US3929124A - Opthalmodynamometer - Google Patents

Opthalmodynamometer Download PDF

Info

Publication number
US3929124A
US3929124A US465978A US46597874A US3929124A US 3929124 A US3929124 A US 3929124A US 465978 A US465978 A US 465978A US 46597874 A US46597874 A US 46597874A US 3929124 A US3929124 A US 3929124A
Authority
US
United States
Prior art keywords
bladder
pressure
ophthalmodynamometer
speculum
eye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US465978A
Inventor
Michael E Yablonski
John Nichparenko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Navy
American National Bank and Trust Company of Chicago
Original Assignee
US Department of Navy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Navy filed Critical US Department of Navy
Priority to US465978A priority Critical patent/US3929124A/en
Application granted granted Critical
Publication of US3929124A publication Critical patent/US3929124A/en
Assigned to FIRST NATIONAL BANK OF CHICAGO, THE, SANWA BUSINESS CREDIT CORPORATION reassignment FIRST NATIONAL BANK OF CHICAGO, THE SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ABC RAIL CORPORATION
Assigned to FIRST NATIONAL BANK OF CHICAGO (CANADA), THE reassignment FIRST NATIONAL BANK OF CHICAGO (CANADA), THE SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ABC RAIL CORPORATION, A CORP. OF DE.
Assigned to ABC RAIL CORPORATION, A CORP OF DE. reassignment ABC RAIL CORPORATION, A CORP OF DE. RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). RECORDED ON REEL 4873 FRAME 427 Assignors: SANWA BUSINESS CREDTI CORPORATION
Assigned to AMERICAN NATIONAL BANK AND TRUST COMPANY OF CHICAGO A NATIONAL BANKING ASSOCIATION reassignment AMERICAN NATIONAL BANK AND TRUST COMPANY OF CHICAGO A NATIONAL BANKING ASSOCIATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: FIRST NATIONAL BANK OF CHICAGO, THE A NATIONAL BANKING ASSOCIATION
Anticipated expiration legal-status Critical
Assigned to ABC RAIL CORPORATION reassignment ABC RAIL CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: AMERICAN NATIONAL BANK AND TRUST COMPANY OF CHICAGO, FIRST NATIONAL BANK OF CHICAGO, (CANADA), THE
Assigned to AMERICAN NATIONAL BANK AND TRUST COMPANY OF CHICAGO reassignment AMERICAN NATIONAL BANK AND TRUST COMPANY OF CHICAGO RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: FIRST NATIONAL BANK OF CHICAGO, THE
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02216Ophthalmodynamometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/398Electrooculography [EOG], e.g. detecting nystagmus; Electroretinography [ERG]

Definitions

  • An opthalmodynamometer includes an inflated toroid 52 u.s.c1 .1. 128/2 T; 73/80; 128/2.05 N- memberatmhedtoaneyespeculum havingaviewing 351/6 port.
  • the eye of the toroid and the viewing port are 51 Int. c1.
  • A61B 3/00; A61B 5/02 axially aligned to permit the fundus of the eye be 5 Field f Search 128/2 T 2 R, 205 N 205 R illuminated and viewed.
  • This invention relates to ophthalmodynamometers and.in particular to ophthalmodynamometers which employ the compression principle.
  • An ophthalmodynamometer is an instrument which measures retinal artery pressure by applying a variable but calibrated force over a known area of the eye to induce systole, i.e., pulsations at the peak of the blood pressure cycle, and diastole, i.e., pulsations at the minimum of the blood pressure cycle, of the central retinal artery.
  • systole i.e., pulsations at the peak of the blood pressure cycle
  • diastole i.e., pulsations at the minimum of the blood pressure cycle
  • the essential function of the ophthalmoscope is to provide illumination through the pupil of the eye so that the examiner may view the fundus of the eye.
  • Measurement of retinal artery pressure can be used to detect several important body conditions, e.g., increased intra-cranial pressure, partial or complete carotid artery blockage, and carotid vascular blockage.
  • ophthalmodynamometers increase intraocular pressure by using either a suction device or a compression device.
  • the compression device employs a small flat disc which is pressed against the sclera of the eye with a calibrated force applicator.
  • the suction device employs a small cup and a calibrated vacuum device to apply suction to a portion of the sclera.
  • the compression and suction ophthalmodynamometer devices both distort the globe of the eye. This distortion tends to raise the pressure of the relatively incompressible vitreous fluid within the eye. The increased pressure of the vitreous fluid is then exerted against the central retinal area of the eye.
  • a pressurized fluid impermeable bladder shaped in the form of a toroid or life preserver is attached to one end of an eye speculum.
  • the second end of the speculum is inserted under the eyelids and presses against the eyeball.
  • An external force is applied to the bladder.
  • the external force increases the pressure within the bladder.
  • the increased pressure within the bladder is transmitted through the speculum to the eyeball to thereby increase intra-ocular pressure.
  • Means for measuring the internal pressure of the bladder is provided so that bladder pressure can be determined.
  • Bladder pressure is related to intra-ocular pressure, hence retinal artery pressure can be determined. 1
  • FIG. 1 shows a perspective view of a compression ophthalmodynamometer according to the invention
  • FIG. 2 shows the ophthalmodynamometer of FIG. I applied to the eyeball and partially in section
  • FIG. 3 shows an alternate embodiment of an ophthalmodynamometer according to the invention.
  • the ophthalmodynamometer of the present invention includes a transparent plastic eyecup or speculum 10 having a flared or virtually semi-spherical portion 10a which fits under the eyelids and rests against the sclera.
  • the flared portion 10a prevents the eyelids from closing when the ophthalmodynamometer is being used and also exerts pressure on the sclera as will be more fully described hereinbelow.
  • the flared portion 10a tapers to an orifice or viewing port 10b having a diameter slightly larger than a cornea.
  • the eyecup 10 extends from the viewing port 10b as a frusto-conical portion terminating in a planar circular rim 10d which abuts a pressurized bladder 14.
  • a pressurized bladder 14 may be fixedly secured to the rim 10d of the eyecup 10 by an adhesive such as Permabond I01 contact cement or any other suitable means.
  • the bladder 14 may be removably attached to the eyecup 10 by means of a grooved circular retaining clip (not shown) affixed to the periphery of the bladder 14.
  • the bladder 14 is fabricated from any suitable fluid impermeable, distensible material, such as silicone rubber, which is capable of being inflated or pressurized i.e., capable of holding a fluid under pressure.
  • suitable fluid impermeable, distensible material such as silicone rubber
  • bladder 14 is formed substantially in the shape of a toroid or doughnut with the eye 15 of the toroid concentric with the viewing port 10b of the speculum 10.
  • a pressure indicator 18 is connected to the bladder 14 by a pneumatic tube 16 which extends through the wall of the bladder 14 to its interior.
  • the pressure indicator 18 is of conventional construction and serves to transduce the internal pressure of the bladder 14 to a numerical value which can be read by the examiner.
  • the flared portion a of the speculum 10 is shown inserted under the eyelids 30, 30 and resting against the sclera 32 of the eye just beyond the periphery of the cornea 31.
  • the speculum l0 and attached bladder 14 are positioned on the sclera 32 so that the lens 34 of the eye, the speculum viewing port 10b and the eye of the toroid are concentric.
  • the ophthalmodynamometer positioned in this manner, light from an ophthalmoscope 40 can be directed into the lens 34 of the eye so that an examiner may view the fundus 36 of the eye while an external force is applied to the bladder 14 by means of a suitable force applicator 42.
  • the force applicator 42 may, for example, be formed as a thin plastic ring 42a having a curved depending plastic stem 42b.
  • the ring 42a is placed against the outer periphery of the bladder so as not to interfere with the light emanating from the ophthalmoscope 40.
  • the stem 42b of the force applicator 42 may be connected to a conventional source of calibrated forces such as a modification of the well-known Goldman applanation tonometer or any other suitable device which will cause force applicator 42 to bear against the bladder 14 with controlled force. (Alternatively the force applicator 42 may be hand held by the stern 42b and manually pressed against the bladder.
  • the force applicator may be affixed to the bladder 14 by any suitable means and serve not only to increase bladder pressure but also to facilitate positioning of the ophthalmodynamometer on the eye.
  • suitable means for increasing the pressure within the bladder 14 will occur to those skilled in the art.
  • the force applicator 42 may be entirely dispensed with and the ophthalmoscope 40 may be pressed against the bladder 14 as the examiner views the fundus 36 of the eye.
  • Operation of the ophthalmodynamometer is as follows.
  • the ophthalmodynamometer eyecup 10 is inserted under the eyelids 30, 30 and held in place by hand, by the force applicator, or by any other suitable means.
  • an external force is applied to the bladder 14.
  • the internal pressure of the bladder 14 increases under the influence of the external force and this pressure increment is transmitted to the sclera 30 via the speculum 10 to thereby increase the intra-ocular pressure.
  • the examiner notes the characteristic collapse of the retinal artery at the low point of the blood pressure cycle, i.e., diastole.
  • the examiner notes the characteristic rapid pulsation of the retinal artery yielding to a sustained collapse even at the peak of the blood pressure cycle, i.e., systole.
  • the readings of the pressure indicator 18 at diastole and systole are converted to blood pressure readings according to a previously determined calibration.
  • the exact relationship between the pressure within the bladder 14 and the intra-ocular pressure can be determined experimentally by raising the pressure within the bladder to several distinct but known levels and measuring the intra-ocular tension with a Schiotz tonometer at each distinct level. This kind of experiment would result in a chart of corresponding bladder pressures and intraocular pressures.
  • the chart would then serve as the previously determined calibration set forth above.
  • the relationship may be established by inserting a hollow needle into the eyeball of a cadaver after the ophthalmodynamometer has been positioned over the sclera. The internal bladder pressure is then raised to several distinct but known levels and the corresponding intra-ocular pressures are determined with a second pressure indicator attached to the hollow needle.
  • FIG. 3 shows a bladder formed as a single walled bellows 50 which can be used in lieu of the toroid shaped bladder 14 shown in FIGS. 1 and 2.
  • the bellows 50 is substantially cylindrical in shape and is attached to the speculum 10 by an adhesive such as Permabond l0l contact cement or any other suitable means.
  • the sidewall 50a of the bellows 50 is fabricated from distensible rubber such as silicone rubber (or any other material which is distensible and fluid impermeable) and is pleated.
  • the endwalls 50b, 500 of the bellows 50 are fabricated from disc-shaped reflection coated glass to provide an unobstructed view through the bellows structure.
  • the pneumatic tube 16 extends through the endwall 50c and opens into the interior of the bellows 50. Operation of the device shown in FIG. 3 is the same as that set forth for the device shown in FIGS. 1 and 2.
  • the ophthalmodynamometer of the present invention can also be used to measure the effect of increased intra-ocular pressure on the electroretinogram (ERG).
  • ERG electroretinogram
  • This can be accomplished by mounting a conventional Burian Allen ERG electrode within the viewing port of the eyecup 12.
  • the electrode is a ring type corneal electrode which picks up the electrical response of the eye to a flash of light.
  • the intra-ocular pressure is varied to any desired level in the manner set forth above, the eye is stimulated with light flashes and the output of the electrode is observed on a recorder or other suitable device.
  • An ophthalmodynamometer comprising:
  • a speculum member provided with a viewing port
  • a pressurized toroidal bladder attached to said speculum member with the eye of the toroidal bladder coaxial with said speculum viewing port; and means operatively connected to said bladder for determining the internal pressure of said bladder.
  • said bladder is substantially composed of an impermeable distensible material
  • the diameter of the eye of said bladder is equal to or greater than the diameter of the speculum viewing port.
  • An ophthalmodynamometer according to claim 1 wherein said pressure determining means includes:
  • An ophthalmodynamometer according to claim 1 further including: force applicator means attached to said bladder for applying an external force to said bladder.
  • a ring attached to said bladder and having a curved stem depending therefrom.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Vascular Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Ophthalmology & Optometry (AREA)
  • Cardiology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physiology (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

An opthalmodynamometer includes an inflated toroid member attached to an eye speculum having a viewing port. The eye of the toroid and the viewing port are axially aligned to permit the fundus of the eye to be illuminated and viewed. Pressure applied to the toroid member is transmitted to the eyeball to thereby raise intra-ocular pressure. Internal toroid member pressure is related to retinal artery blood pressure. Means are provided to ascertain the toroid member pressure so that retinal artery blood pressure may be determined.

Description

United States Patent 11 1 1111 3,929,124
Yablonski et al. Dec. 30, 1975 [5 OPTHALMODYNAMOMETER 2,453,841 11 1948 Gluzek .0 73 80 x 2,836,173 5 1958 Uemura et al. 128/2 T [75] lnvemors- 3,452,589 7/1969 Hargens et al 73/80 e yn n John Nlchparenko, 3,706,304 12 1972 Sisler 128 2 T Wfllow Grove, 3,835,836 9 1974 Kanteretal. 128 2 T [73] Assignee: The United States of America as represented by the Secretary of the Primary Exammer Kyle L' Howe]! Navy, Washington, DC Attorney, Agent, or F1rmR. S. Sc1asc1a; Henry Hansen [22] Flled: May 1, 1974 I [21] Appl. No.: 465,978 [57] ABSTRACT An opthalmodynamometer includes an inflated toroid 52 u.s.c1 .1. 128/2 T; 73/80; 128/2.05 N- memberatmhedtoaneyespeculum havingaviewing 351/6 port. The eye of the toroid and the viewing port are 51 Int. c1. A61B 3/00; A61B 5/02 axially aligned to permit the fundus of the eye be 5 Field f Search 128/2 T 2 R, 205 N 205 R illuminated and viewed. Pressure applied to the toroid Q8/2705 73/8O;,351/6, member is transmitted to the eyeball to thereby raise intra-ocular pressure. Internal toroid member pressure 5 References Cited is related to retinal artery blood pressure. Means are UNITED STATES PATENTS provided to ascertain the toroid member pressure so that retinal artery blood pressure may be determined. 2,341,137 2/1944 Damron l28/2.05 N
2,430,851 11/1947 Allen 128/2 T X 6 Claims, 3 Drawing Figures I I l I" -15 US. Patent Dec. 30, 1975 V zzzw 0 log lob
OPTHALMODYNAMOMETER STATEMENT OF GOVERNMENT INTEREST The invention described herein may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.
BACKGROUND OF THE INVENTION This invention relates to ophthalmodynamometers and.in particular to ophthalmodynamometers which employ the compression principle.
An ophthalmodynamometer is an instrument which measures retinal artery pressure by applying a variable but calibrated force over a known area of the eye to induce systole, i.e., pulsations at the peak of the blood pressure cycle, and diastole, i.e., pulsations at the minimum of the blood pressure cycle, of the central retinal artery. With the ophthalmodynamometer the intraocular pressure is artificially elevated by means of mechanically applied pressure or suction. A separate apparatus, e.g., a hand held ophthalmoscope, is then employed to observe or detect the pulsations. (The essential function of the ophthalmoscope is to provide illumination through the pupil of the eye so that the examiner may view the fundus of the eye.) Measurement of retinal artery pressure can be used to detect several important body conditions, e.g., increased intra-cranial pressure, partial or complete carotid artery blockage, and carotid vascular blockage.
Present day ophthalmodynamometers increase intraocular pressure by using either a suction device or a compression device. The compression device employs a small flat disc which is pressed against the sclera of the eye with a calibrated force applicator. The suction device employs a small cup and a calibrated vacuum device to apply suction to a portion of the sclera. The compression and suction ophthalmodynamometer devices both distort the globe of the eye. This distortion tends to raise the pressure of the relatively incompressible vitreous fluid within the eye. The increased pressure of the vitreous fluid is then exerted against the central retinal area of the eye.
Conventional ophthalmodynamometers have several drawbacks. In both the compression type and the suction type, the actual increase in intra-ocular pressure is nonlinearly related to the external force applied to the sclera. Hence it is difficult to establish an exact relationship between the force applied to the sclera and the actual retinal artery pressure. In the compression type, the axis of pressure application is sometimes non-normal to the sclera giving rise to lateral forces which can cause slippage of the disc on the sclera. In the suction type measurement errors are sometimes introduced when there is a partial loss of vacuum around the periphery of the suction cup or the pneumatic tube providing the vacuum partially collapses. Both types of conventional ophthalmodynamometers are uncomfortable for the patient, difficult to properly and conveniently employ and generally give uncertain results. In addition, conventional ophthalmodynamometers cannot be used under field or combat conditions since they employ cumbersome equipment and normally require the patient to be in an upright position.
SUMMARY OF THE INVENTION Accordingly, it is an object of this invention to provide a compression ophthalmodynamometer which is convenient to employ and which reliably determines retinal artery pressure without unduly discomforting the patient. It is a further object of this invention to provide an ophthalmodynamometer which is atraumatic to the eye and which can be used under field or combat conditions even where the patient is in a prone position. These andother objects of the invention are achieved as follows:
A pressurized fluid impermeable bladder shaped in the form of a toroid or life preserver is attached to one end of an eye speculum. The second end of the speculum is inserted under the eyelids and presses against the eyeball. An external force is applied to the bladder. The external force increases the pressure within the bladder. The increased pressure within the bladder is transmitted through the speculum to the eyeball to thereby increase intra-ocular pressure. Means for measuring the internal pressure of the bladder is provided so that bladder pressure can be determined. Bladder pressure is related to intra-ocular pressure, hence retinal artery pressure can be determined. 1 Other objects, advantages, and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a perspective view of a compression ophthalmodynamometer according to the invention;
FIG. 2 shows the ophthalmodynamometer of FIG. I applied to the eyeball and partially in section; and
FIG. 3 shows an alternate embodiment of an ophthalmodynamometer according to the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to FIG. 1 the ophthalmodynamometer of the present invention includes a transparent plastic eyecup or speculum 10 having a flared or virtually semi-spherical portion 10a which fits under the eyelids and rests against the sclera. The flared portion 10a prevents the eyelids from closing when the ophthalmodynamometer is being used and also exerts pressure on the sclera as will be more fully described hereinbelow. The flared portion 10a tapers to an orifice or viewing port 10b having a diameter slightly larger than a cornea. Thereafter the eyecup 10 extends from the viewing port 10b as a frusto-conical portion terminating in a planar circular rim 10d which abuts a pressurized bladder 14. (An eyecup 10 suitable for use with the present invention may be that used to hold a Burian Allen ERG Electrode manufactured by the Hansen Ophthalmic Development Laboratory of Iowa City, Iowa.) The bladder 14 may be fixedly secured to the rim 10d of the eyecup 10 by an adhesive such as Permabond I01 contact cement or any other suitable means. Alternatively, the bladder 14 may be removably attached to the eyecup 10 by means of a grooved circular retaining clip (not shown) affixed to the periphery of the bladder 14.
The bladder 14 is fabricated from any suitable fluid impermeable, distensible material, such as silicone rubber, which is capable of being inflated or pressurized i.e., capable of holding a fluid under pressure. The
bladder 14 is formed substantially in the shape of a toroid or doughnut with the eye 15 of the toroid concentric with the viewing port 10b of the speculum 10. A pressure indicator 18 is connected to the bladder 14 by a pneumatic tube 16 which extends through the wall of the bladder 14 to its interior. The pressure indicator 18 is of conventional construction and serves to transduce the internal pressure of the bladder 14 to a numerical value which can be read by the examiner.
Referring to FIG. 2, the flared portion a of the speculum 10 is shown inserted under the eyelids 30, 30 and resting against the sclera 32 of the eye just beyond the periphery of the cornea 31. The speculum l0 and attached bladder 14 are positioned on the sclera 32 so that the lens 34 of the eye, the speculum viewing port 10b and the eye of the toroid are concentric. With the ophthalmodynamometer positioned in this manner, light from an ophthalmoscope 40 can be directed into the lens 34 of the eye so that an examiner may view the fundus 36 of the eye while an external force is applied to the bladder 14 by means of a suitable force applicator 42. The force applicator 42 may, for example, be formed as a thin plastic ring 42a having a curved depending plastic stem 42b. The ring 42a is placed against the outer periphery of the bladder so as not to interfere with the light emanating from the ophthalmoscope 40. The stem 42b of the force applicator 42 may be connected to a conventional source of calibrated forces such as a modification of the well-known Goldman applanation tonometer or any other suitable device which will cause force applicator 42 to bear against the bladder 14 with controlled force. (Alternatively the force applicator 42 may be hand held by the stern 42b and manually pressed against the bladder. In another embodiment the force applicator may be affixed to the bladder 14 by any suitable means and serve not only to increase bladder pressure but also to facilitate positioning of the ophthalmodynamometer on the eye. Other suitable means for increasing the pressure within the bladder 14 will occur to those skilled in the art. For example, the force applicator 42 may be entirely dispensed with and the ophthalmoscope 40 may be pressed against the bladder 14 as the examiner views the fundus 36 of the eye.)
Operation of the ophthalmodynamometer is as follows. The ophthalmodynamometer eyecup 10 is inserted under the eyelids 30, 30 and held in place by hand, by the force applicator, or by any other suitable means. Thereafter an external force is applied to the bladder 14. The internal pressure of the bladder 14 increases under the influence of the external force and this pressure increment is transmitted to the sclera 30 via the speculum 10 to thereby increase the intra-ocular pressure. As the pressure within the bladder 14 and the eyeball increases, the examiner notes the characteristic collapse of the retinal artery at the low point of the blood pressure cycle, i.e., diastole. As the pressure within the bladder 14 is further increased, the examiner notes the characteristic rapid pulsation of the retinal artery yielding to a sustained collapse even at the peak of the blood pressure cycle, i.e., systole. To obtain the retinal artery pressure, the readings of the pressure indicator 18 at diastole and systole are converted to blood pressure readings according to a previously determined calibration. (For example, the exact relationship between the pressure within the bladder 14 and the intra-ocular pressure can be determined experimentally by raising the pressure within the bladder to several distinct but known levels and measuring the intra-ocular tension with a Schiotz tonometer at each distinct level. This kind of experiment would result in a chart of corresponding bladder pressures and intraocular pressures. The chart would then serve as the previously determined calibration set forth above. Alternatively, the relationship may be established by inserting a hollow needle into the eyeball of a cadaver after the ophthalmodynamometer has been positioned over the sclera. The internal bladder pressure is then raised to several distinct but known levels and the corresponding intra-ocular pressures are determined with a second pressure indicator attached to the hollow needle.)
Many modifications of the invention will occur to those skilled in the art without departing from the spirit of the invention. One such modification is shown in FIG. 3 which shows a bladder formed as a single walled bellows 50 which can be used in lieu of the toroid shaped bladder 14 shown in FIGS. 1 and 2. The bellows 50 is substantially cylindrical in shape and is attached to the speculum 10 by an adhesive such as Permabond l0l contact cement or any other suitable means. The sidewall 50a of the bellows 50 is fabricated from distensible rubber such as silicone rubber (or any other material which is distensible and fluid impermeable) and is pleated. The endwalls 50b, 500 of the bellows 50 are fabricated from disc-shaped reflection coated glass to provide an unobstructed view through the bellows structure. The pneumatic tube 16 extends through the endwall 50c and opens into the interior of the bellows 50. Operation of the device shown in FIG. 3 is the same as that set forth for the device shown in FIGS. 1 and 2.
In addition to measuring the retinal artery pressure, the ophthalmodynamometer of the present invention can also be used to measure the effect of increased intra-ocular pressure on the electroretinogram (ERG). This can be accomplished by mounting a conventional Burian Allen ERG electrode within the viewing port of the eyecup 12. The electrode is a ring type corneal electrode which picks up the electrical response of the eye to a flash of light. As the intra-ocular pressure is varied to any desired level in the manner set forth above, the eye is stimulated with light flashes and the output of the electrode is observed on a recorder or other suitable device.
Obviously, many modifications and variations of th present invention are possible in the light of the above teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.
We claim:
1. An ophthalmodynamometer comprising:
a speculum member provided with a viewing port;
a pressurized toroidal bladder attached to said speculum member with the eye of the toroidal bladder coaxial with said speculum viewing port; and means operatively connected to said bladder for determining the internal pressure of said bladder.
2. An ophthalmodynamometer according to claim 1 wherein:
said bladder is substantially composed of an impermeable distensible material; and
the diameter of the eye of said bladder is equal to or greater than the diameter of the speculum viewing port.
3. An ophthalmodynamometer according to claim 1 wherein said pressure determining means includes:
a pneumatic tube member operatively connected to the bladder; and a pressure indicatormeans connected to said pneumatic tube member for indicating the internal pressure of said bladder. 4. An ophthalmodynamometer according to claim 1 further including: force applicator means attached to said bladder for applying an external force to said bladder.
S. An ophthalmodynamometer according to claim 4 wherein said force applicator means comprises:
a ring attached to said bladder and having a curved stem depending therefrom.
termining the internal pressure of said bladder.

Claims (6)

1. An ophthalmodynamometer comprising: a speculum member provided with a viewing port; a pressurized toroidal bladder attached to said speculum member with the eye of the toroidal bladder coaxial with said speculum viewing port; and means operatively connected to said bladder for determining the internal pressure of said bladder.
2. An ophthalmodynamometer according to claim 1 wherein: said bladder is substantially composed of an impermeable distensible material; and the diameter of the eye of said bladder is equal to or greater than the diameter of the speculum viewing port.
3. An ophthalmodynamometer according to claim 1 wherein said pressure determining means includes: a pneumatic tube member operatively connected to the bladder; and a pressure indicator means connected to said pneumatic tube member for indicating the internal pressure of said bladder.
4. An ophthalmodynamometer according to claim 1 further including: force applicator means attached to said bladder for applying an external force to said bladder.
5. An ophthalmodynamometer according to claim 4 wherein said force applicator means comprises: a ring attached to said bladder and having a curved stem depending therefrom.
6. An ophthalmodynamometer comprising: a speculum having an opening formed by two oppositely flaring annular surfaces, one of said surfaces being formed to fit against the sclera of the eye beneath the upper and lower eyelids; and a pressurized bladder attached to the outer periphery of the other of said surfaces, said bladder defining an opening therethrough that is coaxial with said speculum opening; and means operatively connected to said bladder for dEtermining the internal pressure of said bladder.
US465978A 1974-05-01 1974-05-01 Opthalmodynamometer Expired - Lifetime US3929124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US465978A US3929124A (en) 1974-05-01 1974-05-01 Opthalmodynamometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US465978A US3929124A (en) 1974-05-01 1974-05-01 Opthalmodynamometer

Publications (1)

Publication Number Publication Date
US3929124A true US3929124A (en) 1975-12-30

Family

ID=23849948

Family Applications (1)

Application Number Title Priority Date Filing Date
US465978A Expired - Lifetime US3929124A (en) 1974-05-01 1974-05-01 Opthalmodynamometer

Country Status (1)

Country Link
US (1) US3929124A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4402325A (en) * 1979-09-29 1983-09-06 Minolta Camera Kabushiki Kaisha Ophthalmic device to diagnose the eye fundus
US4907595A (en) * 1986-01-10 1990-03-13 Strauss Andreas L Apparatus for simultaneous determination of ophthalmic artery blood pressure and flow
US5032020A (en) * 1988-02-09 1991-07-16 Yves Robert Ophthalmological instrument
US5149213A (en) * 1990-07-11 1992-09-22 Brother Kogyo Kabushiki Kaisha Noise reducing back stopper for an impact print head
EP0597953A1 (en) * 1991-07-29 1994-05-25 Escalon Ophthalmics, Inc. Apparatus and method for indenting the ocular coats of an eye
DE4417300A1 (en) * 1994-05-18 1995-11-30 Preusner Paul Rolf Dipl Phys D Appliance for controlled increasing of pressure in human eye
WO1998034536A1 (en) * 1997-02-12 1998-08-13 California Institute Of Technology Non-invasive measurement of intracranial pressure
US5903333A (en) * 1997-06-24 1999-05-11 Neuroptics, Inc. Contact lens for use with ophthalmic monitoring systems
US5953097A (en) * 1997-06-24 1999-09-14 Neuroptics, Inc. Contact lens for use with ophthalmic monitoring systems
US6027454A (en) * 1995-04-21 2000-02-22 Loew; Bernhard Ophthalmodynamometer
US6161931A (en) * 1999-06-14 2000-12-19 University Of New Mexico Fiberoptic fundoscope coupler
US6390989B1 (en) * 1998-06-19 2002-05-21 The Uab Research Foundation Oximetric tonometer with intracranial pressure monitoring capability
US20040230124A1 (en) * 2003-05-12 2004-11-18 Querfurth Henry W. Methods of and systems and devices for assessing intracranial pressure non-invasively
US6830347B2 (en) * 2001-02-14 2004-12-14 Welch Allyn, Inc Eye viewing device comprising eye cup
US20060181678A1 (en) * 1999-04-23 2006-08-17 Neuroptics, Inc. A California Corporation Pupilometer with pupil irregularity detection, pupil tracking, and pupil response detection capability, glaucoma screening capability, intracranial pressure detection capability, and ocular aberration measurement capability
US20060206037A1 (en) * 2005-02-24 2006-09-14 Braxton Ernest E Apparatus and method for non-invasive measurement of intracranial pressure
EP2308369A1 (en) * 2009-10-12 2011-04-13 Falck Medical, Inc. Method of estimating ocular perfusion pressure
US20110228224A1 (en) * 2008-11-28 2011-09-22 Kamran Siminou Methods, systems, and devices for monitoring anisocoria and asymmetry of pupillary reaction to stimulus
US20110288475A1 (en) * 2010-05-20 2011-11-24 Charles Steven T Infusion pressure control using blood pressure
WO2014017996A1 (en) * 2012-07-26 2014-01-30 Sergiienko Mykola Device for controlled elevation of intraocular pressure
US8911085B2 (en) 2007-09-14 2014-12-16 Neuroptics, Inc. Pupilary screening system and method
US20150029463A1 (en) * 2013-07-23 2015-01-29 Retmap, Inc. Device for electrophysiological recording from the eye
CN104983395A (en) * 2015-05-21 2015-10-21 华中科技大学同济医学院附属同济医院 Intraocular pressure real-time measuring device and method based on conjunctival sac pressure detection
US9415162B2 (en) 2010-05-20 2016-08-16 Alcon Research, Ltd. Infusion pressure control using blood pressure
CN109452929A (en) * 2018-11-30 2019-03-12 深圳市华智康电子有限公司 It is a kind of to utilize the foveal region of retina arterial pressure measurement double protecting device of single-chip microcontroller and guard method
CN109452927A (en) * 2018-11-30 2019-03-12 深圳市眼科医院 A kind of foveal region of retina arterial pressure measurement protective device and guard method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2341137A (en) * 1943-02-06 1944-02-08 Milton H Damron Compact sphygmomanometer
US2430851A (en) * 1945-02-19 1947-11-18 Allen Edwin Lee Device for examining the anterior chamber of the eye
US2453841A (en) * 1944-12-26 1948-11-16 Dolorimeter Inc Medical diagnostic device
US2836173A (en) * 1951-11-30 1958-05-27 Uemura Misao Apparatus to measure intra-cerebral blood pressure
US3452589A (en) * 1966-04-22 1969-07-01 Pennsylvania Lions Sight Conse Apparatus for measuring stress-strain characteristics
US3706304A (en) * 1970-02-19 1972-12-19 Hampson A Sisler Optical ophthalmodynamometer
US3835836A (en) * 1971-05-27 1974-09-17 Y Kanter Compression opthalmodynamometer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2341137A (en) * 1943-02-06 1944-02-08 Milton H Damron Compact sphygmomanometer
US2453841A (en) * 1944-12-26 1948-11-16 Dolorimeter Inc Medical diagnostic device
US2430851A (en) * 1945-02-19 1947-11-18 Allen Edwin Lee Device for examining the anterior chamber of the eye
US2836173A (en) * 1951-11-30 1958-05-27 Uemura Misao Apparatus to measure intra-cerebral blood pressure
US3452589A (en) * 1966-04-22 1969-07-01 Pennsylvania Lions Sight Conse Apparatus for measuring stress-strain characteristics
US3706304A (en) * 1970-02-19 1972-12-19 Hampson A Sisler Optical ophthalmodynamometer
US3835836A (en) * 1971-05-27 1974-09-17 Y Kanter Compression opthalmodynamometer

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4402325A (en) * 1979-09-29 1983-09-06 Minolta Camera Kabushiki Kaisha Ophthalmic device to diagnose the eye fundus
US4907595A (en) * 1986-01-10 1990-03-13 Strauss Andreas L Apparatus for simultaneous determination of ophthalmic artery blood pressure and flow
US5032020A (en) * 1988-02-09 1991-07-16 Yves Robert Ophthalmological instrument
US5149213A (en) * 1990-07-11 1992-09-22 Brother Kogyo Kabushiki Kaisha Noise reducing back stopper for an impact print head
EP0597953A1 (en) * 1991-07-29 1994-05-25 Escalon Ophthalmics, Inc. Apparatus and method for indenting the ocular coats of an eye
EP0597953A4 (en) * 1991-07-29 1994-12-07 Escalon Ophthalmics Inc Apparatus and method for indenting the ocular coats of an eye.
DE4417300A1 (en) * 1994-05-18 1995-11-30 Preusner Paul Rolf Dipl Phys D Appliance for controlled increasing of pressure in human eye
US6027454A (en) * 1995-04-21 2000-02-22 Loew; Bernhard Ophthalmodynamometer
WO1998034536A1 (en) * 1997-02-12 1998-08-13 California Institute Of Technology Non-invasive measurement of intracranial pressure
US6129682A (en) * 1997-02-12 2000-10-10 California Institute Of Technology Non-invasive method of measuring cerebral spinal fluid pressure
AU728060B2 (en) * 1997-02-12 2001-01-04 California Institute Of Technology Non-invasive measurement of intracranial pressure
US5903333A (en) * 1997-06-24 1999-05-11 Neuroptics, Inc. Contact lens for use with ophthalmic monitoring systems
US5953097A (en) * 1997-06-24 1999-09-14 Neuroptics, Inc. Contact lens for use with ophthalmic monitoring systems
US6390989B1 (en) * 1998-06-19 2002-05-21 The Uab Research Foundation Oximetric tonometer with intracranial pressure monitoring capability
US7670002B2 (en) 1999-04-23 2010-03-02 Neuroptics, Inc. Pupilometer with pupil irregularity detection, pupil tracking, and pupil response detection capability, glaucoma screening capability, intracranial pressure detection capability, and ocular aberration measurement capability
US8235526B2 (en) 1999-04-23 2012-08-07 Neuroptics, Inc. Pupilometer with pupil irregularity detection, pupil tracking, and pupil response detection capability, glaucoma screening capability, intracranial pressure detection capability, and ocular aberration measurement capability
US20060181678A1 (en) * 1999-04-23 2006-08-17 Neuroptics, Inc. A California Corporation Pupilometer with pupil irregularity detection, pupil tracking, and pupil response detection capability, glaucoma screening capability, intracranial pressure detection capability, and ocular aberration measurement capability
US20100195049A1 (en) * 1999-04-23 2010-08-05 Neuroptics, Inc. Pupilometer with pupil irregularity detection, pupil tracking, and pupil response detection capability, glaucoma screening capability, intracranial pressure detection capability, and ocular aberration measurement capability
US6161931A (en) * 1999-06-14 2000-12-19 University Of New Mexico Fiberoptic fundoscope coupler
US6830347B2 (en) * 2001-02-14 2004-12-14 Welch Allyn, Inc Eye viewing device comprising eye cup
US7122007B2 (en) 2003-05-12 2006-10-17 Caritas St. Elizabeth Medical Center Of Boston, Inc. Methods of and systems and devices for assessing intracranial pressure non-invasively
US20040230124A1 (en) * 2003-05-12 2004-11-18 Querfurth Henry W. Methods of and systems and devices for assessing intracranial pressure non-invasively
US20060206037A1 (en) * 2005-02-24 2006-09-14 Braxton Ernest E Apparatus and method for non-invasive measurement of intracranial pressure
US8911085B2 (en) 2007-09-14 2014-12-16 Neuroptics, Inc. Pupilary screening system and method
US8534840B2 (en) 2008-11-28 2013-09-17 Neuroptics, Inc. Methods, systems, and devices for monitoring anisocoria and asymmetry of pupillary reaction to stimulus
US20110228224A1 (en) * 2008-11-28 2011-09-22 Kamran Siminou Methods, systems, and devices for monitoring anisocoria and asymmetry of pupillary reaction to stimulus
EP2308369A1 (en) * 2009-10-12 2011-04-13 Falck Medical, Inc. Method of estimating ocular perfusion pressure
US20110087086A1 (en) * 2009-10-12 2011-04-14 Falck Medical, Inc. Method of Estimating Ocular Perfusion Pressure
US9415162B2 (en) 2010-05-20 2016-08-16 Alcon Research, Ltd. Infusion pressure control using blood pressure
US8905930B2 (en) * 2010-05-20 2014-12-09 Alcon Research, Ltd. Infusion pressure control using blood pressure
US20110288475A1 (en) * 2010-05-20 2011-11-24 Charles Steven T Infusion pressure control using blood pressure
US9655776B2 (en) 2010-05-20 2017-05-23 Novartis Ag Infusion pressure control using blood pressure
US10463533B2 (en) 2010-05-20 2019-11-05 Novartis Ag Infusion pressure control using blood pressure
WO2014017996A1 (en) * 2012-07-26 2014-01-30 Sergiienko Mykola Device for controlled elevation of intraocular pressure
US20150029463A1 (en) * 2013-07-23 2015-01-29 Retmap, Inc. Device for electrophysiological recording from the eye
US20190029554A1 (en) * 2013-07-23 2019-01-31 Retmap, Inc. Device for electrophysiological recording from the eye
US10952630B2 (en) 2013-07-23 2021-03-23 Retmap, Inc. Device for electrophysiological recording from the eye
US11766208B2 (en) 2013-07-23 2023-09-26 Retmap, Inc. Device for electrophysiological recording from the eye
CN104983395A (en) * 2015-05-21 2015-10-21 华中科技大学同济医学院附属同济医院 Intraocular pressure real-time measuring device and method based on conjunctival sac pressure detection
CN109452929A (en) * 2018-11-30 2019-03-12 深圳市华智康电子有限公司 It is a kind of to utilize the foveal region of retina arterial pressure measurement double protecting device of single-chip microcontroller and guard method
CN109452927A (en) * 2018-11-30 2019-03-12 深圳市眼科医院 A kind of foveal region of retina arterial pressure measurement protective device and guard method

Similar Documents

Publication Publication Date Title
US3929124A (en) Opthalmodynamometer
US3903871A (en) Ophthalmodynamometer
US4951671A (en) Tonometry apparatus
AU741461B2 (en) A tonometer system for measuring intraocular pressure by applanation and/or indentation
Kniestedt et al. Tonometry through the ages
Zeimer et al. A practical venomanometer: measurement of episcleral venous pressure and assessment of the normal range
US3992926A (en) Pressure measuring method and apparatus with digital readout
US5032020A (en) Ophthalmological instrument
Maurice A recording tonometer
US2708928A (en) Ocular device
US6027454A (en) Ophthalmodynamometer
Kaufman Pressure measurement: Which tonometer?
US3706304A (en) Optical ophthalmodynamometer
EP1778070A2 (en) An improved apparatus and method of intraocular pressure determination
EP3260041A2 (en) Applanation head for a goldmann applanation tonometer and related tonometer, method for measuring an intraocular pressure
Nuyen et al. Suppl 1: M3: Detecting IOP Fluctuations in Glaucoma Patients
Moses et al. The pneumatonograph: a laboratory study
US3150520A (en) Tonometer
NISSEN Continuous recording of the intraocular pressure in human and rabbit eyes with a simple applanating suction cup
US3736789A (en) Test and calibrating device for intra-ocular pressure instruments
Brusini Intraocular Pressure and Its Measurement
SU426652A1 (en) SPHIGMOTONOSKOP
Marg et al. Trough height, pressure and flattening in tonometry
AU758525B2 (en) A tonometer system for measuring intraocular pressure by applanation and/or indentation
LINNÉR et al. APPLANATION TONOGRAPHY AT CONSTANT INTRAOCULAR PRESSURE: I. Basic considerations

Legal Events

Date Code Title Description
AS Assignment

Owner name: SANWA BUSINESS CREDIT CORPORATION

Free format text: SECURITY INTEREST;ASSIGNOR:ABC RAIL CORPORATION;REEL/FRAME:004873/0427

Effective date: 19871027

Owner name: FIRST NATIONAL BANK OF CHICAGO, THE

Free format text: SECURITY INTEREST;ASSIGNOR:ABC RAIL CORPORATION;REEL/FRAME:004873/0427

Effective date: 19871027

AS Assignment

Owner name: FIRST NATIONAL BANK OF CHICAGO (CANADA), THE

Free format text: SECURITY INTEREST;ASSIGNOR:ABC RAIL CORPORATION, A CORP. OF DE.;REEL/FRAME:005244/0446

Effective date: 19890801

AS Assignment

Owner name: ABC RAIL CORPORATION, A CORP OF DE.

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:SANWA BUSINESS CREDTI CORPORATION;REEL/FRAME:005253/0307

Effective date: 19871027

AS Assignment

Owner name: AMERICAN NATIONAL BANK AND TRUST COMPANY OF CHICAG

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:FIRST NATIONAL BANK OF CHICAGO, THE A NATIONAL BANKINGASSOCIATION;REEL/FRAME:006399/0007

Effective date: 19920305

AS Assignment

Owner name: ABC RAIL CORPORATION, ILLINOIS

Free format text: RELEASE BY SECURED PARTY;ASSIGNORS:AMERICAN NATIONAL BANK AND TRUST COMPANY OF CHICAGO;FIRST NATIONAL BANK OF CHICAGO, (CANADA), THE;REEL/FRAME:006891/0401

Effective date: 19930930

Owner name: AMERICAN NATIONAL BANK AND TRUST COMPANY OF CHICAG

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:FIRST NATIONAL BANK OF CHICAGO, THE;REEL/FRAME:006839/0663

Effective date: 19930930