US3941119A - Means for introducing and guiding objects into body cavities and blood vessels - Google Patents
Means for introducing and guiding objects into body cavities and blood vessels Download PDFInfo
- Publication number
- US3941119A US3941119A US05/489,928 US48992874A US3941119A US 3941119 A US3941119 A US 3941119A US 48992874 A US48992874 A US 48992874A US 3941119 A US3941119 A US 3941119A
- Authority
- US
- United States
- Prior art keywords
- catheter
- flexible
- cannula
- patient
- means according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/0105—Steering means as part of the catheter or advancing means; Markers for positioning
- A61M25/0108—Steering means as part of the catheter or advancing means; Markers for positioning using radio-opaque or ultrasound markers
Definitions
- This invention relates to means for introducing and guiding objects in cavities or blood vessels in the body of a patient.
- the invention provides means for introducing and guiding objects in cavities or blood vessels in the body of a patient, a cannula for insertion in the body at the place where the object is to be introduced into the body, receives a flexible elongated member and penetration into the body beyond the cannula under the effect of gravity, and a soft, flexible catheter dimensioned for passing radially therebetween to enable the flexible member to be drawn out thereafter.
- the patient, or that portion of the body thereof to be examined is arranged so as to be movable in all directions.
- a cannula is inserted at the place where the object is to be inserted into the body.
- a flexible chain is introduced into the cannula and one end of the chain is fed into the body gravitationally, by changing the position of the patient or of the examined portion of the body thereof, preferably while visibilizing the desired guide direction. Thereafter a soft, flexible catheter is passed over the infed chain to the desired length and the chain is withdrawn, out of the catheter.
- the insertion end of the chain may be provided with a soft, rounded weight, for example in the shape of an olive, having generally the same thickness as the chain but a not too great longitudinal extension.
- a thin filament of rigid material may be attached to the outer end of the chain, for the purpose of guiding the catheter as it is fitted over the chain.
- the insertion of the chain can be facilitated, by supplementing the movement of the chain in the body due to gravity, with magnetic forces, in which case the chain comprises wholly or partially magnetic material. It is also possible to use an extremely flexible chain of known type, which can be locked in an adopted straight or curved position by means capable of being actuated from without.
- a chain is one comprising links which abut each other, either directly or indirectly, via spherical slide surfaces and which are arranged on a central center string which, when tensioned with an axial force relative to the row of links, creates an increase in the friction between the links and a "locking" of the chain in the position adopted thereby.
- the chain may be provided with radio-opaque points, to facilitate control of the insertion of the catheter.
- chain By the use of a chain to guide a highly flexible object, such as a catheter, for insertion into the body, by gravitationally falling into body cavities, an advantage is gained in which even sharp bends can be followed, without structures or walls being damaged.
- flexible member object has been referred to as a "chain.”
- Other objects which are extremely flexible and which have sufficient weight and mechanical strength may be used, for example a catheter which, in accordance with the above, has been provided with a weight at the insertion end.
- Such object, or a part thereof, should be made of a material having a high specific gravity, however, such as gold.
- the drawing shows examination of the fourth ventricle of the brain.
- a cannula 3 is inserted in a hole 1 suitably located in a calvarium 2.
- the direction of the cannula is selected in accordance with that part of the brain to be examined, in the illustrated case, approximately in the center line of the brain towards the outer auditory duct.
- the direction of the cannula can be controlled by means of X-ray, preferably by means of X-ray television.
- An extremely flexible chain 4 is then inserted in the cannula and falls gravitationally against a lateral ventricle. The position of the end of the chain, which may be provided with an olive-shaped weight 5, is checked by means of X-ray television.
- Insertion of the chain is controlled by small movements of the patient's head, and by changing the position of the chair.
- the head In order to pass the chain through the foramen of Monro, the head is tilted slightly to one side, whereafter it is moved forwards and backwards.
- the chain is then moved towards the fourth ventricle, whereafter the catheter is fed further along the chain.
- the chain is withdrawn from the catheter and, for example, an injection may be made through the catheter.
- the introduction of the substance injected may be determined by X-ray television, for example the cerebro-spinal fluid must first be removed from the catheter.
- the invention may also be applied to advantage for the examination of the vascular system, in which the high degree of flexibility of the chain and the catheter used makes possible the penetration of said vascular system, with sharp curves and branches.
- the invention makes possible the selective examination of particularly sensitive portions of the body.
- One important advantage is, because of the controllable insertion of the catheters, much less inserted contrast agent need be used than was previously the case, and said body portions can be studied without the disturbing influence of cavities of less diagnostic importance becoming filled with contrast medium. This provides less risk for the patient. Neither are the surroundings of the region which is of diagnostic interest shielded in a disturbing manner. Different contrast agents, for example liquid and gaseous, can be used simultaneously to fill different parts of the cavity being examined. This is particularly advantageous in the examination of the vessels of the brain and of the meninx when injecting contrast media or other substances.
- the invention may also be applied to advantage for selective contrast examination or sampling in the system of body cavities comprising the trachea and air-pipes.
- blood vessel examinations can be carried out by inserting catheters into the vascular system, for examining by injecting contrast medium in desired localities, or by local application of foreign systems for therapeutical or diagnostic purposes.
- Expecially manufactured instruments may also be used for electrophysiological registration from solid substances adjacent cavities, or for stimulating such sites chemically or electrically, or for injecting a desired substance.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Pulmonology (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
Means for introducing and guiding objects such as liquids or instruments in cavities or blood vessels in the body of a patient, comprising a cannula for insertion in the body at the place where the object is to be introduced into the body, a gold chain for insertion into the cannula and penetration into the body under the effect of gravity, and a soft, flexible catheter of a dimension for passing through the cannula and over the flexible member when inserted and for permitting the flexible member to be drawn out after insertion of the catheter.
Description
1. Field of the Invention
This invention relates to means for introducing and guiding objects in cavities or blood vessels in the body of a patient.
2. Prior Art
Many methods have been proposed in the past, for inserting catheters into the body of a patient. In this connection, there have been used, for example, previously primarily bent catheters made of a relatively rigid material, which can be straightened or bent at the point thereof with the aid of inserted guide means. Catheters have also been guided by magnetically influencing the direction in which their point is inserted. In connection with cerebral examinations, it is known to insert an object straight through the brain tissue and through the ventricles. This often results in damage, however.
Common to all methods known to me is that they do not fulfil all requirements associated with selective ventriculography and the study of the vascular system, for which much more conformable and guidable auxiliary devices are required.
The invention provides means for introducing and guiding objects in cavities or blood vessels in the body of a patient, a cannula for insertion in the body at the place where the object is to be introduced into the body, receives a flexible elongated member and penetration into the body beyond the cannula under the effect of gravity, and a soft, flexible catheter dimensioned for passing radially therebetween to enable the flexible member to be drawn out thereafter.
In use of the means according to the invention, the patient, or that portion of the body thereof to be examined, is arranged so as to be movable in all directions. A cannula is inserted at the place where the object is to be inserted into the body. A flexible chain is introduced into the cannula and one end of the chain is fed into the body gravitationally, by changing the position of the patient or of the examined portion of the body thereof, preferably while visibilizing the desired guide direction. Thereafter a soft, flexible catheter is passed over the infed chain to the desired length and the chain is withdrawn, out of the catheter.
To facilitate the introduction of the chain into the body, the insertion end of the chain may be provided with a soft, rounded weight, for example in the shape of an olive, having generally the same thickness as the chain but a not too great longitudinal extension. A thin filament of rigid material may be attached to the outer end of the chain, for the purpose of guiding the catheter as it is fitted over the chain. The insertion of the chain can be facilitated, by supplementing the movement of the chain in the body due to gravity, with magnetic forces, in which case the chain comprises wholly or partially magnetic material. It is also possible to use an extremely flexible chain of known type, which can be locked in an adopted straight or curved position by means capable of being actuated from without. An example of such a chain is one comprising links which abut each other, either directly or indirectly, via spherical slide surfaces and which are arranged on a central center string which, when tensioned with an axial force relative to the row of links, creates an increase in the friction between the links and a "locking" of the chain in the position adopted thereby. At one or more positions along its length, and at least at its insertion end, the chain may be provided with radio-opaque points, to facilitate control of the insertion of the catheter.
By the use of a chain to guide a highly flexible object, such as a catheter, for insertion into the body, by gravitationally falling into body cavities, an advantage is gained in which even sharp bends can be followed, without structures or walls being damaged. In the foregoing, flexible member object has been referred to as a "chain." Other objects which are extremely flexible and which have sufficient weight and mechanical strength may be used, for example a catheter which, in accordance with the above, has been provided with a weight at the insertion end. Such object, or a part thereof, should be made of a material having a high specific gravity, however, such as gold.
The drawing shows examination of the fourth ventricle of the brain.
A cannula 3 is inserted in a hole 1 suitably located in a calvarium 2. By placing the patient in a universal inclinable and rotatable chair or the like, the skull can be made to assume different positions. The direction of the cannula is selected in accordance with that part of the brain to be examined, in the illustrated case, approximately in the center line of the brain towards the outer auditory duct. The direction of the cannula can be controlled by means of X-ray, preferably by means of X-ray television. An extremely flexible chain 4 is then inserted in the cannula and falls gravitationally against a lateral ventricle. The position of the end of the chain, which may be provided with an olive-shaped weight 5, is checked by means of X-ray television. Insertion of the chain is controlled by small movements of the patient's head, and by changing the position of the chair. In order to pass the chain through the foramen of Monro, the head is tilted slightly to one side, whereafter it is moved forwards and backwards. In order that the fourth ventricle 6 beneath the lesser brain can be reached, there is threaded onto the chain an extremely flexible catheter 7 provided at least at the insertion end with a radio-opaque point to facilitate control i.e. identification of location, by television apparatus, so that the catheter reaches to just below the Monro foramen. By suitable inclining of the head of the patient, the chain is then moved towards the fourth ventricle, whereafter the catheter is fed further along the chain. When the chain and the catheter have reached the point intended, the chain is withdrawn from the catheter and, for example, an injection may be made through the catheter. The introduction of the substance injected may be determined by X-ray television, for example the cerebro-spinal fluid must first be removed from the catheter.
Selective ventriculography is thus made possible in a simple manner. It is preferred that the catheter and the chain are advanced alternately, the latter being guided, thereby to facilitate the continued insertion. The chain must be able to move freely in the catheter with a minimum of friction, and the catheter must also be able to move freely in the cannula.
The invention may also be applied to advantage for the examination of the vascular system, in which the high degree of flexibility of the chain and the catheter used makes possible the penetration of said vascular system, with sharp curves and branches.
The invention makes possible the selective examination of particularly sensitive portions of the body. One important advantage is, because of the controllable insertion of the catheters, much less inserted contrast agent need be used than was previously the case, and said body portions can be studied without the disturbing influence of cavities of less diagnostic importance becoming filled with contrast medium. This provides less risk for the patient. Neither are the surroundings of the region which is of diagnostic interest shielded in a disturbing manner. Different contrast agents, for example liquid and gaseous, can be used simultaneously to fill different parts of the cavity being examined. This is particularly advantageous in the examination of the vessels of the brain and of the meninx when injecting contrast media or other substances.
The invention may also be applied to advantage for selective contrast examination or sampling in the system of body cavities comprising the trachea and air-pipes.
Further, with the aid of the invention, blood vessel examinations can be carried out by inserting catheters into the vascular system, for examining by injecting contrast medium in desired localities, or by local application of foreign systems for therapeutical or diagnostic purposes.
It is also possible to introduce specially manufactured instruments for biopsy of structures in a cavity or of the walls thereof.
Expecially manufactured instruments may also be used for electrophysiological registration from solid substances adjacent cavities, or for stimulating such sites chemically or electrically, or for injecting a desired substance.
Claims (10)
1. Means for introducing a catheter into a selected portion of a patient, for conducting an object to such portion via the catheter, comprising:
a. a cannula for insertion into an opening in the patient;
b. a catheter slidably received in and externally guided by said cannula, said catheter having an inner flexible portion projecting inwardly beyond said cannula; and
c. a freely flexible elongated member movable in response to gravity to such portion of a patient, and providing internal guidance for said inner flexible portion of said catheter, whereby said flexible member is moved by gravity through said cannula to the selected portion, then serves as a guide for insertion of said catheter to said selected portion, and is then removed from the catheter to enable the catheter to pass the object to said portion.
2. Means according to claim 1, wherein the insertion end of the flexible member is provided with a weight which is no thicker than the thickness of the flexible member.
3. Means according to claim 1, wherein the catheter is made of silicon rubber.
4. Means according to claim 1, wherein the flexible member is provided at its other end with a filament of rigid material for guiding the catheter upon passing the same over the flexible member.
5. Means according to claim 1, wherein the flexible member is made wholly or partially of a magnetic material, whereby the gravitational fall of the flexible member may be assisted by magnetic forces.
6. Means according to claim 1, wherein the catheter is provided with a radio-opaque point, at least at its insertion end.
7. Means according to claim 1, wherein the flexible member is in the form of a chain, such as of gold.
8. Means according to claim 7, wherein the chain has a weight at its insertion end, such in the shape of an olive.
9. Means according to claim 7, wherein the flexible chain is of a type known per se which can be locked in an adopted position by means actuatable from without.
10. A method for conducting an object to a selected portion of a patient, comprising:
a. inserting a cannula into an opening in a patient;
b. inserting a flexible elongated member through the cannula in response to gravity to such portion of the patient beyond the cannula;
c. inserting a flexible catheter into the cannula in surrounding relation to the flexible elongated member by which elongated member the cannula is guided to such portion of the patient;
d. withdrawing the flexible elongated member; and
e. thereafter inserting the object into the catheter, to such portion of the patient.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE7310149A SE393537B (en) | 1973-07-20 | 1973-07-20 | DEVICE FOR INFORMATION AND CONTROL OF A CATHETER OR SIMILAR IN HEALTHS OR BLOOD VESSELS IN THE BODY OF A PATIENT |
SW7310149 | 1973-07-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3941119A true US3941119A (en) | 1976-03-02 |
Family
ID=20318108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/489,928 Expired - Lifetime US3941119A (en) | 1973-07-20 | 1974-07-19 | Means for introducing and guiding objects into body cavities and blood vessels |
Country Status (3)
Country | Link |
---|---|
US (1) | US3941119A (en) |
JP (1) | JPS50111885A (en) |
SE (1) | SE393537B (en) |
Cited By (82)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4020829A (en) * | 1975-10-23 | 1977-05-03 | Willson James K V | Spring guide wire with torque control for catheterization of blood vessels and method of using same |
US4111190A (en) * | 1976-11-11 | 1978-09-05 | Jane Plumridge | Medical applicator assembly for chain cystourethrographic procedure |
US4195637A (en) * | 1977-10-21 | 1980-04-01 | Schneider Medintag Ag | Catheter arrangement, method of catheterization, and method of manufacturing a dilatation element |
US4230123A (en) * | 1978-10-31 | 1980-10-28 | Hawkins Jr Irvin F | Needle sheath complex and process for decompression and biopsy |
US4324262A (en) * | 1979-01-02 | 1982-04-13 | University Of Virginia Alumni Patents Foundation | Aspirating culture catheter and method of use |
US4351333A (en) * | 1975-10-28 | 1982-09-28 | Harrison Lazarus | Peritoneal fluid treatment apparatus, package and method |
US4378797A (en) * | 1980-04-14 | 1983-04-05 | Thomas Jefferson University | Extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders |
WO1983001741A1 (en) * | 1981-11-17 | 1983-05-26 | Bunce, Philip | Catheter-type sampling device |
DE3201954A1 (en) * | 1979-08-20 | 1983-07-28 | Ronald James 97221 Portland Oreg. Brawn | DEVICE FOR INTRAVENOUS THERAPY AND HYPERNUTRITION |
US4445887A (en) * | 1982-03-03 | 1984-05-01 | Thomas Jefferson University | Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders |
US4446155A (en) * | 1982-03-03 | 1984-05-01 | Thomas Jefferson University | Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders |
US4445500A (en) * | 1982-03-03 | 1984-05-01 | Thomas Jefferson University | Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders |
US4446154A (en) * | 1982-03-03 | 1984-05-01 | Thomas Jefferson University | Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders |
US4445888A (en) * | 1982-03-03 | 1984-05-01 | Thomas Jefferson University | Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders |
US4445514A (en) * | 1980-04-14 | 1984-05-01 | Thomas Jefferson University | Extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders |
US4445886A (en) * | 1980-04-14 | 1984-05-01 | Thomas Jefferson University | Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders |
US4451251A (en) * | 1982-03-03 | 1984-05-29 | Thomas Jefferson University | Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders |
US4450841A (en) * | 1982-03-03 | 1984-05-29 | Thomas Jefferson University | Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders |
US4464171A (en) * | 1982-03-29 | 1984-08-07 | Garwin Mark J | Intravascular insertion apparatus and method |
US4479792A (en) * | 1980-08-22 | 1984-10-30 | Harrison Lazarus | Peritoneal fluid treatment apparatus, package and method |
US4538622A (en) * | 1983-11-10 | 1985-09-03 | Advanced Cardiovascular Systems, Inc. | Guide wire for catheters |
US4553960A (en) * | 1978-09-25 | 1985-11-19 | Harrison Lazarus | Peritoneal fluid treatment apparatus, package and method |
US4615472A (en) * | 1985-06-19 | 1986-10-07 | Intravascular Surgical Instruments, Inc. | Catheter placement device |
US4654036A (en) * | 1983-12-11 | 1987-03-31 | Norwich-Eaton Pharmaceuticals, Inc. | Elongated weighted medical device |
US4657532A (en) * | 1985-07-19 | 1987-04-14 | Thomas Jefferson University | Intra-peritoneal perfusion of oxygenated fluorocarbon |
US4662368A (en) * | 1983-06-13 | 1987-05-05 | Trimedyne Laser Systems, Inc. | Localized heat applying medical device |
US4677978A (en) * | 1982-09-03 | 1987-07-07 | University Of Florida | Emergency cricothyrotomy system and cricothyrotomy kit |
US4686085A (en) * | 1980-04-14 | 1987-08-11 | Thomas Jefferson University | Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders |
US4723936A (en) * | 1986-07-22 | 1988-02-09 | Versaflex Delivery Systems Inc. | Steerable catheter |
GB2194735A (en) * | 1986-09-05 | 1988-03-16 | Electro Catheter Corp | Closed chest cannulation |
US4758431A (en) * | 1980-04-14 | 1988-07-19 | Thomas Jefferson University | Extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders |
US4773394A (en) * | 1987-10-14 | 1988-09-27 | Reichstein Irving P | Upper gastrointestinal endoscope intubator |
US4795423A (en) * | 1980-04-14 | 1989-01-03 | Thomas Jefferson University | Oxygenated perfluorinated perfusion of the ocular globe to treat ischemic retinopathy |
US4830849A (en) * | 1980-04-14 | 1989-05-16 | Thomas Jefferson University | Extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders |
US4840617A (en) * | 1980-04-14 | 1989-06-20 | Thomas Jefferson University | Cerebral and lumbar perfusion catheterization apparatus for use in treating hypoxic/ischemic neurologic tissue |
US4867174A (en) * | 1987-11-18 | 1989-09-19 | Baxter Travenol Laboratories, Inc. | Guidewire for medical use |
US4932411A (en) * | 1984-08-09 | 1990-06-12 | Siemens Aktiengesellschaft | Intervivo coil for a nuclear magnetic resonance tomographic apparatus |
US4944740A (en) * | 1984-09-18 | 1990-07-31 | Medtronic Versaflex, Inc. | Outer exchange catheter system |
US4946440A (en) * | 1988-10-05 | 1990-08-07 | Hall John E | Evertible membrane catheter and method of use |
US5125895A (en) * | 1986-07-22 | 1992-06-30 | Medtronic Versaflex, Inc. | Steerable catheter |
US5147353A (en) * | 1990-03-23 | 1992-09-15 | Myriadlase, Inc. | Medical method for applying high energy light and heat for gynecological sterilization procedures |
US5318530A (en) * | 1991-12-06 | 1994-06-07 | Bissel Medical Products, Inc. | Gastrointestinal tube with inflatable bolus |
US5333620A (en) * | 1991-10-30 | 1994-08-02 | C. R. Bard, Inc. | High performance plastic coated medical guidewire |
US5409015A (en) * | 1993-05-11 | 1995-04-25 | Target Therapeutics, Inc. | Deformable tip super elastic guidewire |
US5555893A (en) * | 1992-08-12 | 1996-09-17 | Scimed Life Systems, Inc. | Shaft movement control apparatus |
US5570701A (en) * | 1992-08-12 | 1996-11-05 | Scimed Life Systems, Inc. | Shaft movement control apparatus and method |
US5579779A (en) * | 1992-08-12 | 1996-12-03 | Scimed Life Systems, Inc. | Shaft movement control apparatus |
US5588442A (en) * | 1992-08-12 | 1996-12-31 | Scimed Life Systems, Inc. | Shaft movement control apparatus and method |
US5599305A (en) * | 1994-10-24 | 1997-02-04 | Cardiovascular Concepts, Inc. | Large-diameter introducer sheath having hemostasis valve and removable steering mechanism |
US5607421A (en) * | 1991-05-01 | 1997-03-04 | The Trustees Of Columbia University In The City Of New York | Myocardial revascularization through the endocardial surface using a laser |
US5623943A (en) * | 1992-08-12 | 1997-04-29 | Scimed Life Systems, Inc. | Magnetic medical shaft movement control device and method |
US5630427A (en) * | 1992-08-12 | 1997-05-20 | Scimed Life Systems, Inc. | Medical shaft movement control device and method |
US5664580A (en) * | 1995-01-31 | 1997-09-09 | Microvena Corporation | Guidewire having bimetallic coil |
US5706827A (en) * | 1994-09-21 | 1998-01-13 | Scimed Life Systems, Inc. | Magnetic lumen catheter |
US5713858A (en) * | 1995-04-28 | 1998-02-03 | Medtronic, Inc. | Permanently implantable guiding catheter |
US5749837A (en) * | 1993-05-11 | 1998-05-12 | Target Therapeutics, Inc. | Enhanced lubricity guidewire |
US5769796A (en) * | 1993-05-11 | 1998-06-23 | Target Therapeutics, Inc. | Super-elastic composite guidewire |
US5772609A (en) * | 1993-05-11 | 1998-06-30 | Target Therapeutics, Inc. | Guidewire with variable flexibility due to polymeric coatings |
US5776080A (en) * | 1992-08-12 | 1998-07-07 | Scimed Life Systems, Inc. | Shaft movement control apparatus |
US5779694A (en) * | 1990-01-10 | 1998-07-14 | The University Of Virginia Alumni Patents Foundation | Magnetic stereotactic system for treatment delivery |
US5846220A (en) * | 1996-04-30 | 1998-12-08 | Medtronic, Inc. | Therapeutic method for treatment of Alzheimer's disease |
US5897551A (en) * | 1990-03-23 | 1999-04-27 | Myriadlase, Inc. | Medical device for applying high energy light and heat for gynecological sterilization procedures |
US6015414A (en) * | 1997-08-29 | 2000-01-18 | Stereotaxis, Inc. | Method and apparatus for magnetically controlling motion direction of a mechanically pushed catheter |
US6128174A (en) * | 1997-08-29 | 2000-10-03 | Stereotaxis, Inc. | Method and apparatus for rapidly changing a magnetic field produced by electromagnets |
US6139510A (en) * | 1994-05-11 | 2000-10-31 | Target Therapeutics Inc. | Super elastic alloy guidewire |
US6214016B1 (en) * | 1999-04-29 | 2001-04-10 | Medtronic, Inc. | Medical instrument positioning device internal to a catheter or lead and method of use |
US6594880B2 (en) | 1995-04-28 | 2003-07-22 | Medtronic, Inc. | Intraparenchymal infusion catheter system |
US6673025B1 (en) | 1993-12-01 | 2004-01-06 | Advanced Cardiovascular Systems, Inc. | Polymer coated guidewire |
US20040210190A1 (en) * | 2001-08-16 | 2004-10-21 | Percardia, Inc. | Interventional diagnostic catheter and a method for using a catheter to access artificial cardiac shunts |
US6817364B2 (en) * | 2000-07-24 | 2004-11-16 | Stereotaxis, Inc. | Magnetically navigated pacing leads, and methods for delivering medical devices |
US7077822B1 (en) * | 1994-02-09 | 2006-07-18 | The University Of Iowa Research Foundation | Stereotactic hypothalamic obesity probe |
US7189222B2 (en) | 1996-04-30 | 2007-03-13 | Medtronic, Inc. | Therapeutic method of treatment of alzheimer's disease |
US20070249964A1 (en) * | 1997-06-04 | 2007-10-25 | Advanced Cardiovascular Systems, Inc. | Polymer coated guide wire |
US20080146967A1 (en) * | 1997-06-04 | 2008-06-19 | Richardson Mark T | Polymer coated guidewire |
US20080194973A1 (en) * | 2005-09-13 | 2008-08-14 | Imam Farhad B | Light-guided transluminal catheter |
US20090062772A1 (en) * | 2007-08-30 | 2009-03-05 | Syncro Medical Innovations, Inc. | Guided catheter with removable magnetic guide |
US20100145147A1 (en) * | 2008-09-02 | 2010-06-10 | Syncro Medical Innovations, Inc. | Magnetic device for guiding catheter and method of use therefor |
US7883474B1 (en) | 1993-05-11 | 2011-02-08 | Target Therapeutics, Inc. | Composite braided guidewire |
US8078261B2 (en) | 2005-09-13 | 2011-12-13 | Children's Medical Center Corporation | Light-guided transluminal catheter |
US9017246B2 (en) | 2010-11-19 | 2015-04-28 | Boston Scientific Scimed, Inc. | Biliary catheter systems including stabilizing members |
US11364019B1 (en) | 2013-03-14 | 2022-06-21 | William R. Krause | Catheter for lower lung fluid sampling |
US11452533B2 (en) | 2019-01-10 | 2022-09-27 | Abbott Cardiovascular Systems Inc. | Guide wire tip having roughened surface |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3570485A (en) * | 1968-05-06 | 1971-03-16 | Baxter Laboratories Inc | Flexible catheter and inserting apparatus |
US3687142A (en) * | 1970-10-06 | 1972-08-29 | Saul Leibinzohn | Catheter |
US3749085A (en) * | 1970-06-26 | 1973-07-31 | J Willson | Vascular tissue removing device |
US3794041A (en) * | 1971-11-30 | 1974-02-26 | Yeda Res & Dev | Gastrointestinal catheter |
US3844274A (en) * | 1972-11-10 | 1974-10-29 | J Nordstrom | Instrument for inserting bead chain into urethea and bladder |
-
1973
- 1973-07-20 SE SE7310149A patent/SE393537B/en unknown
-
1974
- 1974-07-19 US US05/489,928 patent/US3941119A/en not_active Expired - Lifetime
- 1974-07-20 JP JP49083726A patent/JPS50111885A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3570485A (en) * | 1968-05-06 | 1971-03-16 | Baxter Laboratories Inc | Flexible catheter and inserting apparatus |
US3749085A (en) * | 1970-06-26 | 1973-07-31 | J Willson | Vascular tissue removing device |
US3687142A (en) * | 1970-10-06 | 1972-08-29 | Saul Leibinzohn | Catheter |
US3794041A (en) * | 1971-11-30 | 1974-02-26 | Yeda Res & Dev | Gastrointestinal catheter |
US3844274A (en) * | 1972-11-10 | 1974-10-29 | J Nordstrom | Instrument for inserting bead chain into urethea and bladder |
Non-Patent Citations (1)
Title |
---|
USCI Catalogue 1964 p. 32. * |
Cited By (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4020829A (en) * | 1975-10-23 | 1977-05-03 | Willson James K V | Spring guide wire with torque control for catheterization of blood vessels and method of using same |
US4351333A (en) * | 1975-10-28 | 1982-09-28 | Harrison Lazarus | Peritoneal fluid treatment apparatus, package and method |
US4111190A (en) * | 1976-11-11 | 1978-09-05 | Jane Plumridge | Medical applicator assembly for chain cystourethrographic procedure |
US4195637A (en) * | 1977-10-21 | 1980-04-01 | Schneider Medintag Ag | Catheter arrangement, method of catheterization, and method of manufacturing a dilatation element |
US4553960A (en) * | 1978-09-25 | 1985-11-19 | Harrison Lazarus | Peritoneal fluid treatment apparatus, package and method |
US4230123A (en) * | 1978-10-31 | 1980-10-28 | Hawkins Jr Irvin F | Needle sheath complex and process for decompression and biopsy |
US4324262A (en) * | 1979-01-02 | 1982-04-13 | University Of Virginia Alumni Patents Foundation | Aspirating culture catheter and method of use |
DE3201954A1 (en) * | 1979-08-20 | 1983-07-28 | Ronald James 97221 Portland Oreg. Brawn | DEVICE FOR INTRAVENOUS THERAPY AND HYPERNUTRITION |
US4840617A (en) * | 1980-04-14 | 1989-06-20 | Thomas Jefferson University | Cerebral and lumbar perfusion catheterization apparatus for use in treating hypoxic/ischemic neurologic tissue |
US4830849A (en) * | 1980-04-14 | 1989-05-16 | Thomas Jefferson University | Extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders |
US4795423A (en) * | 1980-04-14 | 1989-01-03 | Thomas Jefferson University | Oxygenated perfluorinated perfusion of the ocular globe to treat ischemic retinopathy |
US4758431A (en) * | 1980-04-14 | 1988-07-19 | Thomas Jefferson University | Extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders |
US4445514A (en) * | 1980-04-14 | 1984-05-01 | Thomas Jefferson University | Extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders |
US4445886A (en) * | 1980-04-14 | 1984-05-01 | Thomas Jefferson University | Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders |
US4686085A (en) * | 1980-04-14 | 1987-08-11 | Thomas Jefferson University | Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders |
US4378797A (en) * | 1980-04-14 | 1983-04-05 | Thomas Jefferson University | Extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders |
US4479792A (en) * | 1980-08-22 | 1984-10-30 | Harrison Lazarus | Peritoneal fluid treatment apparatus, package and method |
WO1983001741A1 (en) * | 1981-11-17 | 1983-05-26 | Bunce, Philip | Catheter-type sampling device |
US4445500A (en) * | 1982-03-03 | 1984-05-01 | Thomas Jefferson University | Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders |
US4446154A (en) * | 1982-03-03 | 1984-05-01 | Thomas Jefferson University | Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders |
US4450841A (en) * | 1982-03-03 | 1984-05-29 | Thomas Jefferson University | Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders |
US4451251A (en) * | 1982-03-03 | 1984-05-29 | Thomas Jefferson University | Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders |
US4445887A (en) * | 1982-03-03 | 1984-05-01 | Thomas Jefferson University | Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders |
US4446155A (en) * | 1982-03-03 | 1984-05-01 | Thomas Jefferson University | Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders |
US4445888A (en) * | 1982-03-03 | 1984-05-01 | Thomas Jefferson University | Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders |
US4464171A (en) * | 1982-03-29 | 1984-08-07 | Garwin Mark J | Intravascular insertion apparatus and method |
US4677978A (en) * | 1982-09-03 | 1987-07-07 | University Of Florida | Emergency cricothyrotomy system and cricothyrotomy kit |
US4662368A (en) * | 1983-06-13 | 1987-05-05 | Trimedyne Laser Systems, Inc. | Localized heat applying medical device |
US4538622A (en) * | 1983-11-10 | 1985-09-03 | Advanced Cardiovascular Systems, Inc. | Guide wire for catheters |
US4654036A (en) * | 1983-12-11 | 1987-03-31 | Norwich-Eaton Pharmaceuticals, Inc. | Elongated weighted medical device |
US4932411A (en) * | 1984-08-09 | 1990-06-12 | Siemens Aktiengesellschaft | Intervivo coil for a nuclear magnetic resonance tomographic apparatus |
US4944740A (en) * | 1984-09-18 | 1990-07-31 | Medtronic Versaflex, Inc. | Outer exchange catheter system |
US4615472A (en) * | 1985-06-19 | 1986-10-07 | Intravascular Surgical Instruments, Inc. | Catheter placement device |
US4657532A (en) * | 1985-07-19 | 1987-04-14 | Thomas Jefferson University | Intra-peritoneal perfusion of oxygenated fluorocarbon |
US5125895A (en) * | 1986-07-22 | 1992-06-30 | Medtronic Versaflex, Inc. | Steerable catheter |
US4723936A (en) * | 1986-07-22 | 1988-02-09 | Versaflex Delivery Systems Inc. | Steerable catheter |
GB2194735A (en) * | 1986-09-05 | 1988-03-16 | Electro Catheter Corp | Closed chest cannulation |
US4773394A (en) * | 1987-10-14 | 1988-09-27 | Reichstein Irving P | Upper gastrointestinal endoscope intubator |
US4867174A (en) * | 1987-11-18 | 1989-09-19 | Baxter Travenol Laboratories, Inc. | Guidewire for medical use |
US4946440A (en) * | 1988-10-05 | 1990-08-07 | Hall John E | Evertible membrane catheter and method of use |
US5779694A (en) * | 1990-01-10 | 1998-07-14 | The University Of Virginia Alumni Patents Foundation | Magnetic stereotactic system for treatment delivery |
US5147353A (en) * | 1990-03-23 | 1992-09-15 | Myriadlase, Inc. | Medical method for applying high energy light and heat for gynecological sterilization procedures |
US5897551A (en) * | 1990-03-23 | 1999-04-27 | Myriadlase, Inc. | Medical device for applying high energy light and heat for gynecological sterilization procedures |
US5607421A (en) * | 1991-05-01 | 1997-03-04 | The Trustees Of Columbia University In The City Of New York | Myocardial revascularization through the endocardial surface using a laser |
US5333620A (en) * | 1991-10-30 | 1994-08-02 | C. R. Bard, Inc. | High performance plastic coated medical guidewire |
US5318530A (en) * | 1991-12-06 | 1994-06-07 | Bissel Medical Products, Inc. | Gastrointestinal tube with inflatable bolus |
US5579779A (en) * | 1992-08-12 | 1996-12-03 | Scimed Life Systems, Inc. | Shaft movement control apparatus |
US5776080A (en) * | 1992-08-12 | 1998-07-07 | Scimed Life Systems, Inc. | Shaft movement control apparatus |
US5588442A (en) * | 1992-08-12 | 1996-12-31 | Scimed Life Systems, Inc. | Shaft movement control apparatus and method |
US5570701A (en) * | 1992-08-12 | 1996-11-05 | Scimed Life Systems, Inc. | Shaft movement control apparatus and method |
US5623943A (en) * | 1992-08-12 | 1997-04-29 | Scimed Life Systems, Inc. | Magnetic medical shaft movement control device and method |
US5630427A (en) * | 1992-08-12 | 1997-05-20 | Scimed Life Systems, Inc. | Medical shaft movement control device and method |
US5555893A (en) * | 1992-08-12 | 1996-09-17 | Scimed Life Systems, Inc. | Shaft movement control apparatus |
US5749837A (en) * | 1993-05-11 | 1998-05-12 | Target Therapeutics, Inc. | Enhanced lubricity guidewire |
US5769796A (en) * | 1993-05-11 | 1998-06-23 | Target Therapeutics, Inc. | Super-elastic composite guidewire |
US5772609A (en) * | 1993-05-11 | 1998-06-30 | Target Therapeutics, Inc. | Guidewire with variable flexibility due to polymeric coatings |
US5409015A (en) * | 1993-05-11 | 1995-04-25 | Target Therapeutics, Inc. | Deformable tip super elastic guidewire |
US5636642A (en) * | 1993-05-11 | 1997-06-10 | Target Therapeutics, Inc. | Deformable tip super elastic guidewire |
US7883474B1 (en) | 1993-05-11 | 2011-02-08 | Target Therapeutics, Inc. | Composite braided guidewire |
US6673025B1 (en) | 1993-12-01 | 2004-01-06 | Advanced Cardiovascular Systems, Inc. | Polymer coated guidewire |
US7077822B1 (en) * | 1994-02-09 | 2006-07-18 | The University Of Iowa Research Foundation | Stereotactic hypothalamic obesity probe |
US6139510A (en) * | 1994-05-11 | 2000-10-31 | Target Therapeutics Inc. | Super elastic alloy guidewire |
US5706827A (en) * | 1994-09-21 | 1998-01-13 | Scimed Life Systems, Inc. | Magnetic lumen catheter |
US6338725B1 (en) | 1994-10-24 | 2002-01-15 | Medtronic Ave, Inc. | Large-diameter introducer sheath having hemostasis valve and removable steering mechanism |
US5599305A (en) * | 1994-10-24 | 1997-02-04 | Cardiovascular Concepts, Inc. | Large-diameter introducer sheath having hemostasis valve and removable steering mechanism |
US5843031A (en) * | 1994-10-24 | 1998-12-01 | Medtronic, Inc. | Large-diameter introducer sheath having hemostasis valve and removable steering mechanism |
US5664580A (en) * | 1995-01-31 | 1997-09-09 | Microvena Corporation | Guidewire having bimetallic coil |
US6594880B2 (en) | 1995-04-28 | 2003-07-22 | Medtronic, Inc. | Intraparenchymal infusion catheter system |
US5713858A (en) * | 1995-04-28 | 1998-02-03 | Medtronic, Inc. | Permanently implantable guiding catheter |
US20110144625A1 (en) * | 1995-05-26 | 2011-06-16 | Target Therapeutics, Inc. | Composite Braided Guidewire |
US7189222B2 (en) | 1996-04-30 | 2007-03-13 | Medtronic, Inc. | Therapeutic method of treatment of alzheimer's disease |
US6056725A (en) * | 1996-04-30 | 2000-05-02 | Medtronic, Inc. | Therapeutic method for treatment of alzheimer's disease |
US6503242B1 (en) | 1996-04-30 | 2003-01-07 | Medtronic, Inc. | Therapeutic method for treatment of Alzheimer's disease |
US5846220A (en) * | 1996-04-30 | 1998-12-08 | Medtronic, Inc. | Therapeutic method for treatment of Alzheimer's disease |
US7494474B2 (en) | 1997-06-04 | 2009-02-24 | Advanced Cardiovascular Systems, Inc. | Polymer coated guidewire |
US20070249964A1 (en) * | 1997-06-04 | 2007-10-25 | Advanced Cardiovascular Systems, Inc. | Polymer coated guide wire |
US20080146967A1 (en) * | 1997-06-04 | 2008-06-19 | Richardson Mark T | Polymer coated guidewire |
US7455646B2 (en) | 1997-06-04 | 2008-11-25 | Advanced Cardiovascular Systems, Inc. | Polymer coated guide wire |
US6475223B1 (en) | 1997-08-29 | 2002-11-05 | Stereotaxis, Inc. | Method and apparatus for magnetically controlling motion direction of a mechanically pushed catheter |
US6015414A (en) * | 1997-08-29 | 2000-01-18 | Stereotaxis, Inc. | Method and apparatus for magnetically controlling motion direction of a mechanically pushed catheter |
US6128174A (en) * | 1997-08-29 | 2000-10-03 | Stereotaxis, Inc. | Method and apparatus for rapidly changing a magnetic field produced by electromagnets |
US6214016B1 (en) * | 1999-04-29 | 2001-04-10 | Medtronic, Inc. | Medical instrument positioning device internal to a catheter or lead and method of use |
US6817364B2 (en) * | 2000-07-24 | 2004-11-16 | Stereotaxis, Inc. | Magnetically navigated pacing leads, and methods for delivering medical devices |
US20050101903A1 (en) * | 2001-08-16 | 2005-05-12 | Percardia, Inc. | Interventional diagnostic catheter and a method for using a catheter to access artificial cardiac shunts |
US20040210190A1 (en) * | 2001-08-16 | 2004-10-21 | Percardia, Inc. | Interventional diagnostic catheter and a method for using a catheter to access artificial cardiac shunts |
US20080194973A1 (en) * | 2005-09-13 | 2008-08-14 | Imam Farhad B | Light-guided transluminal catheter |
US8078261B2 (en) | 2005-09-13 | 2011-12-13 | Children's Medical Center Corporation | Light-guided transluminal catheter |
US8954134B2 (en) | 2005-09-13 | 2015-02-10 | Children's Medical Center Corporation | Light-guided transluminal catheter |
US20090062772A1 (en) * | 2007-08-30 | 2009-03-05 | Syncro Medical Innovations, Inc. | Guided catheter with removable magnetic guide |
US20100145147A1 (en) * | 2008-09-02 | 2010-06-10 | Syncro Medical Innovations, Inc. | Magnetic device for guiding catheter and method of use therefor |
US9017246B2 (en) | 2010-11-19 | 2015-04-28 | Boston Scientific Scimed, Inc. | Biliary catheter systems including stabilizing members |
US11364019B1 (en) | 2013-03-14 | 2022-06-21 | William R. Krause | Catheter for lower lung fluid sampling |
US11452533B2 (en) | 2019-01-10 | 2022-09-27 | Abbott Cardiovascular Systems Inc. | Guide wire tip having roughened surface |
Also Published As
Publication number | Publication date |
---|---|
SE7310149L (en) | 1975-01-21 |
JPS50111885A (en) | 1975-09-02 |
SE393537B (en) | 1977-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3941119A (en) | Means for introducing and guiding objects into body cavities and blood vessels | |
US3625200A (en) | Controlled curvable tip member | |
US6216030B1 (en) | Magnetic stereotactic system for treatment delivery | |
US6061587A (en) | Method and apparatus for use with MR imaging | |
DE102005032289B4 (en) | endoscopy system | |
US7066924B1 (en) | Method of and apparatus for navigating medical devices in body lumens by a guide wire with a magnetic tip | |
US4650472A (en) | Apparatus and method for effecting percutaneous catheterization of a blood vessel using a small gauge introducer needle | |
US20200114120A1 (en) | Surgical access system | |
US5281203A (en) | Guide wire and sheath for single operator exchange | |
DE602004011910T2 (en) | OPTICALLY GUIDED PENETRATION CATHETER AND ITS USE METHOD | |
US5931818A (en) | Method of and apparatus for intraparenchymal positioning of medical devices | |
US5667514A (en) | Device and method for inserting a flexible element into soft tissue | |
US5507295A (en) | Medical devices | |
DE19732784C1 (en) | Positioning system and method for exact position determination of a manually operated manipulator in an MR tomograph | |
US20050085790A1 (en) | Method and system for cellular transplantation | |
JPS62197072A (en) | Catheter equipped with positioning means | |
US7505807B1 (en) | Magnetic resonance apparatus for use with active electrode and drug deliver catheter | |
US10357280B2 (en) | Navigating introducer for tissue access system | |
WO2002045588A1 (en) | Ultrasonic probe comprising a positioning device for examination devices and operation devices | |
DE4440346A1 (en) | Puncture instrument | |
DE102008018882A1 (en) | System and method for integrating electromagnetic microsensors in guidewires | |
DE10038737A1 (en) | Catheter for magnetic resonance supported interventions, comprises a hollow section through which a media flows, and supply and removal openings | |
JPH10502265A (en) | Microdrive used in stereotaxic surgery | |
EP3781074A1 (en) | Mri compatible intrabody fluid transfer systems and related devices and methods | |
WO2001085027A2 (en) | Drug deliver catheter device with active electrode |