company | Isochronous gas turbine speed control |
US4672806A (en) * | 1983-01-28 | 1987-06-16 | General Electric Company | Isochronous gas turbine speed control |
US5005354A (en) * | 1989-04-11 | 1991-04-09 | United Technologies Corporation | Fuel control having reset of propeller overspeed and underspeed governors |
US20090067984A1 (en) * | 2007-07-04 | 2009-03-12 | Alstom Technology Ltd. | Gas turbine with axial thrust balance |
US20090224543A1 (en) * | 2008-03-06 | 2009-09-10 | Repower Systems Ag | Method for the operation of a wind power plant and wind power plant |
US8607576B1 (en) | 2012-06-07 | 2013-12-17 | United Technologies Corporation | Single turbine driving dual compressors |
US9316159B2 (en) | 2013-01-30 | 2016-04-19 | Pratt & Whitney Canada Corp. | Gas turbine engine with transmission |
US9752500B2 (en) | 2013-03-14 | 2017-09-05 | Pratt & Whitney Canada Corp. | Gas turbine engine with transmission and method of adjusting rotational speed |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2941601A (en) * | 1954-12-21 | 1960-06-21 | United Aircraft Corp | Fuel control |
US3078670A (en) * | 1958-07-16 | 1963-02-26 | Bmw Triebwerkbau Gmbh | Fuel control system responsive to ambient conditions for combustion turbine power plants |
US3095701A (en) * | 1960-04-04 | 1963-07-02 | Garrett Corp | Gas turbine power plant control systems |
US3097700A (en) * | 1959-03-27 | 1963-07-16 | Szydlowski Joseph | Gas turbine control method and system |
US3255586A (en) * | 1962-09-12 | 1966-06-14 | Dresser Ind | Gas turbine capable of rapidly accepting or rejecting a load with minimum speed deviation |
US3266248A (en) * | 1964-03-06 | 1966-08-16 | Gen Motors Corp | Gas turbine engine fuel and power regulating system |
US3485042A (en) * | 1968-01-02 | 1969-12-23 | Ford Motor Co | Gas turbine control system |
-
1974
- 1974-11-14 US US05/523,801 patent/US4018045A/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2941601A (en) * | 1954-12-21 | 1960-06-21 | United Aircraft Corp | Fuel control |
US3078670A (en) * | 1958-07-16 | 1963-02-26 | Bmw Triebwerkbau Gmbh | Fuel control system responsive to ambient conditions for combustion turbine power plants |
US3097700A (en) * | 1959-03-27 | 1963-07-16 | Szydlowski Joseph | Gas turbine control method and system |
US3095701A (en) * | 1960-04-04 | 1963-07-02 | Garrett Corp | Gas turbine power plant control systems |
US3255586A (en) * | 1962-09-12 | 1966-06-14 | Dresser Ind | Gas turbine capable of rapidly accepting or rejecting a load with minimum speed deviation |
US3266248A (en) * | 1964-03-06 | 1966-08-16 | Gen Motors Corp | Gas turbine engine fuel and power regulating system |
US3485042A (en) * | 1968-01-02 | 1969-12-23 | Ford Motor Co | Gas turbine control system |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4532763A (en) * | 1983-01-28 | 1985-08-06 | General Electric Company | Isochronous gas turbine speed control |
US4672806A (en) * | 1983-01-28 | 1987-06-16 | General Electric Company | Isochronous gas turbine speed control |
US5005354A (en) * | 1989-04-11 | 1991-04-09 | United Technologies Corporation | Fuel control having reset of propeller overspeed and underspeed governors |
US20090067984A1 (en) * | 2007-07-04 | 2009-03-12 | Alstom Technology Ltd. | Gas turbine with axial thrust balance |
US8092150B2 (en) * | 2007-07-04 | 2012-01-10 | Alstom Technology Ltd. | Gas turbine with axial thrust balance |
US20090224543A1 (en) * | 2008-03-06 | 2009-09-10 | Repower Systems Ag | Method for the operation of a wind power plant and wind power plant |
US8143734B2 (en) * | 2008-03-06 | 2012-03-27 | Repower Systems Ag | Wind plant and method of initiating braking actions in different operating modes |
US8607576B1 (en) | 2012-06-07 | 2013-12-17 | United Technologies Corporation | Single turbine driving dual compressors |
US9316159B2 (en) | 2013-01-30 | 2016-04-19 | Pratt & Whitney Canada Corp. | Gas turbine engine with transmission |
US9752500B2 (en) | 2013-03-14 | 2017-09-05 | Pratt & Whitney Canada Corp. | Gas turbine engine with transmission and method of adjusting rotational speed |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2947141A (en) | Fuel feed and power control system for gas turbine engines | |
US2306953A (en) | Gas turbine plant for propulsion of water and air craft | |
GB2151817A (en) | A torque or force control system | |
US4018045A (en) | Regulating device for a prime mover, more particularly for a single-spool gas turbine | |
US2857741A (en) | Fuel control with feedback | |
US3309868A (en) | Engine control with anticipator | |
US2720752A (en) | Turbo-jet engine control | |
US4142364A (en) | Back-up control for gas turbine engine | |
US2205625A (en) | Aircraft propulsion | |
US2959002A (en) | Turbine engine fuel control | |
US3103785A (en) | Fuel feed and power control system for gas turbine engines | |
US2874764A (en) | Speed control for combustion engines and turbines | |
US2668414A (en) | Control apparatus for jet engines | |
US2923128A (en) | Fuel control for a split turbine type power plant | |
US2782769A (en) | Hydraulic servo system for fuel control | |
US3078670A (en) | Fuel control system responsive to ambient conditions for combustion turbine power plants | |
US2949957A (en) | Fuel control system for gas turbine engines | |
US3195308A (en) | Fuel control for combustion engine | |
US2988881A (en) | Engine liquid fuel controller | |
US2931442A (en) | Fuel supply systems for propeller turbine engines | |
US2896598A (en) | Engine air induction control apparatus | |
US3516250A (en) | Fuel control system for turbo-shaft engines | |
US3808797A (en) | Fuel systems for aircraft gas turbine engines | |
US2841130A (en) | Variable maximum fuel limiting device | |
US3155165A (en) | Turboprop engine control with underspeed governor |