US3929184A - Apparatus for producing blank metal ingots of uniform cross section and in particular steel ingots - Google Patents

Apparatus for producing blank metal ingots of uniform cross section and in particular steel ingots Download PDF

Info

Publication number
US3929184A
US3929184A US406191A US40619173A US3929184A US 3929184 A US3929184 A US 3929184A US 406191 A US406191 A US 406191A US 40619173 A US40619173 A US 40619173A US 3929184 A US3929184 A US 3929184A
Authority
US
United States
Prior art keywords
mold
casting
section
mold cavity
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US406191A
Inventor
Guido Reuter
Hans Robertz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinstahl AG
Original Assignee
Rheinstahl AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rheinstahl AG filed Critical Rheinstahl AG
Priority to US406191A priority Critical patent/US3929184A/en
Application granted granted Critical
Publication of US3929184A publication Critical patent/US3929184A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/04Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould

Definitions

  • Blank metal ingots particularly steel of uniform weight per piece and cross section are formed with a mold which is made up of a plurality of superposed vertical sections which together define an interior mold cavity of uniform cross section over its total height.
  • the steel which is produced in a known steel making method is first tapped into a casting ladle which is provided with a refractory lining.
  • a plurality of mold sections are built up one after the other over a casting plate and the steel is directed upwardly through a bottom opening on the plate into the mold cavity and as soon as the mold is completely filled the slide plate is closed.
  • the steel is bottom poured into the mold cavity at a rate of rise of from 30 to 80 centimeters per minute and the surface of the melt is not covered but is maintained as cold as possible.
  • the inflow to the mold cavity is exactly centered and for ingots of diameters of larger than 300 millimeters the mold is covered with a heat insulating powder and the rate of rise is maintained between 10 to 30 centimeters per minute.
  • a mold is constructed of carbon-rich iron whose inner cross section is constant over its total length and which is divided in axial direction into several sections, with the total length of the mold being greater than 2 meters and having a clearance less than 250 millimeters.
  • the mold is characterized by the fact that its weight is at least 1.3 times the weight of the ingot which is formed.
  • FIELD OF THE INVENTION This invention relates in general to a new and useful method and apparatus for producing blank material of uniform weight per piece and cross section of a metal particularly a steel and wherein the ingot is produced by bottom pouring into a vertically elongated mold at a relatively slow rate.
  • the known molds are generally designed conical to facilitate the stripping of the solidified ingots.
  • longitudinally divided molds facilitate the removal of the ingots, they may easily lead to elevations on the ingot (burrs) at the points of division by inflow of the liquid metal during pouring. Due to this defect, the material cast in longitudinally divided molds is usable as blank material for further processing only with qualifications or only after considerable polishing (cleaning), since at these points it may easily lead to bursting or overrolling during upsetting, stretching and rolling in axial direction. Further, divided molds, in particular in the case of long ingots, are unfavorable because of the susceptibility of warping with the difficulty of sealing the point of division during casting.
  • the invention recommends bottom-pouring of the mold at rates of rates of rise of 30 to cm per minute and with the surface of the melt in the mold not covered, as cold as possible. Attention should be paid to insure that the inflow into the mold is exactly centered.
  • the surface of the melt in the mold is covered with a heat-insulating powder and that bottompouring be centered and as cold as possible and at rates of rise between 10 and 30 cm/min.
  • the slow pouring permits the use of a smaller hood for the tight feeding of the ingot and improves the yield.
  • the mold should be of carbon-rich iron whose inside cross section is equal over its total length and one which is undivided in axial direction and whose length is greater than 2 m, and whose clearance is greater than 250 mm.
  • the mold is distinguished by the fact that its weight is at least 1.3 times the ingot weight.
  • the mold weight is dependent on the ingot diameter, the weight ratio increasing with decreasing diameter to above 3.
  • the heat When pouring, for example, a 5-ton ingot into a square mold of equal weight having a wall thickness of approximately 12 cm, the heat, if the inner wall' of the mold is maintained constant at l000C, would penetrate to the outside in approximately 6 minutes and would there raise the temperature by approximately 70C. If the mold weight is increased to one and ahalf times the ingot weight this would correspond to a mold wall thickness of 17 cm the outer wall temperature of the mold would not yet be increased at that time. At a distance of l2 cm from the inner mold wall, the temperature would also in this case be approximately 70C after 6 minutes.
  • Ingots of circular cross section are particularly well suited as blank material for ring rolling mills, tube rolling mills, shaping machines, forging machines, extrusion presses, or also for further forging deformation as shafts and axles. Even in the round ingot material, which in itself is particularly susceptible of cracking, no disturbances due to cracks occur.
  • the mold may be subdivided in transverse direction into a number of sections.
  • the bottom section which due to the inflow of liquid steel is subject to particularly heavy stress during casting and therefore has a shorter life than the upper sections, is advantageously the shortest.
  • the subdivision of the mold into sections permits moreover the pouring of ingots of different lengths by simply placing the sections one upon the other, without the necessity of keeping in stock a number of special molds corresponding to the various lengths of ingots.
  • a casting machine for the pressure casting method which comprises a refractory-lined vessel with a removable cover placed on pressure-tight and with a locking device.
  • a refractory-lined casting tube extends from the bottom of the vessel upwardly at least to a casting plate contiguous to the casting tube.
  • a mold of carbon-rich iron, undivided in axial direction is placed closely contiguous to the casting plate, and thus equal cross section over its total height.
  • the casting machine permits a very rapid, exactly proportioned and yet gentle filling of the mold with a relatively cold casting, and complete avoidance of air oxidation during casting, owing to which the solidification conditions are favorable and homogeneous ingots of highest surface quality can be produced.
  • the ingots with uniform cross section produced by the method of the invention are, however, advantageously applicable not only when blank material of uniform weights per piece is needed. Also in the case of blank material with different weights per piece, for example, for rings of different sizes, it is possible, because of the equal cross section over the total length, to adjust the given individual weight per piece quickly and accurately by way of a simple length measurement. Moreover, the advantages as to structure of the ingots cast according to the invention are beneficial in further processing also at different weights per piece.
  • it is an object of the invention to provide an improved method for producing a blank material of uniform cross section of a metal such as steel and using a vertically elongated upright mold comprising directing the steel into a casting ladle and applying a pressure to the steel to cause it to rise upwardly through a bottom opening of the mold, and by bottom-pouring at a relatively slow rate.
  • a further object of the invention is to provide a method of producing blank material using a mold having a round or polygonal cross section with inside diameters of 250 to 350 mm and by pouring at rates of rise from 30 to 80 cm. per minute with an uncovered surface of the melt and centering the inflow and maintaining the melt as cold as possible.
  • a further object of the invention is to provide a device for forming metal billets which comprises a mold having a cavity which is vertically elongated and of uniform diameter and is made up of a plurality of sections which are interfitted one over the other and which are arranged over a casting plate having an opening therein with a slide valve.
  • a further object of the invention is to provide a device for forming blank material of uniform cross section which is simple in deisgn, rugged in construction and economical to manufacture.
  • FIG. 1 is a transverse sectional view of a mold constructed in accordance with the invention
  • FIG. 2 is a view similar to FIG. 1 of another embodiment of the invention.
  • FIG. 3 is a view similar to FIG. 1 of still another embodiment of the invention.
  • FIG. 1 the invention embodied therein in FIG. 1 comprises a casting apparatus generally designated 50 which includes a casting mold generally designated 1 which is made of a material such as carbon rich iron. It is formed of a plurality of sections 2, 3 and 4 with the lowermost section 2 being the shortest in height.
  • the mold defines a mold cavity la having an interior cross section which is the same over its entire height. Its total height is 7 meters and its clearance is 377 mm., and its wall thickness averages about 165 mm.
  • the ingot to be cast has a weight of about 6 tons.
  • the mold weight is 1.84 times the ingot weight.
  • a feature of the construction is that the individual sections 2, 3 and 4 may be arranged one over the other and without sealing the joints therebetween by centering the individual sections on interfitting grooves and spring rings (not shown) which are built into each mold section.
  • a mold hood 5 of refractory material serves to fill up the shrink hole upon solidification of the ingot.
  • the mold may be built up easily over a pouring opening 52 at the end of a pouring passageway 54 of the casting plate 6.
  • An opposite opening 56 is located to align with the bottom end of a refractory line passage 58 of a casting funnel 7.
  • Casting temperature 1.550C fiC Mold diameter Rate of rise inside, mm cm/min
  • the ingots of sizes 250 mm, 300 mm, and 330 mm round were cast without covering the liquid level in the mold.
  • the mold itself was coated with a bitumen based mold lacquer.
  • Ingots with a larger diameter were cast with a covering of heat insulating powder.
  • the yield is particularly high because of the small proportion of the head and foot weight. This long mold can be used with the same advantages in group casting as well as in casting machines.
  • casting equipment generally designated 50' in which a casting plate 6 is arranged at the bottom of a frame structure 8 which includes a top platform accessible by a stairway 9.
  • the platform and the stairway facilitate the working on the mold, as for example, when it is lacquered.
  • the other parts are: similar to the embodiments shown in FIG. I.
  • FIG. 3 there is shown a casting apparatus generally designated 50 which includes a casting plate 18 having a bottom opening 19 for the inpouring of the metal which may be closed by a slide plate 20 after the mold, generally designated 1" has been filled.
  • the mold l" is made of a plurality of vertically stacked sections as in the other embodiment.
  • the ingots are cast in accordance with the method of the invention as follows:
  • the steel produced in a known steel making method] is tapped into a casting ladle having a plug.
  • the plug By opening the plug the steel flows without slag into the vessel 10 which is provided with a refractory lining 11.
  • the vessel 10 After the vessel 10 is filled it is closed with a cover 12.
  • packing l3 and locking device 14 the cover is connected air tight over the vessel 10.
  • the steel By the application of compressed air onto the melt level 15 through compressed air line 16, the steel is forced through the refractory lined casting tube 17 and through the opening 19 of the casting plate 18 into the cavity of the mold 1". As soon as the mold cavity is filled the slide valve 20 and the casting plate 18 is closed so that the steel is prevented from flowing backwardly. By evacuation of the vessel 10 the steel contained in the casting tube flows backwardly. The mold 1 is then removed with the casting plate 18 and is replaced by a new mold and new casting plate which can be filled by the same procedure.
  • a casting apparatus comprising a flat mold casting plate having a pouring passage defined therethrough, and a vertically elongated mold located over said casting plate overlying said pouring passage and being made up of a plurality of tubular sections vertically interfitting and being of a length of at least 2 meters and a diameter over 250 mm, and filling passage means connected into said pouring passage on said casting plate for filling said mold through said pouring passage and upwardly into the interior of said mold.
  • said filling passage means includes a vertically elongated pouring funnel having a vertical funnel passage extending upwardly therein connected to said pouring passage of said casting plate.
  • a casting device including a mounting stand arranged around said casting mold and having a platform adjacent said mold with an access stairway leading upwardly thereto.
  • a casting device including a slide valve movable through said pouring passage of said casting plate for opening and closing said passage, the inlet to said pouring passage being located directly below thepouring outlet into the mold cavity, the pas- 8 sage being centered in respect to the bottom of said mold cavity.
  • said pouring passage means comprises a refractory lined vessel having a removable cover engaged thereover in a pressure tight fitting, a charge passage extending from the lower end of said vessel upwardly to the bottom of said mold through said pouring passage of said casting plate and means for pressurizing the top of the vessel to cause the metal therein to move upwardly into said mold cavity.
  • tubular sections are iron having an inner cross section which is constant over the total height of the mold cavity, the mold cavity being of a height greater than two meters and having a clearance greater than 250 millimeters and characterized in that its weight is at least 1.3 times the weight of the ingot to be cast therein.
  • a casting apparatus according to claim 1, wherein said mold cavity has a circular cross section.
  • a casting apparatus wherein said mold cavity is divided in a transverse direction into multiple sections and the lowermost section is the shorter section.

Abstract

Blank metal ingots particularly steel of uniform weight per piece and cross section are formed with a mold which is made up of a plurality of superposed vertical sections which together define an interior mold cavity of uniform cross section over its total height. The steel which is produced in a known steel making method is first tapped into a casting ladle which is provided with a refractory lining. A plurality of mold sections are built up one after the other over a casting plate and the steel is directed upwardly through a bottom opening on the plate into the mold cavity and as soon as the mold is completely filled the slide plate is closed. For casting ingots of round or polygonal cross section with diameters of 200 to 350 millimeters the steel is bottom poured into the mold cavity at a rate of rise of from 30 to 80 centimeters per minute and the surface of the melt is not covered but is maintained as cold as possible. The inflow to the mold cavity is exactly centered and for ingots of diameters of larger than 300 millimeters the mold is covered with a heat insulating powder and the rate of rise is maintained between 10 to 30 centimeters per minute. A mold is constructed of carbonrich iron whose inner cross section is constant over its total length and which is divided in axial direction into several sections, with the total length of the mold being greater than 2 meters and having a clearance less than 250 millimeters. The mold is characterized by the fact that its weight is at least 1.3 times the weight of the ingot which is formed.

Description

United States Patent Renter et a1.
APPARATUS FOR PRODUCING BLANK METAL INGOTS OF UNIFORM CROSS SECTION AND IN PARTICULAR STEEL INGOTS Inventors: Guido Renter, Dusseldorf; Hans Robertz, Monchengladbach, both of Germany Assignee: Rheinstahl Aktiengesellschaft,
Germany Filed: Oct. 15, 1973 Appl. No.: 406,191
Related U.S. Application Data [62] Division of Ser. No. 179,007, Sept. 9, 1971,
abandoned.
[52] U.S. C1. 164/309; 164/363; 249/109 [51] Int. Cl. B221) 41/08 [58] Field of Search 164/119, 120, 363, 306, 164/309; 249/109 [56] References Cited UNITED STATES PATENTS 110,378 12/1870 Lobdell et a1 164/120 298,662 5/1884 Billings 164/120 390,809 10/1888 Singer 164/120 2,937,424 5/1960 Guenzi 22/139 3,032,841 5/1962 Sylvester 164/309 X 3,191,292 6/1965 Strom 164/133 3,672,432 6/1972 Widdowson et a1. 164/306 X FOREIGN PATENTS OR APPLICATIONS 717,450 2/1942 Germany 164/363 Primary Examiner-Ronald J. Shore Assistant Examiner-.lohn E. Roethel Attorney, Agent, or FirmMcG|ew and Tuttle 57 ABSTRACT Blank metal ingots particularly steel of uniform weight per piece and cross section are formed with a mold which is made up of a plurality of superposed vertical sections which together define an interior mold cavity of uniform cross section over its total height. The steel which is produced in a known steel making method is first tapped into a casting ladle which is provided with a refractory lining. A plurality of mold sections are built up one after the other over a casting plate and the steel is directed upwardly through a bottom opening on the plate into the mold cavity and as soon as the mold is completely filled the slide plate is closed. For casting ingots of round or polygonal cross section with diameters of 200 to 350 millimeters the steel is bottom poured into the mold cavity at a rate of rise of from 30 to 80 centimeters per minute and the surface of the melt is not covered but is maintained as cold as possible. The inflow to the mold cavity is exactly centered and for ingots of diameters of larger than 300 millimeters the mold is covered with a heat insulating powder and the rate of rise is maintained between 10 to 30 centimeters per minute. A mold is constructed of carbon-rich iron whose inner cross section is constant over its total length and which is divided in axial direction into several sections, with the total length of the mold being greater than 2 meters and having a clearance less than 250 millimeters. The mold is characterized by the fact that its weight is at least 1.3 times the weight of the ingot which is formed.
10 Claims, 3 Drawing Figures I US. Patent Dec. 30, 1975 Sheet2 0f3 3,929,184
FIG. 2
US. Patent Dec. 30, 1975 Sheet 3 of3 3,929,184
APPARATUS FOR PRODUCING BLANK METAL INGOTS OF UNIFORM CROSS SECTION AND IN PARTICULAR STEEL INGOTS This is a division of application Ser. No. 179,007 filed Sept. 9, 1971, now abandoned.
BACKGROUND OF THE INVENTION 1. FIELD OF THE INVENTION This invention relates in general to a new and useful method and apparatus for producing blank material of uniform weight per piece and cross section of a metal particularly a steel and wherein the ingot is produced by bottom pouring into a vertically elongated mold at a relatively slow rate.
2. DESCRIPTION OF THE PRIOR ART The fabrication of many rotation-symmetrical parts on shaping machines is in part semi-automated or fully automated and therefore requires starting material of uniform weight per piece and of uniform cross section, as for example: rings, railroad wheels, car tires, containers, tubes, etc. It is known practice to produce such blank material by casting the steel in conical molds, rolling out or forging out the resulting conical ingot to obtain a uniform cross section having a good surface quality, and subsequently dividing the shaped ingot into sections of equal length. This known method does indeed furnish satisfactory blank material, which because of the uniform cross section can well be processed further and can easily be divided into blank material of equal weight by division into sections of equal length. However, it is a disadvantage that the cast ingot must be subjected to an additional shaping operation.
It is further known to cast conical long ingots and to use these ingots without further shaping; after their division into sections of equal weight for further processing in ring rolling mills. The disadvantage of this method is that because of the different cross sections required, the sections must be cut in unequal lengths and it is difficult to maintain the required uniformity of weight. Moreover, use in semi-automatic or fully automatic systems often precludes a variable cross section of the blank material. It is further known to cast individual ingots and to use them for ring production without further division or shaping. This method is generally uneconomical, as the expense in casting, cleaning (polishing) and transportation is higher and the yield less favorable than for the long ingot (Stahl and Eisen 79 (1959) p. [913 ff).
Taking this state of the art as point of departure, the problem of the invention is seen in the fact that for the part, full or semi-automatic further processing, such as rolling in a ring rolling mill or fabrication of tubes or containers on a shaping machine, it is important that the blank material should, at equal length, have equal weight and also equal cross section of each individual section size, and it is difficult to produce these, without rolling or forging deformation, in a quality insuring their destruction-free processing.
The known molds are generally designed conical to facilitate the stripping of the solidified ingots. There has also been produced a heavy ingot form of a weight of 1 l4 t and a length of 5.20 m with equal cross section over the entire length, as it was expected that, due to their great diameter the ingots to be cast, would shrink sufficiently so that they could be pulled out of the iron mold even without taper (Stahl and Eisen (1922, p.
653). Nothing has been reported about the behavior of this mold in casting. It is stated in Stahl und Eisen I931, on page 1225, left column, that for the downwardly widening mold as little conicity as possible is desirable. A conicity of 1.3 and down to 0.7 is regarded as sufficient to avoid difficulties in stripping. Experiments with parallel walled molds are also being carried out. Besides, for molds of equal cross section over their entire length the removal of the cast ingot is made possible by longitudinal division of the molds (e.g. German Pat. No. 95,515, Ger. Pat. No. 67,035). While such longitudinally divided molds facilitate the removal of the ingots, they may easily lead to elevations on the ingot (burrs) at the points of division by inflow of the liquid metal during pouring. Due to this defect, the material cast in longitudinally divided molds is usable as blank material for further processing only with qualifications or only after considerable polishing (cleaning), since at these points it may easily lead to bursting or overrolling during upsetting, stretching and rolling in axial direction. Further, divided molds, in particular in the case of long ingots, are unfavorable because of the susceptibility of warping with the difficulty of sealing the point of division during casting. The high cracking susceptibility in conventionally poured ingots of circular cross section as against those with polygonal cross section or corrugated surface, and the difficulties in stripping to be expected for ingots of equal cross section over their length, have until now led to the result that no ingots are poured with equal cross section over the length, in particular with round cross section.
SUMMARY OF THE INVENTION In a process for the production of blank material of uniform weight per piece and uniform cross section from steel, in particular for ring or tube rolling mills, this problem is solved according to the invention in that the blank material is produced by casting ingots with constant cross section over their entire length, and avoiding ruts or elevations over the circumference that would impair their usefulness. This is done in upright molds and by dividing the ingots into sections of equal length.
Further, the invention can be advantageously devised as follows:
For the casting of ingots of round or polygonal cross section with diameters of 200 to 350mm, the invention recommends bottom-pouring of the mold at rates of rates of rise of 30 to cm per minute and with the surface of the melt in the mold not covered, as cold as possible. Attention should be paid to insure that the inflow into the mold is exactly centered. For ingots of larger diameters of more than 300 mm, the surface of the melt in the mold is covered with a heat-insulating powder and that bottompouring be centered and as cold as possible and at rates of rise between 10 and 30 cm/min. By the fairly slow pouring one obtains a uniform solidification from foot to head of the ingot with much smaller differences in concentration due to segregation (or liquation) between foot and head of the ingots than in the known conical ingots. Moreover, the slow pouring permits the use of a smaller hood for the tight feeding of the ingot and improves the yield.
In a method for the production of blank material where the melt is transported into the upright mold from below by application of gas pressure onto its surface, one achieves a rapid filling of the mold with the possibility of cold pouring, leading to a uniform solidifi- 3 cation with little segregation.
For the practice of the method the invention the mold should be of carbon-rich iron whose inside cross section is equal over its total length and one which is undivided in axial direction and whose length is greater than 2 m, and whose clearance is greater than 250 mm. The mold is distinguished by the fact that its weight is at least 1.3 times the ingot weight. The mold weight is dependent on the ingot diameter, the weight ratio increasing with decreasing diameter to above 3.
Experiments made by the Applicant have shown that with molds undivided in axial direction, with equal cross section over their total length, crack-free ingots can be poured which can be stripped without difficulty even without machining of the inner mold surfaces if the mold weight is at least 1.3 times the ingot weight. A smaller ratio of the mold weight to the ingot weight, i.e. a smaller mold wall thickness, resulted in cracking and, due to warping, in difficulties in stripping. Observance of the above-mentioned casting conditions proved advantageous.
The effect of the mold weight on the formation of cracks was not to be expected for the following reasons: Influential on crack formation are, besides the geometric conditions of the ingot form, the steel composition, casting temperature and rate of rise mainly the cooling conditions. The first-mentioned factors are not influenced by the weight of the mold, which affects only the cooling conditions, but at so late a time that a possible effect on the crack formation is not plausible. According to calculations of the time-response of the temperature penetration curves in molds, which in their qualitative response were confirmed by experimental studies (Stahl u. Eisen 1943, p. 204), a temperature of approximately 1000C occurs immediately after the charging of liquid steel in a hematite mold at the inner wall thereof. When pouring, for example, a 5-ton ingot into a square mold of equal weight having a wall thickness of approximately 12 cm, the heat, if the inner wall' of the mold is maintained constant at l000C, would penetrate to the outside in approximately 6 minutes and would there raise the temperature by approximately 70C. If the mold weight is increased to one and ahalf times the ingot weight this would correspond to a mold wall thickness of 17 cm the outer wall temperature of the mold would not yet be increased at that time. At a distance of l2 cm from the inner mold wall, the temperature would also in this case be approximately 70C after 6 minutes. For the temperature gradient on the inner wall of the mold (which gradient, besides the heat transfer conditions from the ingot to the mold wall is not influenceable by the mold weight), solely determines the quantities of heat per unit time that can be transported from the surface of the solidifying ingot into the mold. There has, therefore, been no change due to increase of the weight of the mold. it must be assumed, therefore, that 6 minutes after start of solidification of the cast ingot the'same conditions must prevail in the mold having a weight equal to the ingot weight as in a mold having one and a half times the ingot weight. At that time, however, according to the rough formula D 2.5 X k X T-- with D solidified thickness in cm, k between 0.9 and 1.22, and 2 time in min (Basic Open Hearth Steelmaking, l964, p. 437), approximately 6 cm of steel are already solidified. Considering further that by the formation of the air gap due to the detachment of the ingot as it shrinks the heat transfer becomes more difficult after around 1 minute C, and that even at later times, when the mold wall has already appreciably gained in temperature, the effect on the gradient at the inner mold wall is extremely slight, it is hard to see how the mold weight should influence the heat removal from the ingot at a time when the solidified layer is still so thin that, for example due to internal pressure, it could still be susceptible to cracking. The Applicants experiments have shown that despite these theoretical doubts it has been possible, by the increase as per invention of the mold weight over what has been known at equal cross section the entire length, to produce perfectly crack-free ingots which can be stripped without difficulties and be divided into sections of equal length having uniform weights per piece and which, without prior shaping, withstand an upsetting deformation without waste.
Of particular advantage is a construction with the inner cross section of the mold of circular shape. Ingots of circular cross section are particularly well suited as blank material for ring rolling mills, tube rolling mills, shaping machines, forging machines, extrusion presses, or also for further forging deformation as shafts and axles. Even in the round ingot material, which in itself is particularly susceptible of cracking, no disturbances due to cracks occur.
To reduce the mold costs, the mold may be subdivided in transverse direction into a number of sections. The bottom section which due to the inflow of liquid steel is subject to particularly heavy stress during casting and therefore has a shorter life than the upper sections, is advantageously the shortest. The subdivision of the mold into sections permits moreover the pouring of ingots of different lengths by simply placing the sections one upon the other, without the necessity of keeping in stock a number of special molds corresponding to the various lengths of ingots.
For the practice of the method, especially for long ingots, there is particularly suitable a casting machine for the pressure casting method which comprises a refractory-lined vessel with a removable cover placed on pressure-tight and with a locking device. A refractory-lined casting tube extends from the bottom of the vessel upwardly at least to a casting plate contiguous to the casting tube. A mold of carbon-rich iron, undivided in axial direction is placed closely contiguous to the casting plate, and thus equal cross section over its total height. The casting machine permits a very rapid, exactly proportioned and yet gentle filling of the mold with a relatively cold casting, and complete avoidance of air oxidation during casting, owing to which the solidification conditions are favorable and homogeneous ingots of highest surface quality can be produced.
The ingots with uniform cross section produced by the method of the invention are, however, advantageously applicable not only when blank material of uniform weights per piece is needed. Also in the case of blank material with different weights per piece, for example, for rings of different sizes, it is possible, because of the equal cross section over the total length, to adjust the given individual weight per piece quickly and accurately by way of a simple length measurement. Moreover, the advantages as to structure of the ingots cast according to the invention are beneficial in further processing also at different weights per piece.
Accordingly it is an object of the invention to provide an improved method for producing a blank material of uniform cross section of a metal such as steel and using a vertically elongated upright mold comprising directing the steel into a casting ladle and applying a pressure to the steel to cause it to rise upwardly through a bottom opening of the mold, and by bottom-pouring at a relatively slow rate.
A further object of the invention is to provide a method of producing blank material using a mold having a round or polygonal cross section with inside diameters of 250 to 350 mm and by pouring at rates of rise from 30 to 80 cm. per minute with an uncovered surface of the melt and centering the inflow and maintaining the melt as cold as possible.
A further object of the invention is to provide a device for forming metal billets which comprises a mold having a cavity which is vertically elongated and of uniform diameter and is made up of a plurality of sections which are interfitted one over the other and which are arranged over a casting plate having an opening therein with a slide valve.
A further object of the invention is to provide a device for forming blank material of uniform cross section which is simple in deisgn, rugged in construction and economical to manufacture.
The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference should be had to the accompanying drawing and descriptive matter in which there is illustrated preferred embodiments of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS In the drawing:
FIG. 1 is a transverse sectional view of a mold constructed in accordance with the invention;
FIG. 2 is a view similar to FIG. 1 of another embodiment of the invention; and
FIG. 3 is a view similar to FIG. 1 of still another embodiment of the invention.
GENERAL DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to the drawings in particular, the invention embodied therein in FIG. 1 comprises a casting apparatus generally designated 50 which includes a casting mold generally designated 1 which is made of a material such as carbon rich iron. It is formed ofa plurality of sections 2, 3 and 4 with the lowermost section 2 being the shortest in height. The mold defines a mold cavity la having an interior cross section which is the same over its entire height. Its total height is 7 meters and its clearance is 377 mm., and its wall thickness averages about 165 mm. The ingot to be cast has a weight of about 6 tons. The mold weight is 1.84 times the ingot weight.
A feature of the construction is that the individual sections 2, 3 and 4 may be arranged one over the other and without sealing the joints therebetween by centering the individual sections on interfitting grooves and spring rings (not shown) which are built into each mold section. A mold hood 5 of refractory material serves to fill up the shrink hole upon solidification of the ingot. The mold may be built up easily over a pouring opening 52 at the end of a pouring passageway 54 of the casting plate 6. An opposite opening 56 is located to align with the bottom end of a refractory line passage 58 of a casting funnel 7.
An example for the production ofa blank material of uniform weight per piece and cross section for a ring rolling mill using the bottom casting method of the invention is as follows:
Casting temperature: 1.550C fiC Mold diameter Rate of rise inside, mm cm/min The ingots of sizes 250 mm, 300 mm, and 330 mm round were cast without covering the liquid level in the mold. The mold itself was coated with a bitumen based mold lacquer. Ingots with a larger diameter were cast with a covering of heat insulating powder. In view of the great length of the mold or height of the mold relative to its diameter the yield is particularly high because of the small proportion of the head and foot weight. This long mold can be used with the same advantages in group casting as well as in casting machines.
In the embodiment shown in FIG. 2, there is provided casting equipment generally designated 50' in which a casting plate 6 is arranged at the bottom of a frame structure 8 which includes a top platform accessible by a stairway 9. The platform and the stairway facilitate the working on the mold, as for example, when it is lacquered. The other parts are: similar to the embodiments shown in FIG. I.
In FIG. 3 there is shown a casting apparatus generally designated 50 which includes a casting plate 18 having a bottom opening 19 for the inpouring of the metal which may be closed by a slide plate 20 after the mold, generally designated 1" has been filled. The mold l" is made of a plurality of vertically stacked sections as in the other embodiment.
With the casting machine constructed in accordance with FIG. 3, the ingots are cast in accordance with the method of the invention as follows: The steel produced in a known steel making method] is tapped into a casting ladle having a plug. By opening the plug the steel flows without slag into the vessel 10 which is provided with a refractory lining 11. After the vessel 10 is filled it is closed with a cover 12. By means of packing l3 and locking device 14 the cover is connected air tight over the vessel 10.
By the application of compressed air onto the melt level 15 through compressed air line 16, the steel is forced through the refractory lined casting tube 17 and through the opening 19 of the casting plate 18 into the cavity of the mold 1". As soon as the mold cavity is filled the slide valve 20 and the casting plate 18 is closed so that the steel is prevented from flowing backwardly. By evacuation of the vessel 10 the steel contained in the casting tube flows backwardly. The mold 1 is then removed with the casting plate 18 and is replaced by a new mold and new casting plate which can be filled by the same procedure.
While specific embodiments of the invention have been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that'the invention may be embodied otherwise without departing from such principles.
What is claimed is:
l. A casting apparatus comprising a flat mold casting plate having a pouring passage defined therethrough, and a vertically elongated mold located over said casting plate overlying said pouring passage and being made up of a plurality of tubular sections vertically interfitting and being of a length of at least 2 meters and a diameter over 250 mm, and filling passage means connected into said pouring passage on said casting plate for filling said mold through said pouring passage and upwardly into the interior of said mold.
2. A casting device according to claim 1, wherein said filling passage means includes a vertically elongated pouring funnel having a vertical funnel passage extending upwardly therein connected to said pouring passage of said casting plate.
3. A casting device according to claim 1, including a mounting stand arranged around said casting mold and having a platform adjacent said mold with an access stairway leading upwardly thereto.
4. A casting device according to claim 3, including a slide valve movable through said pouring passage of said casting plate for opening and closing said passage, the inlet to said pouring passage being located directly below thepouring outlet into the mold cavity, the pas- 8 sage being centered in respect to the bottom of said mold cavity.
5. A casting device according to claim 1, wherein said pouring passage means comprises a refractory lined vessel having a removable cover engaged thereover in a pressure tight fitting, a charge passage extending from the lower end of said vessel upwardly to the bottom of said mold through said pouring passage of said casting plate and means for pressurizing the top of the vessel to cause the metal therein to move upwardly into said mold cavity.
6. A casting apparatus according to claim 1, wherein said tubular sections are iron having an inner cross section which is constant over the total height of the mold cavity, the mold cavity being of a height greater than two meters and having a clearance greater than 250 millimeters and characterized in that its weight is at least 1.3 times the weight of the ingot to be cast therein.
7. A casting apparatus according to claim 1, wherein said mold cavity has a circular cross section.
8. A casting apparatus according to claim 1, wherein said mold cavity is of polygonal cross section.
9. A casting apparatus according to claim 1, wherein said mold cavity is divided in a transverse direction into multiple sections and the lowermost section is the shorter section.
10. A mold construction according to claim 1,
wherein said sections are carbon rich iron.

Claims (10)

1. A CASTING APPARATUS COMPRISING A FLAT MOLD CASTING PLATE HAVING A POURING PASSAGE DEFINED THERETHROUGH, AND A VERTICALL ELONGATED MOLD LOCATED OVER SAID CASTING PLATE OVERLYING SAID POURING PASSAGE AND BEING MADE UP OF A PLURALITY OF TUBULAR SECTIONS VERTICALLY INTERFITTING AND BEING OF A LENGTH OF AT LEAST 2 METERS AND A DIAMETER OVER 250 MM, AND FILING PASSAGE MEANS CONNECTED INTO SAID POURING PASSAGE ON SAID
2. A casting device according to claim 1, wherein said filling passage means includes a vertically elongated pouring funnel having a vertical funnel passage extending upwardly therein connected to said pouring passage of said casting plate.
3. A casting device according to claim 1, including a mounting stand arranged around said casting mold and having a platform adjacent said mold with an access stairway leading upwardly thereto.
4. A casting device according to claim 1, including a slide valve movable through said pouring passage of said casting plate for opening and closing said passage, the inlet to said pouring passage being located directly below the pouring outlet into the mold cavity, the passage being centered in respect to the bottom of said mold cavity.
5. A casting device according to claim 1, wherein said pouring passage means comprises a refractory lined vessel having a removable cover engaged thereover in a pressure tight fitting, a charge passage extending from the lower end of said vessel upwardly to the bottom of said mold through said pouring passage of said casting plate and means for pressurizing the top of the vessel to cause the metal therein to move upwardly into said mold cavity.
6. A casting apparatus according to claim 1, wherein said tubular sections are iron having an inner cross section which is constant over the total height of the mold cavity, the mold cavity being of a height greater than two meters and having a clearance greater than 250 millimeters and characterized in that its weight is at least 1.3 times the weight of the ingot to be cast therein.
7. A casting apparatus according to claim 1, wherein said mold cavity has a circular cross section.
8. A casting apparatus according to claim 1, wherein said mold cavity is of polygonal cross section.
9. A casting apparatus according to claim 1, wherein said mold cavity is divided in a transverse direction into multiple sections and the lowermost section is the shorter section.
10. A mold construction according to claim 1, wherein said sections are carbon rich iron.
US406191A 1971-09-09 1973-10-15 Apparatus for producing blank metal ingots of uniform cross section and in particular steel ingots Expired - Lifetime US3929184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US406191A US3929184A (en) 1971-09-09 1973-10-15 Apparatus for producing blank metal ingots of uniform cross section and in particular steel ingots

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17900771A 1971-09-09 1971-09-09
US406191A US3929184A (en) 1971-09-09 1973-10-15 Apparatus for producing blank metal ingots of uniform cross section and in particular steel ingots

Publications (1)

Publication Number Publication Date
US3929184A true US3929184A (en) 1975-12-30

Family

ID=26874911

Family Applications (1)

Application Number Title Priority Date Filing Date
US406191A Expired - Lifetime US3929184A (en) 1971-09-09 1973-10-15 Apparatus for producing blank metal ingots of uniform cross section and in particular steel ingots

Country Status (1)

Country Link
US (1) US3929184A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356994A (en) * 1978-12-27 1982-11-02 Dyson Refractories Limited Holloware for uphill teeming
US4456417A (en) * 1980-07-07 1984-06-26 Jones & Laughlin Steel Corporation Method and apparatus for aligning, supporting, and transporting hollow cylinders
US5297611A (en) * 1990-11-05 1994-03-29 Comalco Aluminium Limited Casting of metal objects
US5465777A (en) * 1994-05-18 1995-11-14 The Budd Company Contact pouring
US6516869B2 (en) 2001-02-15 2003-02-11 Teksid Aluminum S.P.A. Mould structure for producing light metal alloy casts and a low pressure precision casting method in a semi permanent mould
US6552473B2 (en) 2000-06-30 2003-04-22 C. R. F. Societa Consortile Per Azioni Control valve with a self-compensating piezoelectric actuator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US110378A (en) * 1870-12-20 Improvement in casting chilled rolls
US298662A (en) * 1884-05-13 Method of pouring and compressing steel ingots
US390809A (en) * 1888-10-09 Manufacture of saw-plates
US2937424A (en) * 1956-06-28 1960-05-24 Cie De Pont A Mousson Ingot mould made of spheroidal graphite cast iron
US3032841A (en) * 1957-03-08 1962-05-08 Edmund Q Sylvester Methods and apparatus for casting metal
US3191292A (en) * 1963-07-16 1965-06-29 Amsted Ind Inc Method of producing rolled metal articles
US3672432A (en) * 1970-12-03 1972-06-27 British Iron Steel Research Bottom poured ingots

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US110378A (en) * 1870-12-20 Improvement in casting chilled rolls
US298662A (en) * 1884-05-13 Method of pouring and compressing steel ingots
US390809A (en) * 1888-10-09 Manufacture of saw-plates
US2937424A (en) * 1956-06-28 1960-05-24 Cie De Pont A Mousson Ingot mould made of spheroidal graphite cast iron
US3032841A (en) * 1957-03-08 1962-05-08 Edmund Q Sylvester Methods and apparatus for casting metal
US3191292A (en) * 1963-07-16 1965-06-29 Amsted Ind Inc Method of producing rolled metal articles
US3672432A (en) * 1970-12-03 1972-06-27 British Iron Steel Research Bottom poured ingots

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356994A (en) * 1978-12-27 1982-11-02 Dyson Refractories Limited Holloware for uphill teeming
US4456417A (en) * 1980-07-07 1984-06-26 Jones & Laughlin Steel Corporation Method and apparatus for aligning, supporting, and transporting hollow cylinders
US5297611A (en) * 1990-11-05 1994-03-29 Comalco Aluminium Limited Casting of metal objects
US5477906A (en) * 1990-11-05 1995-12-26 Comalco Aluminum Limited Casting of metal objects
US5465777A (en) * 1994-05-18 1995-11-14 The Budd Company Contact pouring
US6552473B2 (en) 2000-06-30 2003-04-22 C. R. F. Societa Consortile Per Azioni Control valve with a self-compensating piezoelectric actuator
US6516869B2 (en) 2001-02-15 2003-02-11 Teksid Aluminum S.P.A. Mould structure for producing light metal alloy casts and a low pressure precision casting method in a semi permanent mould

Similar Documents

Publication Publication Date Title
US3125440A (en) Tlbr b
US3032841A (en) Methods and apparatus for casting metal
US2363695A (en) Process for continuous casting
US2752648A (en) Apparatus for the production of tubular metallic objects
US3929184A (en) Apparatus for producing blank metal ingots of uniform cross section and in particular steel ingots
CN104259413A (en) Continuous casting system and process producing large-specification elliptical billets
US3530927A (en) Method of fabrication of metals by pressure casting
US1961399A (en) Ingot casting method
US3913660A (en) Chill mold for casting pistons
US3670800A (en) Casting process for rolls
US3958620A (en) Method for producing blank metal ingots of uniform cross section and in particular steel ingots
RU2710484C1 (en) Production method of seamless high-pressure cylinder from stainless steel
RU1819188C (en) Method and apparatus for cooling steel ingots at continuous casting
US2190828A (en) Method of casting
US2157453A (en) Process for the manufacture of bearings
CN116441501A (en) Vacuum horizontal continuous casting and die casting device
CN109909460A (en) The production method of super clean special steel ingot mould
US3995680A (en) Method of cooling piston blank molds
US3882942A (en) Mold modifications for eliminating freckle defects in roll castings
US3153822A (en) Method and apparatus for casting molten metal
US4177058A (en) Method for producing a non-split metal workpiece formed as a cast hollow billet with a bottom part
CN204209084U (en) A kind of continuous casting system producing the oval base of large gauge
US2747245A (en) Process for continuous casting of metal billets
US1537041A (en) Method for manufacturing hollow bodies of steel alloys, or other metals
US1998258A (en) Ingot casting apparatus