US4001034A - High temperature coatings based on poly (zinc phosphinates) - Google Patents
High temperature coatings based on poly (zinc phosphinates) Download PDFInfo
- Publication number
- US4001034A US4001034A US05/627,808 US62780875A US4001034A US 4001034 A US4001034 A US 4001034A US 62780875 A US62780875 A US 62780875A US 4001034 A US4001034 A US 4001034A
- Authority
- US
- United States
- Prior art keywords
- coatings
- hours
- coating
- high temperature
- poly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000576 coating method Methods 0.000 title description 45
- AKUSJWHFFBLJLN-UHFFFAOYSA-L zinc dioxidophosphanium Chemical class [Zn+2].[O-][PH2]=O.[O-][PH2]=O AKUSJWHFFBLJLN-UHFFFAOYSA-L 0.000 title description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 8
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 claims abstract description 7
- 239000011592 zinc chloride Substances 0.000 claims abstract description 6
- 239000011877 solvent mixture Substances 0.000 claims abstract description 4
- 239000008199 coating composition Substances 0.000 claims abstract description 3
- 239000002904 solvent Substances 0.000 claims description 19
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical class O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 abstract description 2
- 239000004408 titanium dioxide Substances 0.000 abstract description 2
- 235000005074 zinc chloride Nutrition 0.000 abstract 1
- 239000011248 coating agent Substances 0.000 description 22
- 239000011701 zinc Substances 0.000 description 20
- 239000000203 mixture Substances 0.000 description 14
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000009472 formulation Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 229910001069 Ti alloy Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- -1 poly(zinc phosphinates) Polymers 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000003981 vehicle Substances 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 238000003556 assay Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000010525 oxidative degradation reaction Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- HQURVGSRQBOZEX-UHFFFAOYSA-N 3,5-diamino-2-hydroxybenzoic acid Chemical compound NC1=CC(N)=C(O)C(C(O)=O)=C1 HQURVGSRQBOZEX-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 235000021388 linseed oil Nutrition 0.000 description 1
- 239000000944 linseed oil Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G79/00—Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
- C08G79/14—Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule a linkage containing two or more elements other than carbon, oxygen, nitrogen, sulfur and silicon
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D1/00—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/18—Fireproof paints including high temperature resistant paints
Definitions
- This invention relates to thermally resistant coating materials.
- this invention concerns itself with high temperature coating materials based on poly (zinc phosphinates) and to a method for preparing such coatings.
- poly(zinc phosphinates) possess the high thermal stability required for use with supersonic vehicles.
- Poly(metal phosphinates) are a family of polymers based on an inorganic backbone formed by metal atoms connected by --OPO-- bridges. Because the metal centers in the poly(metal phosphinates) are surrounded by oxygen atoms, the polymer backbone is particularly resistant to oxidative degradation, and, as a rule, the polymers are very stable thermally.
- the metal phosphinates found to be most stable and useful as a coating material are the metal phosphinates in which zinc is the central atom. They possess an inherent thermal stability that makes them especially useful for high temperature applications in many areas of technology.
- Zn[OP(Me)(Ph)O] 2 is one of the few zinc phosphinates that are appreciably soluble in organic solvents and melt at a reasonable temperature, but the coatings obtainable to date have been unsatisfactory because of pinhole formation. Moreover, this composition is less thermally stable than others of the same type. The zinc phosphinates which show the greatest thermal stability are practically insoluble or poorly soluble in common solvents and do not melt at a reasonable point below their decomposition temperatures.
- Zn[OPh 2 O] 2 is insoluble in common solvents and as a result cannot be utilized as a binder for high temperature coatings.
- Zn[OP(C 6 H 4 SO 2 Ph) (Ph)O] 2 is practically insoluble in common solvents and required a proportionally large amount of strong coordinating solvents such as dimethyl formanide for disolution.
- coating materials based on poly(zinc phosphinates) can be used effectively as high temperature coatings on supersonic vehicles. Previous attempts at using these materials as coatings were not fruitful because of a lack of suitable solvents for the phosphinates. This problem was circumvented, however, by the present invention which involves an in-situ reaction between starting materials soluble in a non-aqueous solvent system.
- Zn[OPPh 2 O] 2 is insoluble in a mixture of MeOH and benzene, but a mixture of ZnCl 2 and Ph 2 P(O)OH was found to be soluble in such a solvent system.
- this solution is sprayed onto a surface, the resultant residue, after evaporation of solvent, is essentially Zn[OPPh 2 O] 2 , and none of the byproduct is present after curing.
- a blend consisting of TiO 2 and containing ZnCl 2 , Ph(PhSO 2 C 6 H 4 )P(O)OH, and Me(Ph)P(O)OH was dispersed in a solvent mixture.
- a formulation containing 20 percent solids gave coatings with satisfactory hardness, integrity, and appearance.
- the coating thickness was approximately 1-1.5 mil, and the weight of the coating per panel averaged 0.35 g.
- the coating properties were independent of the cure temperatures, which ranged from ambient to 150° C. Analysis of scrapings from the coating indicates that no chloride is present in the "cured" product. During exposure to 1000° F (538° C) in air for 2 hours the coating apparently undergoes a partial oxidation. It first turns dark and then gradually becomes white again. The resulting coating is ceramic-like in appearance, possesses excellent hardness, and shows no visible mudcracking or loss of coating integrity.
- the primary object of this invention is to develop a technique for utilizing thermally stable poly(zinc phosphinates) as high temperature coatings.
- Another object of this invention is to provide a method for fabricating coating materials that can be cured at low temperatures and possess thermal stability up to 1000° F.
- Zn(OPPh 2 O) 2 for example, first decomposes at 475° C when heated in air in a thermal balance.
- Zn[OP(Me)(Ph)O] 2 is one of the few zinc phosphinates that are appreciably soluble in organic solvents and melt at a reasonable temperature, but the coatings obtainable to date have been unsatisfactory because of pinhole formation. Moreover, this composition is less thermally stable than others of the same type (Table 1). The zinc phosphinates which show the greatest thermal stability are insoluble or poorly soluble in common solvents and do not melt at a reasonable point below their decomposition temperature.
- Zn[OPPh 2 O] 2 is insoluble in common solvents and as a result, cannot be utilized as a binder for high temperature coatings.
- Zn[OP(C 6 H 4 SO 2 Ph)(Ph)O] 2 for example, is practically insoluble in common solvents and requires a proportionally large amount of strong coordinating solvents such as dimethyl formide for dissolution.
- Preparations attempted from a solution of Zn[OP(C 6 H 4 SO 2 Ph)PhO] 2 in 15 parts DMF and 35 parts C 6 H 6 result in coatings with poor integrity and pinholes.
- This invention provides a novel procedure for the preparation of coatings utilizing zinc phosphinates which were heretofore impossible to use because of poor solubility.
- the use of zinc phosphinates has been made possible by an in-situ preparation with ingredients soluble in common solvents.
- Such formulations are surprisingly stable in solution and do not show any supersaturation or tendency to precipitate even though the reaction products would be expected to be insoluble.
- Zn[OPPh 2 O] 2 is insoluble in a mixture of MeOH and benzene, but a mixture of ZnCl 2 and Ph 2 P(O)OH was found to be soluble in such a solvent system.
- this solution is sprayed onto a surface, the resultant residue, after evaporation of solvent, is essentially Zn[OPPh 2 O] 2 , and none of the byproduct is present after curing.
- the chemical reaction is shown by equation (1) as follows:
- the example details the preparation of a coating on titanium alloy that is essentially Zn[OP(C 6 H 4 SO 2 P 6 H 5 ) (Ph)O] 2 and that is of satisfactory physical appearance.
- the ZnCl 2 (95% assay), (PhSO 2 C 6 H 4 )(Ph) -- P(O)OH, and Me(Ph)P(O)OH were dispersed in a solvent mixture of dimethyl formamide, MeOH, and benzene. Warming the dispersion on a hot plate (35° to 40° C) for several minutes gave a clear pale yellow solution.
- the titanium dioxide pigment was then added to the solution together with an appropriate amount of ceramic grinding stones.
- the dispersion was then ground by rolling on a rolling mill for 6 hours, decanted from the grinding stones, and sprayed onto a titanium alloy sheet.
- the coating which resulted after evaporation at room temperature set to touch in an hour. An additional 15 hours at ambient temperature gave a coating which is hard and shows good integrity and adhesion. Hardness may be enhanced even further by curing at 150° to 200° C for 2 hours.
- R and R' are alkyl or aryl substituents.
- the titanium alloy Ti-6Al-4v is accepted in the industry and is known for its poor coating adhesion, it was selected as the standard metal to be used in evaluating the coating materials of this invention.
- the formulation of the above example was used to spray eleven 3 in. by 2 in. panels and eight 2 in. by 1 in. panels of the titanium alloy.
- the amount of dry coating found (2 hours at 150° C) averaged 0.16 g per panel or 2.8 g/ft 2 .
- the panels were first cleaned in accordance with conventional techniques.
- Duplicate panels for each formulation were placed in a furnace held at 350° C (662° F). The panels were removed after 23 hours and permitted to cool at ambient room temperature for one hour. Observations and physical measurements were made on the heated panels after they reached room temperature (usually within 35 to 45 minutes after removal from furnace). This cycle was repeated three more times, and the panels were then heated for 71 hours to terminate the run at a total heating time of 163 hours.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Paints Or Removers (AREA)
Abstract
A high temperature coating composition composed of a solvent mixture of zinc chloride, titanium dioxide, and an organo-substituted phosphinic acid.
Description
The invention described herein may be manufactured and used by and for the Government for governmental purposes without the payment of any royalty thereon.
This invention relates to thermally resistant coating materials. In a more particular aspect, this invention concerns itself with high temperature coating materials based on poly (zinc phosphinates) and to a method for preparing such coatings.
The recent advent of supersonic vehicles has created a need for coating materials resistant to the high skin temperatures that are generated within the operational environment of such vehicles. Conventional protective coatings, based upon drying oils and resins such as linseed oil and alkyds, are useful only at moderately elevated temperatures. Progress has been made on extending the thermal tolerance of coatings by the development of systems utilizing organic polymers based upon condensed units with highly conjugated double bonds. Additional improvements have been made with organosilicone-based coatings. However, current temperature requirements are even higher, and coatings resistant to thermal and oxidative degradation up to 1000° F in air are needed.
An attempt to provide a solution to the need for high temperature coatings indicated that coating compositions based on poly(zinc phosphinates) possess the high thermal stability required for use with supersonic vehicles. Poly(metal phosphinates) are a family of polymers based on an inorganic backbone formed by metal atoms connected by --OPO-- bridges. Because the metal centers in the poly(metal phosphinates) are surrounded by oxygen atoms, the polymer backbone is particularly resistant to oxidative degradation, and, as a rule, the polymers are very stable thermally. Among the polymer compositions found to be most stable and useful as a coating material are the metal phosphinates in which zinc is the central atom. They possess an inherent thermal stability that makes them especially useful for high temperature applications in many areas of technology.
At the present time, however, few of these materials are capable of facile conversion into coatings by standard preparative methods such as from a melt or by deposition from a solvent. Zn[OP(Me)(Ph)O]2 is one of the few zinc phosphinates that are appreciably soluble in organic solvents and melt at a reasonable temperature, but the coatings obtainable to date have been unsatisfactory because of pinhole formation. Moreover, this composition is less thermally stable than others of the same type. The zinc phosphinates which show the greatest thermal stability are practically insoluble or poorly soluble in common solvents and do not melt at a reasonable point below their decomposition temperatures. Zn[OPh2 O]2 is insoluble in common solvents and as a result cannot be utilized as a binder for high temperature coatings. Zn[OP(C6 H4 SO2 Ph) (Ph)O]2 is practically insoluble in common solvents and required a proportionally large amount of strong coordinating solvents such as dimethyl formanide for disolution. Preparations attempted from a solution of Zn[OP(C6 H4 SO2 Ph)PhO]2 in 15 parts DMF and 35 parts C6 H6 result in coatings with poor integrity and pinholes.
An attempt to overcome these problems led to the discovery that the preparation of coatings utilizing zinc phosphinates that were heretofore impossible to use because of poor solubility or intractability can be accomplished by an in-situ preparation with ingredients soluble in common solvents. Such formulations are surprisingly stable in solution and do not show any supersaturation or tendency to precipitate even though the reaction products would be expected to be insoluble.
In accordance with this invention, it has been found that coating materials based on poly(zinc phosphinates) can be used effectively as high temperature coatings on supersonic vehicles. Previous attempts at using these materials as coatings were not fruitful because of a lack of suitable solvents for the phosphinates. This problem was circumvented, however, by the present invention which involves an in-situ reaction between starting materials soluble in a non-aqueous solvent system.
For example, Zn[OPPh2 O]2 is insoluble in a mixture of MeOH and benzene, but a mixture of ZnCl2 and Ph2 P(O)OH was found to be soluble in such a solvent system. When this solution is sprayed onto a surface, the resultant residue, after evaporation of solvent, is essentially Zn[OPPh2 O]2, and none of the byproduct is present after curing.
In still another example, a blend consisting of TiO2 and containing ZnCl2, Ph(PhSO2 C6 H4)P(O)OH, and Me(Ph)P(O)OH was dispersed in a solvent mixture. A formulation containing 20 percent solids gave coatings with satisfactory hardness, integrity, and appearance. The coating thickness was approximately 1-1.5 mil, and the weight of the coating per panel averaged 0.35 g. The coating properties were independent of the cure temperatures, which ranged from ambient to 150° C. Analysis of scrapings from the coating indicates that no chloride is present in the "cured" product. During exposure to 1000° F (538° C) in air for 2 hours the coating apparently undergoes a partial oxidation. It first turns dark and then gradually becomes white again. The resulting coating is ceramic-like in appearance, possesses excellent hardness, and shows no visible mudcracking or loss of coating integrity.
Accordingly, the primary object of this invention is to develop a technique for utilizing thermally stable poly(zinc phosphinates) as high temperature coatings.
Another object of this invention is to provide a method for fabricating coating materials that can be cured at low temperatures and possess thermal stability up to 1000° F.
The above and still other objects and advantages of the present invention will become more readily apparent upon consideration of the following detailed description thereof.
Poly(zinc phosphinates) possess a relatively high degree of thermal stability by virtue of inorganic backbones in which metal atoms are connected by "--OPO--" bridges. Zn(OPPh2 O)2, for example, first decomposes at 475° C when heated in air in a thermal balance. Thermogravimetric data on this and other phosphinates are given in Table 1.
Table 1.
__________________________________________________________________________
TGA
Temperature ° C wt. loss
Composition Atmosphere
Initial
5% 10% 20%
__________________________________________________________________________
Zn(OPP.sub.2 O).sub.2
air 475 510 520 330
Zn[OP(Me)(Ph)O].sub.2
air 380 440 460 470
Zn[OP(C.sub.6 H.sub.4 SO.sub.2 Ph)(Ph)O].sub.2
air 450 499 500 520
__________________________________________________________________________
However, at the present state of the art, few of these materials are capable of facile conversion into coatings by standard preparative methods such as from a melt or by deposition from a solvent. Zn[OP(Me)(Ph)O]2 is one of the few zinc phosphinates that are appreciably soluble in organic solvents and melt at a reasonable temperature, but the coatings obtainable to date have been unsatisfactory because of pinhole formation. Moreover, this composition is less thermally stable than others of the same type (Table 1). The zinc phosphinates which show the greatest thermal stability are insoluble or poorly soluble in common solvents and do not melt at a reasonable point below their decomposition temperature. Zn[OPPh2 O]2 is insoluble in common solvents and as a result, cannot be utilized as a binder for high temperature coatings. Zn[OP(C6 H4 SO2 Ph)(Ph)O]2, for example, is practically insoluble in common solvents and requires a proportionally large amount of strong coordinating solvents such as dimethyl formide for dissolution. Preparations attempted from a solution of Zn[OP(C6 H4 SO2 Ph)PhO]2 in 15 parts DMF and 35 parts C6 H6 result in coatings with poor integrity and pinholes.
This invention, however, provides a novel procedure for the preparation of coatings utilizing zinc phosphinates which were heretofore impossible to use because of poor solubility. The use of zinc phosphinates has been made possible by an in-situ preparation with ingredients soluble in common solvents. Such formulations are surprisingly stable in solution and do not show any supersaturation or tendency to precipitate even though the reaction products would be expected to be insoluble. For example, Zn[OPPh2 O]2 is insoluble in a mixture of MeOH and benzene, but a mixture of ZnCl2 and Ph2 P(O)OH was found to be soluble in such a solvent system. When this solution is sprayed onto a surface, the resultant residue, after evaporation of solvent, is essentially Zn[OPPh2 O]2, and none of the byproduct is present after curing. The chemical reaction is shown by equation (1) as follows:
ZnCl.sub.2 + 2 Ph.sub.2 P(O)H→Zn[OPPh.sub.2 O].sub.2 + 2HCl 1.
For the purpose of further illustrating the invention, the following example is presented. The example details the preparation of a coating on titanium alloy that is essentially Zn[OP(C6 H4 SO2 P6 H5) (Ph)O]2 and that is of satisfactory physical appearance.
______________________________________
ZnCl.sub.2 (95% assay)
0.71 grams
Ph(PhSO.sub.2 C.sub.6 H.sub.4)P(O)OH
3.58 grams
Me(Ph)P(O)OH 0.78 grams
TiO.sub.2 (DuPont R900)
7.00 grams
DMF 5 grams
MeOH 15 grams
Benzene 30 grams
______________________________________
In this example, the ZnCl2 (95% assay), (PhSO2 C6 H4)(Ph) -- P(O)OH, and Me(Ph)P(O)OH were dispersed in a solvent mixture of dimethyl formamide, MeOH, and benzene. Warming the dispersion on a hot plate (35° to 40° C) for several minutes gave a clear pale yellow solution. The titanium dioxide pigment was then added to the solution together with an appropriate amount of ceramic grinding stones. The dispersion was then ground by rolling on a rolling mill for 6 hours, decanted from the grinding stones, and sprayed onto a titanium alloy sheet. The coating which resulted after evaporation at room temperature set to touch in an hour. An additional 15 hours at ambient temperature gave a coating which is hard and shows good integrity and adhesion. Hardness may be enhanced even further by curing at 150° to 200° C for 2 hours.
An obvious advantage of the procedure of this invention is that any zinc phosphinate type coating can be tailored by selection of the appropriate substituted phosphinic acid as is represented by the following general equation:
ZnCl.sub.2 + 2R (R')P(O)OH→Zn[OP (R)(R')O].sub.2 +2HCl
where R and R' are alkyl or aryl substituents.
Because the titanium alloy Ti-6Al-4v is accepted in the industry and is known for its poor coating adhesion, it was selected as the standard metal to be used in evaluating the coating materials of this invention. The formulation of the above example was used to spray eleven 3 in. by 2 in. panels and eight 2 in. by 1 in. panels of the titanium alloy. The amount of dry coating found (2 hours at 150° C) averaged 0.16 g per panel or 2.8 g/ft2. The panels were first cleaned in accordance with conventional techniques.
All panels were dried at room temperature for 16 hours and then heated at 150° C for 2 hours to remove trace solvents.
Duplicate panels for each formulation were placed in a furnace held at 350° C (662° F). The panels were removed after 23 hours and permitted to cool at ambient room temperature for one hour. Observations and physical measurements were made on the heated panels after they reached room temperature (usually within 35 to 45 minutes after removal from furnace). This cycle was repeated three more times, and the panels were then heated for 71 hours to terminate the run at a total heating time of 163 hours.
A separate run was made under identical conditions except that the furnace temperature was maintained at 540° C
The panels were examined after each heating cycle for the following properties: color, weight, coating integrity (microscope), and adhesion (tape test without scoring of coating). Results of the tests are given in Tables II and III. The data indicate that these coatings show excellent thermal-shock resistance and reasonably good adhesion and retain sufficient integrity so that protection is maintained even after 163 hours heating at 540° C (1000° F).
TABLE II
__________________________________________________________________________
Cyclic Thermal Tests at 350° C - Physical Properties of Coatings
from the Example
Start 23 hours 46 hours
69 hours
92 hours
163 hours
__________________________________________________________________________
Color A light gray
slight yellowing
off-white,
gray gray gray
gray cast
B " " " " " "
Weight
A 17.151
17.144 17.140 -- -- 17.118
grams B 16.656
16.648 16.635 16.624 16.620 16.618
Tape A pass -- good, 10%
-- -- pass
removal
B pass -- -- pass -- pass
Integrity
A good, not
good, not
good, smooth
good, smooth
good, smooth
good, smooth
smooth
smooth
__________________________________________________________________________
TABLE III
__________________________________________________________________________
Cyclic Thermal Tests at 540° C (1000° F) - Physical
Properties of Coatings from the Example
Start 23 hours
46 hours
69 hours
92 hours
163 hours
__________________________________________________________________________
Color A light gray
white white white white white
B " " " " " "
Weight
A 16.064
16.030
16.030
16.031
16.031
16.034
grams B 15.932
15.897
15.898
15,899
15,900
15.900
Tape A pass -- pass pass -- pass
B " -- -- " -- "
Micro A good, not
good, not
good, not
good, not
good good
integrity
smooth
smooth
smooth
smooth
B " " " " " "
__________________________________________________________________________
Although the principle of this invention has been described with particularity, it should be understood that various alterations and modifications can be made without departing from the spirit of the invention which is defined by the appended claims.
Claims (1)
1. A coating composition composed of a solvent mixture of about 1.0 percent by weight ZnCl2 ; about 5.7 percent by weight Ph(PhSO2 C6 H4)P(O)OH; about 1.2 percent by weight Me(Ph)P(O)OH; about 11.2 percent by weight TiO2 ; and the balance substantially all solvent.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US05/627,808 US4001034A (en) | 1975-10-31 | 1975-10-31 | High temperature coatings based on poly (zinc phosphinates) |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US05/627,808 US4001034A (en) | 1975-10-31 | 1975-10-31 | High temperature coatings based on poly (zinc phosphinates) |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US4001034A true US4001034A (en) | 1977-01-04 |
Family
ID=24516216
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US05/627,808 Expired - Lifetime US4001034A (en) | 1975-10-31 | 1975-10-31 | High temperature coatings based on poly (zinc phosphinates) |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US4001034A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4357170A (en) * | 1981-07-30 | 1982-11-02 | The New Jersey Zinc Company | Titanium dioxide pigment treated to suppress yellowing in polymers |
| US4377417A (en) * | 1981-07-30 | 1983-03-22 | Gulf & Western Industries, Inc. | Titanium dioxide pigment treated to suppress yellowing in polymers |
| US20040051087A1 (en) * | 2002-09-17 | 2004-03-18 | Clariant Gmbh | Fire-protection coating |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3505088A (en) * | 1965-08-05 | 1970-04-07 | Titan Gmbh | Process for the manufacture of a titanium dioxide pigment for the delustering of polyamide fibers |
| US3556828A (en) * | 1968-01-22 | 1971-01-19 | Laporte Titanium Ltd | Process for treating titanium dioxide pigments |
| US3560234A (en) * | 1969-03-03 | 1971-02-02 | Thann & Mulhouse | Process for the manufacture of pigments of titanium dioxide in the rutile form |
| US3756841A (en) * | 1971-06-30 | 1973-09-04 | Du Pont | Chloride tio2 pigments suited for high solids low viscosity slurries |
-
1975
- 1975-10-31 US US05/627,808 patent/US4001034A/en not_active Expired - Lifetime
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3505088A (en) * | 1965-08-05 | 1970-04-07 | Titan Gmbh | Process for the manufacture of a titanium dioxide pigment for the delustering of polyamide fibers |
| US3556828A (en) * | 1968-01-22 | 1971-01-19 | Laporte Titanium Ltd | Process for treating titanium dioxide pigments |
| US3560234A (en) * | 1969-03-03 | 1971-02-02 | Thann & Mulhouse | Process for the manufacture of pigments of titanium dioxide in the rutile form |
| US3756841A (en) * | 1971-06-30 | 1973-09-04 | Du Pont | Chloride tio2 pigments suited for high solids low viscosity slurries |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4357170A (en) * | 1981-07-30 | 1982-11-02 | The New Jersey Zinc Company | Titanium dioxide pigment treated to suppress yellowing in polymers |
| US4377417A (en) * | 1981-07-30 | 1983-03-22 | Gulf & Western Industries, Inc. | Titanium dioxide pigment treated to suppress yellowing in polymers |
| US20040051087A1 (en) * | 2002-09-17 | 2004-03-18 | Clariant Gmbh | Fire-protection coating |
| EP1400573A1 (en) * | 2002-09-17 | 2004-03-24 | Clariant GmbH | Fireproof coating |
| US7144527B2 (en) | 2002-09-17 | 2006-12-05 | Clariant Gmbh | Fire-protection coating |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3449161A (en) | Fire retardant intumescent coating compositions | |
| US4043987A (en) | Substituted ammonium polyphosphate composition | |
| JP2844896B2 (en) | Heat resistant insulation paint | |
| EP0198519A1 (en) | Thixotropic coating composition, process for coating a substrate with such coating composition and the coated substrate thus obtained | |
| US4119608A (en) | Solutions of polyester-imides | |
| JPS6023707B2 (en) | flow control agent | |
| US4960817A (en) | High-temperature, corrosion-preventive coating | |
| Abd El-Wahab et al. | Synthesis and performance of new modified reactive flame-retardant alkyd resin based on tetrabromophthalic anhydride as varnish for surface coatings | |
| US4001034A (en) | High temperature coatings based on poly (zinc phosphinates) | |
| GB2161811A (en) | Organo-titanate/phosphate ester adducts | |
| US3455731A (en) | Heat-resistant coatings | |
| DE112016005588T5 (en) | Polyamideimide resin composition and fluorochemical coating material | |
| JPS63280774A (en) | Polyamideimide-containing lacquer binder | |
| DK161525B (en) | Liquid coating substance and process for producing it | |
| US3347816A (en) | Pigmented polysiloxane surface coating compositions for glossy coatings of increased thermal stability | |
| US4431780A (en) | Low solvent, water-dilutable binders for air drying coating compositions | |
| US3649307A (en) | Binder for zinc-rich paint | |
| DE2610307C2 (en) | N,N'-methylene-bis-trimellithimide and derivatives, processes for their preparation and their use | |
| US4981946A (en) | Marine paint composition comprising quinone/polyamine polymer | |
| Kalendová | Application of spinel pigments in anticorrosive heat‐resistant coatings | |
| US3985568A (en) | Pigment suspending agents in paint systems | |
| JPS63301271A (en) | Water-soluble rust-preventive paint composition | |
| US3074885A (en) | Lubricating oil compositions | |
| US4384070A (en) | Pigmented, antioxidant-containing solution coating compositions | |
| JPH0312466A (en) | Melt adhesive lacquer solution for heat-resistant coating |