US3929536A - Moisture resistant corner post - Google Patents

Moisture resistant corner post Download PDF

Info

Publication number
US3929536A
US3929536A US461922A US46192274A US3929536A US 3929536 A US3929536 A US 3929536A US 461922 A US461922 A US 461922A US 46192274 A US46192274 A US 46192274A US 3929536 A US3929536 A US 3929536A
Authority
US
United States
Prior art keywords
corner posts
corner
corner post
plastic film
posts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US461922A
Inventor
William G Maughan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Westvaco Corp
Original Assignee
Westvaco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westvaco Corp filed Critical Westvaco Corp
Priority to US461922A priority Critical patent/US3929536A/en
Application granted granted Critical
Publication of US3929536A publication Critical patent/US3929536A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/38Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/02Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2711/00Use of natural products or their composites, not provided for in groups B29K2601/00 - B29K2709/00, for preformed parts, e.g. for inserts
    • B29K2711/12Paper, e.g. cardboard
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S229/00Envelopes, wrappers, and paperboard boxes
    • Y10S229/915Stacking feature
    • Y10S229/918Corner construction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1028Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina by bending, drawing or stretch forming sheet to assume shape of configured lamina while in contact therewith
    • Y10T156/103Encasing or enveloping the configured lamina
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1034Overedge bending of lamina about edges of sheetlike base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1054Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing and simultaneously bonding [e.g., cut-seaming]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1089Methods of surface bonding and/or assembly therefor of discrete laminae to single face of additional lamina
    • Y10T156/1092All laminae planar and face to face
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • Y10T428/234Sheet including cover or casing including elements cooperating to form cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24628Nonplanar uniform thickness material
    • Y10T428/24669Aligned or parallel nonplanarities
    • Y10T428/24694Parallel corrugations

Definitions

  • a corner post made of corrugated paperboard is en- 156/216; 156/251; 156/286; 156/299; closed in a film of plastic or the like and sealed on all 156/306; 229/3.1.; 229/DIG. 1; 264/230; sides to protect the corner post from contact with 264/342 R water vapor and thereby retain a high percentage of [51] Int. Cl. B24C 27/26; B29C 27/18 its dry strength when exposed to high humidity condi- [58] Field of Search 156/84, 85, 86, 213, 216, tions.
  • the plastic film may be selected from the 156/383, 70, 198, 212, 215, 251, 285, 286, classes consisting of polyethylenes, polyvinyl chlorides 299; 229/14 C, 3.1, 3.5 R, DIG. l; or other plastic materials, and the post may be sealed 206/4533, 46 FR, 46 FN; 264/230, 342 R in the plastic enclosure with the aid of a heat shrinking operation, a skin packaging operation, a gluing opera- [56] References Cited tion or any combination of the above.
  • the present invention relates generally to a novel corner post construction for use in conjunction with containers to provide a relatively high and unexpected compressive strength and/or cushioning protection for .articles packaged in the containers. More specifically,
  • the present invention relates to a corner post constructed from corrugated paperboard which is particularly useful under conditions of high relative humidity which are found both during storage and transit in the humid summer months, or in normally humid climates.
  • Corner posts constructed from paper based materials and similarly containers manufactured from paper based materials lose a high percentage of their dry strength (40-65%) when subjected to ambient conditions of high relatively humidity. Such conditions of 75 to 100% RH may be found during storage or transit during the humid summer months or in normally humid climates.
  • corner posts as used in containers are angular in cross-section, it is highly desirable that the corner posts be storable and shippable in a flattened condition. Therefore, it is another object of this invention to provide a novel blank structure for a corner post which is normally flat, but which is readily foldable to the useable generally L-shaped configuration.
  • the primary objective of the present invention is to provide a corner post and method of manufacture which achieves all of the above noted objectives and still performs under conditions of high relative humidity.
  • FIG. 2 shows schematically one method for manufacturing the corner post in accordance with the present invention
  • FIG. 2 is a perspective view of the apparatus employed in FIG. 1;
  • FIG. 3 is a partial cross-section in perspective showing the corner post construction produced using the manufacturing process shown in FIGS. 1 and 2;
  • FIG. 4 shows schematically a second method for manufacturing the corner post in accordance with the present invention
  • FIG. 5 is a partial cross-section in perspective showing the corner post construction produced using the manufacturing process shown in FIG. 4;
  • FIG. 6 shows schematically a partial view of an additional step that may be used in manufacturing the corner posts in accordance with the present invention
  • FIG. 7 shows schematically a partial view of an additional step that may be used in manufacturing the corner post.
  • FIG. 8 shows schematically a partial view of a third method for manufacturing the corner post in accordance with the present invention.
  • a corner post, completely enclosed in a plastic film and sealed on all sides, is protected from moisture penetration outside the range of its water vapor transmission rate (WTVR) properties.
  • WTVR water vapor transmission rate
  • a set of four corner posts constructed from corrugated paperboard, and enclosed in separate films of plastic to seal the corner posts from contact with water vapor demonstrated in a retention of their dry strength in excess of 95% after being subjected to high humidity conditions (F. and 90% RH) for 48 hours.
  • F. and 90% RH high humidity conditions
  • the corner posts were wrapped in 1% mil polyethylene, the seams were sealed and the polyethylene enclosure was heat shrunk into intimate contact with the corner posts.
  • the plastic film may be from b to 5 mils in thickness and any desirable plastic film may be employed depending upon the type of manufacturing method desired.
  • the corner post could be completely sealed in the plastic film, and then used directly without additional treatments such as heat shrinking.
  • the corner post could be enclosed in a plastic film or enclosure using a twin film skin packaging technique wherein the two films would be drawn around the post when the air was evacuated from the enclosure.
  • a modified skin packaging operation could be used to apply a sheetof the plastic film to one side of the corner post and then a second sheet of the plastic film could be sealed to the first sheet (and the corner post) by using a heat treatment, or a gluing operation or an ultrasonic sealing step to completely enclose the corner post.
  • the plastic enclosed corner post could be made on continuous operating or batch type equipment.
  • the continuous operation would utilize one or more sheets of plastic film that would be folded around the corner post and then the ends of the film would be sealed and cut in assembly line fashion.
  • separate other steps could be added to the corner post manufacture as set forth including vacuum skin packaging, gluing or heat shrinking.
  • Some attendant advantages of the plas- 3 tic enclosed corner post would be a lack of paper dust from the corrugated paperboard, no sharp edges to cut handlers, and the lack of the presence of wax or other non-abrasive coating materials which would of necessity be transferred to the packaged articles.
  • the major advantage obtained with the plastic enclosed corner posts as described herein is the excellent waterproof and moisture barrier properties achieved.
  • the plastic enclosed post presents an excellent non-abrasive surface, a more pleasing physical appearance than conventional or even wax coated corner posts and finally, by removing the plastic enclosure, the corner posts of the present invention could be disposed of with regular corrugated materials, or even by recycled if desired without presenting recovery problems.
  • a corner post fabricated from corrugated paperboard is made to perform under exceptional humidity conditions while achieving many other desirable advantages not heretofore realized.
  • the corner posts described herein are preferably fabricated from a corrugated paperboard blank which is constructed from layers of linerboard and corrugating medium of any desired thickness.
  • the corrugated paperboard blanks are then slit-scored on their backsides to form two side panels, thus permitting the side panels of the blank material to be folded around and glued to the front face of the blank at each side edge thereof.
  • the corner post thus formed is illustrated in FIGS. 3 and 5, and as shown reveals a centrally located gap between the inner edges of the two side panels of the blank. This gap is necessary to permit the corner posts to be folded into their L-shaped configuration for use.
  • grade designations such as (42-33-42-33-42) or (26-26-26-26-26) may be used, and in each case, the numbers represent basis weight of the paper materials used for either the liner board or the corrugating medium.
  • the corner post blanks are slit scored as described above and then the side panels are folded over and adhesively or otherwise secured to the front face of the main part of the blank so as to leave the gap between the side panels previously mentioned.
  • FIG. 1 discloses schematically one method for manufacturing the novel corner posts described.
  • the apparatus intended in the schematic disclosure of FIG. 1 may be of any well known type, and no particular significance should be attached to the elements as shown. However, the arrangement of the different elements shown was particularly chosen to carry out the desired steps necessary to the manufacture of the corner posts described.
  • station 1 of FIG. 1 shows a corner post supply and feeding mechanism wherein one or more pre-formed corner posts are shown as being deposited on a felt or other type of conveyor belt 11 which passes around a pair of elongated rollers 12, 13.
  • the illustrated corner post feeding mechanism could in fact be of any other desired form'as long as the other form served to convey the pre-formed corner posts to the second, or vacuum forming station shown.
  • a first roll of plastic film material 14 which supplies the upper sheet 15 of plastic film to the corner posts 10.
  • the sheet of plastic film 15 is passed around a pair of rolls 16, 17 and brought into nip engagement with the top surface of the travelling corner posts 10 by means of two sets of felts 18 and 19.
  • the felts l8 and 19 are preferably of a porous material and each is passed, respectively, around suitable roller elements'20, 21 and 22, 23, 24 and 25, to achieve the desired purpose of laying thetop film sheet in intimate contact with the posts 10 to permit the vacuum forming element 26 to shrink and thereby mold the upper film sheet to the relief pattern provided by the corner posts 10.
  • the film element 15 is pre-heated either by a heater box indicated at 27 or by other means located within the conveyor felt 18, and the then pliable film 15 is sucked down and into contact with the blanks 10 by the vacuum forming element 26 which is connected to a source of vacuum 28.
  • the posts 10 with the continuous upper film element 15 adhered to the upper surface'thereof are passed to station 3 of the manufacturing process where the lower film element is brought into contact with the posts.
  • a second roll of plastic film material 29 is fed in continuous sheet form 30 around a pair of guide rollers 21, 32 into nip engagement between the felt 33 and the bottom portion of the posts 10.
  • the felt 33 is shown as being passed around a pair of elongated rollers 34, 35 and serves to convey the posts 10 from station 3 to the next stage in the manufacturing process.
  • the posts which are at that time sandwiched between the shrink wrapped upper film 15 and the lower film 30, encounter pairs of heated sealing discs 36, 37 which serve to form sealed seams between the two films at each side of the respective corner posts, which are then separated from one another and encased in a plastic enclosure except for the final end closure step.
  • another felt 38 is illustrated which passes around a pair of elongated rollers 39, 40 and this felt 38 serves to convey the encased posts 10 from station 4 to the end sealing station 5.
  • the end seal and preferably a cutting or separating function is carried out by means of a pro grammed action involving a suitable heating and'cutting device 41 and a base element 42.
  • the end seal apparatus atstation 5 acts intermittently to seal and cut the ends of the upper'and lower films 15, 30 in order to completely enclose the posts in their plastic and moisture resistant enclosures.
  • the final product is collected where the completely sealed corner posts, if not already separated from one another, may then be separated from one another along their longitudinal heat sealed seams and prepared for shipment to the ultimate user.
  • FIG. 2 shows a perspective view of the apparatus described above and illustrates an operation where three corner posts are simultaneously wrapped.
  • four sets of upper and lower sealing discs 36, 37 are shown which form longitudinal seams at each side of the three respective corner posts.
  • one or more corner posts may be continuously enclosed in a plastic enclosure with the apparatus described schematically in conjunction with FIGS. 1 and 2.
  • the number of corner posts that may be simultaneously enclosed in a plastic-like material would depend-on the width of the film material available and the number of longitudinal seam sealing stations permissable on a given piece of equipment.
  • other and different equipment from that shown could be utilized to perform the same steps carried out by the illustrated apparatus to produce the same or an equivalent result.
  • FIG. 3 illustrates a cross-sectional view of the corner post as formed with the apparatus described in FIGS. 1 and 2.
  • the corner post 50 includes the two side panels 51, 52 which are folded over so as to leave the centrally located gap 53 mentioned hereinbefore.
  • the film enclosure 54 is adhered directly to and 'follows the contours of the upper face of the corner post as a result of the skin packaging step performed at station 2 of the manufacturing apparatus.
  • one of the side seams 55 is shown which serves to join together the upper film sheet and the lower film sheet 30. It may be appreciated that when the heat seal is performed at the two sides of the corner post, the film in that particular region tends to shrink slightly and thereby cling to the sides of the corner post more closely than would be expected.
  • a second means is illustrated for manufacturing the corner post described herein.
  • the corner post is simultaneously encased in upper and lower films, side seams are formed, end closure is effected and the entire post is passed through a heated zone which shrink wraps the plastic film around the corner post.
  • station 1 shows a corner post supply and feeding mechanism comprising a felt 11 passed around a pair of Compression Tests Pounds Std. Conditions Tropic Conditions-72 hrs.
  • the plastic enclosed corner posts each retained in excess of 95% of their strength even when exposed to the tropic conditions.
  • the wax coated corner post was prepared in a Cascade waxer and absorbed between and 55% of the wax applied. This absorption increased the dry strength of the waxed post, however, the strength retention under tropic conditions was only around 71%.
  • the untreated corner post only retained of its original strength when exposed to the tropic conditions. Accordingly, the results show the superior performance achieved by encasing the corner post in a plastic enclosure as described herein.
  • the increased dry strength of the waxed post is not really significant when one considers the attendant disadvantages obtained by applying wax to the corner post. Initially, the waxing operation is already costly and the costs are increasing.
  • Station 2 includes two rolls of plastic film material 14, 29 including an upper sheet 15 and a lower sheet 30.
  • the sheet of plastic film 15 is passed around a pair of guide rolls 16, 17 and the sheet of film 30 passes around a pair of guide rolls 31, 32.
  • the two films 15, 30 are then brought into nip engagement with the travelling corner post by a pair of upper and lower felts l8 and 19.
  • Each of the felts 18 and 19 respectively are passed around a pair of elongated rolls 20, 21 and 22, 23.
  • the corner post which is now sandwiched between the upper film 15 and the lower film 30 is passed through the longitudinal edge sealing station 3 where the paired heat sealing discs 36, 37 are encountered.
  • the heat sealing discs form the longitudinal side seams which completely encase the corner post in its plastic enclosure except for the end sealing operation at station 4.
  • another felt 38 is shown, passing around the rollers 39, 40, which serves to convey the then completely enclosed posts to the heat shrinking station 5.
  • the heated element 60 radiates or otherwise projects heat to the enclosed corner post to adhere the film evenly to the corner post structure. If necessary, additional heat could be applied from beneath the corner post by arranging a second heat source in the area enclosed by the final felt system 43 passing around the rollers 44, 45.
  • the final product is collected where the completely sealed and heat shrink corner posts are prepared for shipment to the ultimate user.
  • FIG. shows a cross-sectional view of the corner post as manufactured on the apparatus illustrated schematically in FIG. 4.
  • the film tends to hub very closely to the surface of the corner post but not follow the intimate contours of the corner post precisely as obtained with I the skin packaging technique employed in FIGS. 1 and
  • FIG. 6 shows schematically an additional step that could be added to the corner post manufacture first shown in FIGS. 1 and 2. If it was desired for instance to assure that the lower film 30 was more precisely shrunk around and more closely in contact with the corner post 10, an additional heat source 70 could be added after the end cutting station 5 to perform much like the heating step included in the FIG. 4 embodiment.
  • a bottom glue roll installation 80 could be added at station 3 of the embodiment shown in FIGS. 1 and 2 to accomplish the same purpose of more closely adhering the bottom film 30 to the bottom of the corner post 10.
  • This alternative embodiment is shown schematically in FIG. 7.
  • the corner post could be enclosed in plastic using a twin film skin packaging technique as shown schematically in FIG. 8.
  • the two films 15, 30 would be drawn around and brought into contact with the corner post when the air was evacuated from the partially closed plastic enclosure.
  • a pair of evacuating devices 91, 92 could be added to immediately evacuate the air from between the two film applications 15 and 30 just prior to the corner post entering the nip formed by the two felts l8, 19 at station 2.
  • the ends of the two films 15, 30 would be sealed at station 3 while the area around the corner post remained evacuated.
  • heated sealing discs 36, 37 would then be encountered to form the hereinbefor'e mentioned longitudinal side seams to completely enclose the corner post.
  • a method of manufacturing moisture resistant corner posts constructed from corrugated paperboard or the like which are protected from moisture penetration and contact with water vapor to thereby permit the corner posts to retain a high percentage of their dry strength when exposed to high humidity conditions comprising the steps of:
  • a method of manufacturing moisture resistant corner posts constructed from corrugated paperboard or the like comprises the steps of:

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Making Paper Articles (AREA)

Abstract

A corner post made of corrugated paperboard is enclosed in a film of plastic or the like and sealed on all sides to protect the corner post from contact with water vapor and thereby retain a high percentage of its dry strength when exposed to high humidity conditions. The plastic film may be selected from the classes consisting of polyethylenes, polyvinyl chlorides or other plastic materials, and the post may be sealed in the plastic enclosure with the aid of a heat shrinking operation, a skin packaging operation, a gluing operation or any combination of the above.

Description

United States Patent Maughan Dec. 30, 1975 [54] MOISTURE RESISTANT CORNER POST 2,599,625 6/1952 Gilman 156/383 [75] Inventor: William G. Maughan, Nutley, NJ. [73] Assignee: Westvaco Corporation, New York, 3244347 4/1966 3,337,111 8/1967 3,337,114 8/1967 Lockwood 229/37 [22] Filed: Apr. 18, 1974 [21] Appl. No.: 461,922 Primary Examiner-Edward G. Whitby Related U.S. Application Data 2 [62] Division of S61. N0. 252,048, May 10, 1972. [52] U.S. Cl. 156/85; 156/87; 156/213; A corner post made of corrugated paperboard is en- 156/216; 156/251; 156/286; 156/299; closed in a film of plastic or the like and sealed on all 156/306; 229/3.1.; 229/DIG. 1; 264/230; sides to protect the corner post from contact with 264/342 R water vapor and thereby retain a high percentage of [51] Int. Cl. B24C 27/26; B29C 27/18 its dry strength when exposed to high humidity condi- [58] Field of Search 156/84, 85, 86, 213, 216, tions. The plastic film may be selected from the 156/383, 70, 198, 212, 215, 251, 285, 286, classes consisting of polyethylenes, polyvinyl chlorides 299; 229/14 C, 3.1, 3.5 R, DIG. l; or other plastic materials, and the post may be sealed 206/4533, 46 FR, 46 FN; 264/230, 342 R in the plastic enclosure with the aid of a heat shrinking operation, a skin packaging operation, a gluing opera- [56] References Cited tion or any combination of the above.
UNITED STATES PATENTS 2 l 8 D F 2,438,089 3/1948 Carson 156/383 C rawmg l' US. Patent Dec. 30, 1975 Sheet 1 of4 3,929,536
US. atent Dec. 30, 1975 Sheet2of4 3,929,536
LON
US. Patent Dec. 30, 1975 Sheet 3 of4 3,929,536 I US. Patent Dec. 30, 1975 Sheet 4 of4 3,929,536
MOISTURE RESISTANT CORNER POST This application .is a division of the copending application Ser. No. 252,048, filed May 10, 1972.
SUMMARY OF INVENTION The present invention relates generally to a novel corner post construction for use in conjunction with containers to provide a relatively high and unexpected compressive strength and/or cushioning protection for .articles packaged in the containers. More specifically,
the present invention relates to a corner post constructed from corrugated paperboard which is particularly useful under conditions of high relative humidity which are found both during storage and transit in the humid summer months, or in normally humid climates.
Corner posts constructed from paper based materials and similarly containers manufactured from paper based materials lose a high percentage of their dry strength (40-65%) when subjected to ambient conditions of high relatively humidity. Such conditions of 75 to 100% RH may be found during storage or transit during the humid summer months or in normally humid climates.
One method presently used to protect corner posts from the deteriorating effects of high humidity is to wax saturate the post (45-55% wax) for increased dry and humid strength. Curtain coating of'corner posts is one method of wax saturation although dipping and other coating techniques have also been employed. In addition, moisture barriers applied directly to the container have also been used, but none of these treatments have been found to be completely successful, and all of these prior art treatments have been found to be excessively expensive.
Furthermore, present interior packing elements use in the container industry seriously lack consistency, economy and quality. Also, interior packing elements such as corner posts are manufactured and set up with slow and unwieldly techniques. Accordingly, it is one object of the present invention to provide a corner post and a method of manufacturing the corner post that is of a simple, economical and consistently highly effective construction.
It is another object of the invention to provide a corner post which not only locates the packaged article in the container, but also protectively cushions the packed article in spaced relationship from the container walls, and also serves as a reinforcement for the container thereby strengthening the corners thereof against deforming impact and compressive forces.
Moreover, since it is readily apparent that corner posts as used in containers are angular in cross-section, it is highly desirable that the corner posts be storable and shippable in a flattened condition. Therefore, it is another object of this invention to provide a novel blank structure for a corner post which is normally flat, but which is readily foldable to the useable generally L-shaped configuration.
However, the primary objective of the present invention is to provide a corner post and method of manufacture which achieves all of the above noted objectives and still performs under conditions of high relative humidity.
DESCRIPTION OF DRAWING FIG. 2 shows schematically one method for manufacturing the corner post in accordance with the present invention;
FIG. 2 is a perspective view of the apparatus employed in FIG. 1;
FIG. 3 is a partial cross-section in perspective showing the corner post construction produced using the manufacturing process shown in FIGS. 1 and 2;
FIG. 4 shows schematically a second method for manufacturing the corner post in accordance with the present invention;
FIG. 5 is a partial cross-section in perspective showing the corner post construction produced using the manufacturing process shown in FIG. 4;
FIG. 6 shows schematically a partial view of an additional step that may be used in manufacturing the corner posts in accordance with the present invention;
FIG. 7 shows schematically a partial view of an additional step that may be used in manufacturing the corner post; and,
FIG. 8 shows schematically a partial view of a third method for manufacturing the corner post in accordance with the present invention.
DETAILED DESCRIPTION A corner post, completely enclosed in a plastic film and sealed on all sides, is protected from moisture penetration outside the range of its water vapor transmission rate (WTVR) properties. In one instance, a set of four corner posts constructed from corrugated paperboard, and enclosed in separate films of plastic to seal the corner posts from contact with water vapor, demonstrated in a retention of their dry strength in excess of 95% after being subjected to high humidity conditions (F. and 90% RH) for 48 hours. In this test, the corner posts were wrapped in 1% mil polyethylene, the seams were sealed and the polyethylene enclosure was heat shrunk into intimate contact with the corner posts. However, for the purpose of carrying out the present invention, the plastic film may be from b to 5 mils in thickness and any desirable plastic film may be employed depending upon the type of manufacturing method desired.
For instance, it is possible that the corner post could be completely sealed in the plastic film, and then used directly without additional treatments such as heat shrinking. Moreover, the corner post could be enclosed in a plastic film or enclosure using a twin film skin packaging technique wherein the two films would be drawn around the post when the air was evacuated from the enclosure. In addition; a modified skin packaging operation could be used to apply a sheetof the plastic film to one side of the corner post and then a second sheet of the plastic film could be sealed to the first sheet (and the corner post) by using a heat treatment, or a gluing operation or an ultrasonic sealing step to completely enclose the corner post.
The plastic enclosed corner post could be made on continuous operating or batch type equipment. The continuous operation would utilize one or more sheets of plastic film that would be folded around the corner post and then the ends of the film would be sealed and cut in assembly line fashion. Of course, separate other steps could be added to the corner post manufacture as set forth including vacuum skin packaging, gluing or heat shrinking. Some attendant advantages of the plas- 3 tic enclosed corner post would be a lack of paper dust from the corrugated paperboard, no sharp edges to cut handlers, and the lack of the presence of wax or other non-abrasive coating materials which would of necessity be transferred to the packaged articles. Of course, the major advantage obtained with the plastic enclosed corner posts as described herein is the excellent waterproof and moisture barrier properties achieved. However, in addition, the plastic enclosed post presents an excellent non-abrasive surface, a more pleasing physical appearance than conventional or even wax coated corner posts and finally, by removing the plastic enclosure, the corner posts of the present invention could be disposed of with regular corrugated materials, or even by recycled if desired without presenting recovery problems. Thus in accordance with the present invention, a corner post fabricated from corrugated paperboard is made to perform under exceptional humidity conditions while achieving many other desirable advantages not heretofore realized.
The corner posts described herein are preferably fabricated from a corrugated paperboard blank which is constructed from layers of linerboard and corrugating medium of any desired thickness. The corrugated paperboard blanks are then slit-scored on their backsides to form two side panels, thus permitting the side panels of the blank material to be folded around and glued to the front face of the blank at each side edge thereof. The corner post thus formed is illustrated in FIGS. 3 and 5, and as shown reveals a centrally located gap between the inner edges of the two side panels of the blank. This gap is necessary to permit the corner posts to be folded into their L-shaped configuration for use. Accordingly, for the purpose of describing the corner post constructions herein, grade designations such as (42-33-42-33-42) or (26-26-26-26-26) may be used, and in each case, the numbers represent basis weight of the paper materials used for either the liner board or the corrugating medium. Further, it should be understood that in each case, the corner post blanks are slit scored as described above and then the side panels are folded over and adhesively or otherwise secured to the front face of the main part of the blank so as to leave the gap between the side panels previously mentioned.
Referring now to the drawing, it will be noted that FIG. 1 discloses schematically one method for manufacturing the novel corner posts described. The apparatus intended in the schematic disclosure of FIG. 1 may be of any well known type, and no particular significance should be attached to the elements as shown. However, the arrangement of the different elements shown was particularly chosen to carry out the desired steps necessary to the manufacture of the corner posts described. For this purpose, station 1 of FIG. 1 shows a corner post supply and feeding mechanism wherein one or more pre-formed corner posts are shown as being deposited on a felt or other type of conveyor belt 11 which passes around a pair of elongated rollers 12, 13. It should be appreciated however that the illustrated corner post feeding mechanism could in fact be of any other desired form'as long as the other form served to convey the pre-formed corner posts to the second, or vacuum forming station shown.
At station 2 of the illustrated apparatus (FIGS. 1 and 2) a first roll of plastic film material 14 is shown which supplies the upper sheet 15 of plastic film to the corner posts 10. In this regard, the sheet of plastic film 15 is passed around a pair of rolls 16, 17 and brought into nip engagement with the top surface of the travelling corner posts 10 by means of two sets of felts 18 and 19. In each case, the felts l8 and 19 are preferably of a porous material and each is passed, respectively, around suitable roller elements'20, 21 and 22, 23, 24 and 25, to achieve the desired purpose of laying thetop film sheet in intimate contact with the posts 10 to permit the vacuum forming element 26 to shrink and thereby mold the upper film sheet to the relief pattern provided by the corner posts 10. To accomplish this result, the film element 15 is pre-heated either by a heater box indicated at 27 or by other means located within the conveyor felt 18, and the then pliable film 15 is sucked down and into contact with the blanks 10 by the vacuum forming element 26 which is connected to a source of vacuum 28.
Subsequently, the posts 10 with the continuous upper film element 15 adhered to the upper surface'thereof are passed to station 3 of the manufacturing process where the lower film element is brought into contact with the posts. At station 3, a second roll of plastic film material 29 is fed in continuous sheet form 30 around a pair of guide rollers 21, 32 into nip engagement between the felt 33 and the bottom portion of the posts 10. The felt 33 is shown as being passed around a pair of elongated rollers 34, 35 and serves to convey the posts 10 from station 3 to the next stage in the manufacturing process.
At station 4 (FIG. 1) the posts which are at that time sandwiched between the shrink wrapped upper film 15 and the lower film 30, encounter pairs of heated sealing discs 36, 37 which serve to form sealed seams between the two films at each side of the respective corner posts, which are then separated from one another and encased in a plastic enclosure except for the final end closure step. Again, another felt 38 is illustrated which passes around a pair of elongated rollers 39, 40 and this felt 38 serves to convey the encased posts 10 from station 4 to the end sealing station 5.
At station 5, the end seal and preferably a cutting or separating function is carried out by means of a pro grammed action involving a suitable heating and'cutting device 41 and a base element 42. Thus, as the encased posts 10 progress through the different manufacturing steps, the end seal apparatus atstation 5 acts intermittently to seal and cut the ends of the upper'and lower films 15, 30 in order to completely enclose the posts in their plastic and moisture resistant enclosures. Finally, at station 6 (FIG. 1), the final product is collected where the completely sealed corner posts, if not already separated from one another, may then be separated from one another along their longitudinal heat sealed seams and prepared for shipment to the ultimate user.
FIG. 2 shows a perspective view of the apparatus described above and illustrates an operation where three corner posts are simultaneously wrapped. In this view, four sets of upper and lower sealing discs 36, 37 are shown which form longitudinal seams at each side of the three respective corner posts. Thus it should be clear that one or more corner posts may be continuously enclosed in a plastic enclosure with the apparatus described schematically in conjunction with FIGS. 1 and 2. In each instance, the number of corner posts that may be simultaneously enclosed in a plastic-like material would depend-on the width of the film material available and the number of longitudinal seam sealing stations permissable on a given piece of equipment. Moreover, it should be apparent that other and different equipment from that shown could be utilized to perform the same steps carried out by the illustrated apparatus to produce the same or an equivalent result.
FIG. 3 illustrates a cross-sectional view of the corner post as formed with the apparatus described in FIGS. 1 and 2. It may be seen that the corner post 50 includes the two side panels 51, 52 which are folded over so as to leave the centrally located gap 53 mentioned hereinbefore. The film enclosure 54 is adhered directly to and 'follows the contours of the upper face of the corner post as a result of the skin packaging step performed at station 2 of the manufacturing apparatus. In addition, one of the side seams 55 is shown which serves to join together the upper film sheet and the lower film sheet 30. It may be appreciated that when the heat seal is performed at the two sides of the corner post, the film in that particular region tends to shrink slightly and thereby cling to the sides of the corner post more closely than would be expected.
For the purpose of demonstrating the dramatic increase in strength retention under adverse humidity conditions of a wrapped or plastic enclosed corner post as described above, as compared with a conventional (unwrapped) corner post and a wax coated corner post, a compression test was conducted on a series of 4-post sets of the corner posts described. For this purpose, the compressive strength of the respective corner posts was measured under standard or ambient atmospheric conditions and then under adverse or tropic atmospheric conditions. The test was performed using different samples which were applied with loads under compression until total failure occurred. The results of the test are set forth in the following Table.
TABLE to heat seal, shrink wrap or skin package are considerably less expensive than a wax applicator. Moreover, the waxed corner post ends to transfer some of its wax to the packaged item during transit and storage. And, of course, the was on a waxed corner post ends to soften and cause a reduction in strength of the corner post under very hot (100-140F.) storage and transit conditions.
In addition, although the plastic enclosed corner post does not obtain any increased dry strength, tests have demonstrated a side effect of the hot wax application which is not experienced by the plastic wrapping opera- I tion. When the hot wax is applied to the corner post,
the high temperature of the wax tends to drive some of the moisture out of the corner post material and cause some total shrinkage of the length and width of the corner post. Thus with the waxed post, accurate reproduction of corner posts having a specified length is almost impossible. Of course, with the plastic enclosed post, there is no change in length and uniform reproduction is easily achieved with the added bonus of better high humidity'strength performance. It is believed therefore, that the corner post construction and method of manufacture described herein clearly achieves a level of performance not obtained with the corner posts described in the prior art.
With reference to FIG. 4, a second means is illustrated for manufacturing the corner post described herein. In this embodiment, the corner post is simultaneously encased in upper and lower films, side seams are formed, end closure is effected and the entire post is passed through a heated zone which shrink wraps the plastic film around the corner post. For this purpose, station 1 shows a corner post supply and feeding mechanism comprising a felt 11 passed around a pair of Compression Tests Pounds Std. Conditions Tropic Conditions-72 hrs.
It will be noted from the above results that the plastic enclosed corner posts each retained in excess of 95% of their strength even when exposed to the tropic conditions. The wax coated corner post was prepared in a Cascade waxer and absorbed between and 55% of the wax applied. This absorption increased the dry strength of the waxed post, however, the strength retention under tropic conditions was only around 71%. Of course, the untreated corner post only retained of its original strength when exposed to the tropic conditions. Accordingly, the results show the superior performance achieved by encasing the corner post in a plastic enclosure as described herein. The increased dry strength of the waxed post is not really significant when one considers the attendant disadvantages obtained by applying wax to the corner post. Initially, the waxing operation is already costly and the costs are increasing. On the other hand, the costs of plastic films are going down and the mechanical elements required elongated rolls 12, 13. Station 2 includes two rolls of plastic film material 14, 29 including an upper sheet 15 and a lower sheet 30. The sheet of plastic film 15 is passed around a pair of guide rolls 16, 17 and the sheet of film 30 passes around a pair of guide rolls 31, 32. The two films 15, 30 are then brought into nip engagement with the travelling corner post by a pair of upper and lower felts l8 and 19. Each of the felts 18 and 19 respectively are passed around a pair of elongated rolls 20, 21 and 22, 23.
Subsequently, the corner post which is now sandwiched between the upper film 15 and the lower film 30 is passed through the longitudinal edge sealing station 3 where the paired heat sealing discs 36, 37 are encountered. At this point, the heat sealing discs form the longitudinal side seams which completely encase the corner post in its plastic enclosure except for the end sealing operation at station 4. Again, another felt 38 is shown, passing around the rollers 39, 40, which serves to convey the then completely enclosed posts to the heat shrinking station 5. At station 5, the heated element 60 radiates or otherwise projects heat to the enclosed corner post to adhere the film evenly to the corner post structure. If necessary, additional heat could be applied from beneath the corner post by arranging a second heat source in the area enclosed by the final felt system 43 passing around the rollers 44, 45. Finally, at station 6, the final product is collected where the completely sealed and heat shrink corner posts are prepared for shipment to the ultimate user.
FIG. shows a cross-sectional view of the corner post as manufactured on the apparatus illustrated schematically in FIG. 4. The film tends to hub very closely to the surface of the corner post but not follow the intimate contours of the corner post precisely as obtained with I the skin packaging technique employed in FIGS. 1 and FIG. 6 shows schematically an additional step that could be added to the corner post manufacture first shown in FIGS. 1 and 2. If it was desired for instance to assure that the lower film 30 was more precisely shrunk around and more closely in contact with the corner post 10, an additional heat source 70 could be added after the end cutting station 5 to perform much like the heating step included in the FIG. 4 embodiment.
As an alternative to the heat source shown in FIG. 6, a bottom glue roll installation 80 could be added at station 3 of the embodiment shown in FIGS. 1 and 2 to accomplish the same purpose of more closely adhering the bottom film 30 to the bottom of the corner post 10. This alternative embodiment is shown schematically in FIG. 7. In addition, and if desired, it should be appreciated that even the top film could be adhesively secured to the top surface of the corner post. For this purpose, it would only be necessary to add a top glue application installation to the apparatus shown just prior to bringing the top film 15 into contact with the corner post.
Finally, as another alternative to the different manufacturing schemes disclosed herein, the corner post could be enclosed in plastic using a twin film skin packaging technique as shown schematically in FIG. 8. In this latter embodiment, the two films 15, 30 would be drawn around and brought into contact with the corner post when the air was evacuated from the partially closed plastic enclosure. For this purpose, directly after the corner post feeding and supply station 1, a pair of evacuating devices 91, 92 could be added to immediately evacuate the air from between the two film applications 15 and 30 just prior to the corner post entering the nip formed by the two felts l8, 19 at station 2. Subsequently, the ends of the two films 15, 30 would be sealed at station 3 while the area around the corner post remained evacuated. Finally, heated sealing discs 36, 37 would then be encountered to form the hereinbefor'e mentioned longitudinal side seams to completely enclose the corner post.
Thus it will be seen from the above detailed description that a ,rapid, economical, unique and simple method of -manufacturing moisture resistant corner posts has been achieved. Moreover, the corner posts manufactured are believed to be novel since in each case the final product achieved solves a problem that heretofore was not solved by the prior art constructions.
It will be understood, however, that the different schematic illustrations included herein are purely diagrammatic and that the invention is capable of many refinements which would readily occur to those skilled in the art. Accordingly, what is desired to be protected by Letters Patent is set forth in the appended claims.
I claim:
1. A method of manufacturing moisture resistant corner posts constructed from corrugated paperboard or the like which are protected from moisture penetration and contact with water vapor to thereby permit the corner posts to retain a high percentage of their dry strength when exposed to high humidity conditions comprising the steps of:
l. applying a top sheet of heat shrinkable plastic film of a width that is greater than the width of said corner posts to the upper face of said corner posts;
2. vacuum sealing said top sheet to the upper face of said corner posts;
3. applying a layer of adhesive to the bottom of said corner posts;
4. applying a bottom sheet of heat shrinkable plastic film of a width that is greater than the width of said corner posts to the lower face of said corner posts;
5. simultaneously adhering the top and bottom sheets of plastic film longitudinally to one another at each side of said corner posts;
6. adhering the top and bottom sheets of plastic film transversely to one another at each end of said corner posts; and,
7. collecting the completely film enclosed corner posts sealed on all sides.
2. A method of manufacturing moisture resistant corner posts constructed from corrugated paperboard or the like comprises the steps of:
1. simultaneously applying both a top and bottom sheetof plastic film each of a width that is greater than the width of said corner posts to the upper and lower faces of said corner posts and in the presence of a vacuum to vacuum seal the two sheets of plastic film to said corner posts;
2. adhering the top and bottom sheets of plastic film transversely to one another at each end of said corner posts;
3. simultaneously adhering the top and bottom sheets of plastic film longitudinally to one another at each side of said corner posts; and,
4. collecting the completely film enclosed corner posts sealed on all sides.

Claims (18)

1. A METHOD OF MANUFACTURING MOISTURE RESISTANT CORNER POSTS CONSTRUCTED FROM CORRUGATED PAPERBOARD OR THE LIKE WHICH ARE PROTECTED FROM MOISTURE PENETRATION AND CONTACT WITH WATER VAPOR TO THEREBY PERMIT CORNER POSTS TO RETAIN A HIGH PERCENTAGE OF THEIR DRY STRENGTH WHEN EXPOSED TO HIGH HUMIDITY CONDITIONS COMPRISING THE STEPS OF:
1. APPLYING A TOP SHEET OF HEAT SHRINKABLE PLASTIC FILM OF A WIDTH THAT IS GREATER THAN THE WIDTH OF SAID CORNER POSTS TO THE UPPER FACE OF SAID CORNER POSTS;
2. VACUUM SEALING SAID TOP SHEET TO THE UPPER FACE OF SAID CORNER POSTS;
2. vacuum sealing said top sheet to the upper face of said corner posts;
2. A method of manufacturing moisture resistant corner posts constructed from corrugated paperboard or the like comprises the steps of:
2. adhering the top and bottom sheets of plastic film transversely to one another at each end of said corner posts;
3. simultaneously adhering the top and bottom sheets of plastic film longitudinally to one another at each side of said corner posts; and,
3. applying a layer of adhesive to the bottom of said corner posts;
3. APPLYING A LAYER OF ADHESIVE TO THE BOTTOM OF SAID CORNER POSTS;
4. APPLYING A BOTTOM SHEET OF HEAT SHRINKABLE PLASTIC FILM OF A WIDTH THAT IS GREATER THAN THE WIDTH OF SAID CORNER POSTS TO THE LOWER FACE OF SAID CORNER POSTS;
4. applying a bottom sheet of heat shrinkable plastic film of a width that is greater than the width of said corner posts to the lower face of said corner posts;
4. collecting the completely film enclosed corner posts sealed on all sides.
5. simultaneously adhering the top and bottom sheets of plastic film longitudinally to one another at each side of said corner posts;
5. SIMULTANEOUSLY ADHERING THE TOP AND BOTTOM SHEETS OF PLASTIC FILM LONGITUDINALLY TO ONE ANOTHER AT EACH SIDE OF SAID CORNER POSTS,
6. ADHERING THE TOP AND BOTTOM SHEETS OF PLASTIC FILM TRANSVERSELY TO ONE ANOTHER AT EACH END OF SAID CORNER POSTS; AND,
6. adhering the top and bottom sheets of plastic film transversely to one another at each end of said corner posts; and,
7. collecting the completely film enclosed corner posts sealed on all sides.
7. COLLECTING THE COMPLETELY FILM ENCLOSED CORNER POSTS SEALED ON ALL SIDES.
US461922A 1972-05-10 1974-04-18 Moisture resistant corner post Expired - Lifetime US3929536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US461922A US3929536A (en) 1972-05-10 1974-04-18 Moisture resistant corner post

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US25204872A 1972-05-10 1972-05-10
US461922A US3929536A (en) 1972-05-10 1974-04-18 Moisture resistant corner post

Publications (1)

Publication Number Publication Date
US3929536A true US3929536A (en) 1975-12-30

Family

ID=26942000

Family Applications (1)

Application Number Title Priority Date Filing Date
US461922A Expired - Lifetime US3929536A (en) 1972-05-10 1974-04-18 Moisture resistant corner post

Country Status (1)

Country Link
US (1) US3929536A (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4664268A (en) * 1986-03-03 1987-05-12 Merchandising Innovations, Inc. Bar or bookshelf subassembly construction
US4700844A (en) * 1985-06-14 1987-10-20 Griffith William R Packaging wrap
US4784269A (en) * 1985-06-14 1988-11-15 Griffith William R Packaging wrap
US4898426A (en) * 1988-04-11 1990-02-06 Buderus-Sell Gmbh Passenger seat for an airplane
WO1990009927A1 (en) * 1989-03-03 1990-09-07 Gert Larsen A sealed corrugated cardboard package and a method of making it
US5287963A (en) * 1991-08-20 1994-02-22 Tosh Umemoto Ice enclosure
WO1994027815A1 (en) * 1993-05-24 1994-12-08 North American Container Corporation Structural member and articles made therewith and method
WO1995027815A1 (en) * 1994-04-08 1995-10-19 Japan Energy Corporation Method for growing gallium nitride compound semiconductor crystal, and gallium nitride compound semiconductor device
US5520982A (en) * 1993-05-24 1996-05-28 North American Container Corporation Structural member
US5584951A (en) * 1994-06-30 1996-12-17 International Paper Company Method of making a beam pallet
US5759660A (en) * 1995-10-11 1998-06-02 Associated Materials, Inc. Plastic covered articles for railings and a method of making the same
US6224706B1 (en) * 1995-09-01 2001-05-01 Armacel Pty. Limited Method of making a layered structural articles
WO2001060700A2 (en) * 2000-02-20 2001-08-23 Yigal Elan Carton panel
US6286683B1 (en) * 1999-08-27 2001-09-11 The United States Of America As Represented By The Secretary Of Argriculture Multiple-piece corner post
US6338234B1 (en) 1999-11-24 2002-01-15 Weyerhauser Company Method of encapsulating shipping container blanks in plastic film
US20040060644A1 (en) * 2000-02-01 2004-04-01 Peter Danko Method and apparatus for closing an open end of a product, and product formed thereby
US20050087663A1 (en) * 2003-10-23 2005-04-28 Don Schroeder Plastic laminated edge protector
US20050287321A1 (en) * 2004-06-29 2005-12-29 Horsfield Brian C Cellulose based substrates encapsulated with polymeric films and adhesive
US20050284565A1 (en) * 2004-06-29 2005-12-29 Muise Herbert D Process for encapsulation of cellulose based substrate using non-electromagnetic heating
US20050284564A1 (en) * 2004-06-29 2005-12-29 Horsfield Brian C Process for encapsulation of cellulose based substrates using adhesive
US20050284563A1 (en) * 2004-06-29 2005-12-29 Elmer Christensen Process for encapsulation of cellulose based substrates using electromagnetic radiation heating
US20060020570A1 (en) * 2004-07-23 2006-01-26 Yuh-Cherng Wu Conflict resolution engine
US20070000983A1 (en) * 2005-06-29 2007-01-04 Spurrell Robert M Container with freestanding insulating encapsulated cellulose-based substrate
US20070074658A1 (en) * 2005-09-30 2007-04-05 Creswell Wendy Q Paint shield
US20070090172A1 (en) * 2005-10-25 2007-04-26 David Lyon Vegetable and fruit packaging box
US20070151685A1 (en) * 2004-06-29 2007-07-05 Weyerhaeuser Co. Cellulose-based substrates encapsulated with polymeric films and adhesive
US20070212531A1 (en) * 2006-03-07 2007-09-13 Mcintyre Dan Process for recycling fiber material and binder with novel injection mold and parts made thereby
US20100024967A1 (en) * 2003-05-08 2010-02-04 Fabio Angelo Gritti Automatic machine for producing corrugated sheet-like elements, particularly for packaging, thermal insulation, soundproofing, and the like
US7870992B2 (en) 2005-06-29 2011-01-18 International Paper Co. Container with freestanding insulating encapsulated cellulose-based substrate
US20150174850A1 (en) * 2013-12-24 2015-06-25 Orbis Corporation Process for Forming Plastic Corrugated Container and Intermediary Blank
US10961038B2 (en) 2013-12-24 2021-03-30 Orbis Corporation Plastic corrugated container with soft score line
US11072140B2 (en) 2017-06-20 2021-07-27 Orbis Corporation Balanced process for extrusion of plastic corrugated sheet and subsequent converting into plastic boxes
US11325740B2 (en) 2013-12-24 2022-05-10 Orbis Corporation Straight consistent body scores on plastic corrugated boxes and a process for making same
US11702241B2 (en) 2011-10-13 2023-07-18 Orbis Corporation Plastic corrugated container with sealed edges

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2438089A (en) * 1946-08-27 1948-03-16 Wingfoot Corp Packaging
US2599625A (en) * 1948-04-01 1952-06-10 Lawrence M Gilman Apparatus for forming enclosed blanket insulation strips
US3172593A (en) * 1962-09-14 1965-03-09 Union Carbide Corp Moisture resistant cellulosic packaging
US3190781A (en) * 1962-05-22 1965-06-22 Crown Zellerbach Corp Method and apparatus for laminating sheet material
US3244347A (en) * 1964-02-20 1966-04-05 Mead Corp Corner post construction
US3337114A (en) * 1965-12-28 1967-08-22 Union Carbide Corp Moisture resistant packaging
US3337111A (en) * 1964-10-14 1967-08-22 Continental Can Co Corner post

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2438089A (en) * 1946-08-27 1948-03-16 Wingfoot Corp Packaging
US2599625A (en) * 1948-04-01 1952-06-10 Lawrence M Gilman Apparatus for forming enclosed blanket insulation strips
US3190781A (en) * 1962-05-22 1965-06-22 Crown Zellerbach Corp Method and apparatus for laminating sheet material
US3172593A (en) * 1962-09-14 1965-03-09 Union Carbide Corp Moisture resistant cellulosic packaging
US3244347A (en) * 1964-02-20 1966-04-05 Mead Corp Corner post construction
US3337111A (en) * 1964-10-14 1967-08-22 Continental Can Co Corner post
US3337114A (en) * 1965-12-28 1967-08-22 Union Carbide Corp Moisture resistant packaging

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4700844A (en) * 1985-06-14 1987-10-20 Griffith William R Packaging wrap
US4784269A (en) * 1985-06-14 1988-11-15 Griffith William R Packaging wrap
US4664268A (en) * 1986-03-03 1987-05-12 Merchandising Innovations, Inc. Bar or bookshelf subassembly construction
US4898426A (en) * 1988-04-11 1990-02-06 Buderus-Sell Gmbh Passenger seat for an airplane
WO1990009927A1 (en) * 1989-03-03 1990-09-07 Gert Larsen A sealed corrugated cardboard package and a method of making it
US5287963A (en) * 1991-08-20 1994-02-22 Tosh Umemoto Ice enclosure
WO1994027815A1 (en) * 1993-05-24 1994-12-08 North American Container Corporation Structural member and articles made therewith and method
US5520982A (en) * 1993-05-24 1996-05-28 North American Container Corporation Structural member
US5667620A (en) * 1993-05-24 1997-09-16 North American Container Corporation Method for making a structual member
US5681641A (en) * 1993-05-24 1997-10-28 North American Container Corporation Structural member and pallet made therewith and method
US5958171A (en) * 1993-05-24 1999-09-28 North American Container Corporation Method of making a structural member
WO1995027815A1 (en) * 1994-04-08 1995-10-19 Japan Energy Corporation Method for growing gallium nitride compound semiconductor crystal, and gallium nitride compound semiconductor device
US5584951A (en) * 1994-06-30 1996-12-17 International Paper Company Method of making a beam pallet
US6224706B1 (en) * 1995-09-01 2001-05-01 Armacel Pty. Limited Method of making a layered structural articles
US5759660A (en) * 1995-10-11 1998-06-02 Associated Materials, Inc. Plastic covered articles for railings and a method of making the same
US6286683B1 (en) * 1999-08-27 2001-09-11 The United States Of America As Represented By The Secretary Of Argriculture Multiple-piece corner post
US6338234B1 (en) 1999-11-24 2002-01-15 Weyerhauser Company Method of encapsulating shipping container blanks in plastic film
US6450398B1 (en) * 1999-11-24 2002-09-17 Herbert D. Muise Shipping container blanks encapsulated in plastic film
US20040060644A1 (en) * 2000-02-01 2004-04-01 Peter Danko Method and apparatus for closing an open end of a product, and product formed thereby
US7951252B2 (en) * 2000-02-01 2011-05-31 Peter Danko Method and apparatus for closing an open end of a product, and product formed thereby
WO2001060700A2 (en) * 2000-02-20 2001-08-23 Yigal Elan Carton panel
WO2001060700A3 (en) * 2000-02-20 2001-12-06 Yigal Elan Carton panel
US8215363B2 (en) * 2003-05-08 2012-07-10 Interwave S.R.L. Automatic machine for producing corrugated sheet-like elements, particularly for packaging, thermal insulation, soundproofing, and the like
US20100024967A1 (en) * 2003-05-08 2010-02-04 Fabio Angelo Gritti Automatic machine for producing corrugated sheet-like elements, particularly for packaging, thermal insulation, soundproofing, and the like
US20050087663A1 (en) * 2003-10-23 2005-04-28 Don Schroeder Plastic laminated edge protector
US20050284564A1 (en) * 2004-06-29 2005-12-29 Horsfield Brian C Process for encapsulation of cellulose based substrates using adhesive
US20050287321A1 (en) * 2004-06-29 2005-12-29 Horsfield Brian C Cellulose based substrates encapsulated with polymeric films and adhesive
WO2006007102A1 (en) * 2004-06-29 2006-01-19 Weyerhaeuser Company Process for encapsulation of cellulose based substrates using electromagnetic radiation heating
WO2006007103A1 (en) * 2004-06-29 2006-01-19 Weyerhaeuser Company Process for encapsulation of cellulose based substrates using adhesive
US20050284563A1 (en) * 2004-06-29 2005-12-29 Elmer Christensen Process for encapsulation of cellulose based substrates using electromagnetic radiation heating
US7384497B2 (en) 2004-06-29 2008-06-10 Weyerhaeuser Company Process for encapsulation of cellulose based substrates using electromagnetic radiation heating
US20050284565A1 (en) * 2004-06-29 2005-12-29 Muise Herbert D Process for encapsulation of cellulose based substrate using non-electromagnetic heating
WO2006007104A1 (en) * 2004-06-29 2006-01-19 Weyerhaeuser Company Process for encapsulation of cellulose based substrate using non-electromagnetic heating
US20070151685A1 (en) * 2004-06-29 2007-07-05 Weyerhaeuser Co. Cellulose-based substrates encapsulated with polymeric films and adhesive
US7247216B2 (en) * 2004-06-29 2007-07-24 Weyerhaeuser Co. Process for encapsulation of cellulose based substrate using non-electromagnetic heating
US20060020570A1 (en) * 2004-07-23 2006-01-26 Yuh-Cherng Wu Conflict resolution engine
US20070000983A1 (en) * 2005-06-29 2007-01-04 Spurrell Robert M Container with freestanding insulating encapsulated cellulose-based substrate
US7624911B2 (en) 2005-06-29 2009-12-01 International Paper Co. Container with freestanding insulating encapsulated cellulose-based substrate
US7870992B2 (en) 2005-06-29 2011-01-18 International Paper Co. Container with freestanding insulating encapsulated cellulose-based substrate
US20070074658A1 (en) * 2005-09-30 2007-04-05 Creswell Wendy Q Paint shield
US20070090172A1 (en) * 2005-10-25 2007-04-26 David Lyon Vegetable and fruit packaging box
US20070212531A1 (en) * 2006-03-07 2007-09-13 Mcintyre Dan Process for recycling fiber material and binder with novel injection mold and parts made thereby
US11702241B2 (en) 2011-10-13 2023-07-18 Orbis Corporation Plastic corrugated container with sealed edges
US20150174850A1 (en) * 2013-12-24 2015-06-25 Orbis Corporation Process for Forming Plastic Corrugated Container and Intermediary Blank
US10961038B2 (en) 2013-12-24 2021-03-30 Orbis Corporation Plastic corrugated container with soft score line
US11072455B2 (en) * 2013-12-24 2021-07-27 Orbis Corporation Process for forming plastic corrugated container and intermediary blank
US11319132B2 (en) 2013-12-24 2022-05-03 Orbis Corporation Plastic corrugated container with soft score line
US11325740B2 (en) 2013-12-24 2022-05-10 Orbis Corporation Straight consistent body scores on plastic corrugated boxes and a process for making same
US11643241B2 (en) 2013-12-24 2023-05-09 Orbis Corporation Process for forming plastic corrugated container and intermediary blank
US11760530B2 (en) 2013-12-24 2023-09-19 Orbis Corporation Process for forming plastic corrugated container with ultrasonically formed score lines
US11072140B2 (en) 2017-06-20 2021-07-27 Orbis Corporation Balanced process for extrusion of plastic corrugated sheet and subsequent converting into plastic boxes

Similar Documents

Publication Publication Date Title
US3929536A (en) Moisture resistant corner post
US4011798A (en) Method of making shipping bag
US4087002A (en) Shipping bag
US3307994A (en) Corrugated paperboard and method of making the same
US2158755A (en) Laminated sheet material for use in making paper bags or wrappers
US4784269A (en) Packaging wrap
US2745591A (en) Stay tape
US2759523A (en) Method and machine for making triple wall corrugated paper board
USRE23096E (en) Moisturepboof package
GB1224657A (en) Structural product and method of making same
GB626597A (en) Packaging
SE8504990D0 (en) SET TO PROCESS PACKAGING MATERIAL
SE8803211D0 (en) SET AND DEVICE FOR MANUFACTURING A LAMINATED MATERIAL BRAKE
US2271632A (en) Bundling of slats and similar units
AU7353896A (en) A laminated packaging material, a method of producing the material, and a packaging container produced from the material
US3591069A (en) Window container packaging material
US3179023A (en) Method of manufacturing a reinforced liner
US3496043A (en) Method of manufacturing an embossed laminated foam
ATE139479T1 (en) METHOD FOR PRODUCING CONTINUOUS WEB PACKAGING MATERIAL
US3156599A (en) Method and apparatus for manufacturing cardboard molding
US2474391A (en) Process for producing packing structures
US891428A (en) Process of applying surface paper to corrugated packing-boards.
JPH11513332A (en) Packaging laminate, method for producing the packaging laminate, and packaging container produced from the packaging laminate and having excellent oxygen gas barrier properties
US2171775A (en) Laminated paper
US2719566A (en) Method of and machine for making a transparent corrugated board