US3927616A - Combustible cartridge case - Google Patents

Combustible cartridge case Download PDF

Info

Publication number
US3927616A
US3927616A US463237A US46323774A US3927616A US 3927616 A US3927616 A US 3927616A US 463237 A US463237 A US 463237A US 46323774 A US46323774 A US 46323774A US 3927616 A US3927616 A US 3927616A
Authority
US
United States
Prior art keywords
coating
cartridge case
methacrylate polymer
weight percent
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US463237A
Inventor
Sydney Axelrod
Walter Brenner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Army
Original Assignee
US Department of Army
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Army filed Critical US Department of Army
Priority to US463237A priority Critical patent/US3927616A/en
Application granted granted Critical
Publication of US3927616A publication Critical patent/US3927616A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B5/00Cartridge ammunition, e.g. separately-loaded propellant charges
    • F42B5/02Cartridges, i.e. cases with charge and missile
    • F42B5/18Caseless ammunition; Cartridges having combustible cases
    • F42B5/192Cartridge cases characterised by the material of the casing wall
    • F42B5/196Coatings
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/04Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive
    • C06B45/06Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component
    • C06B45/10Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component the organic component containing a resin
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/12Compositions or products which are defined by structure or arrangement of component of product having contiguous layers or zones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S102/00Ammunition and explosives
    • Y10S102/70Combustilbe cartridge

Definitions

  • cellulose, reinforcing fibers and a resinous binder are rendered resistant to water and oil by providing the exterior surface with a consumable coating consisting a o Pmr im h .wm dho mwm a e 6 D. r .mm u dwm .W Nm T 08 Et fl .m P8.
  • This invention relates to a novel and improved com bustible, non-metallic cartridge case, and particularly to a porous, fiber reinforced nitrocellulose cartridge case provided with a coating, which is resistant to penetration by water and oil and promotes the complete consumability of the cartridge case.
  • Combustible cartridge cases are generally composed of nitrocellulose, reinforcing fibers and a resinous binder.
  • a case of such type is filled with a propellant and fitted with a primer and a projectile to form a cartridge.
  • the non-metallic cartridge cases possess the dual advantages of lower weight and cost.
  • a common method of fabricating combustible, nonmetallic cartridge cases comprises dispersing nitrocellulose fibers or powder, reinforcing fibers, such as kraft and other cellulosic fibers, and synthetic fibers, such as acrylics and polyesters, together with resin binders and other components, i.e., stabilizers, etc., in water and collecting the fibers on a felting die.
  • the felted fiber form is then molded into the desired shape using appropriately shaped matched molds, cured and dried.
  • the finished cartridge case has a porous fibrous structure, which must be maintained to ensure the rapid propagation of the flame through the case material during firing.
  • the non-metallic cartridge case will absorb liquid water as well as permit the penetration of water vapor, which adversely affects the firing and ballistic performance of the ammunition and causes incomplete combustion of the cartridge case.
  • contact with oily substances, such as hydraulic fluids also degrades the combustion characteristics of such non-metallic cartridge cases.
  • An object of the present invention is to provide a coating, which will render the combustible cartridge case insensitive to water and oil.
  • Another object of the invention is to provide a combustible cartridge case whose exterior surface is coated with a composition, which renders the case substantially impermeable to water and oil, so that upon firing of the ammunition the ballistic level of the ammunition will not be adversely affected and little, if any, residue will remain in the gun due to the coating or the absorption of water or oil by said case.
  • the drawing illustrates a longitudinal cross-sectional view of a typical, assembled combustible cartridge.
  • the assembled cartridge comprises a generally cylindrical cartridge case 10 consisting of a tubular casing 12 and a base element 14, which can be attached to the lower end of casing 12 by adhesive means 16.
  • a metal projectile 18 provided with a rotating band 20 is mechanically or adhesively attached to the upper end 22 of casing 12.
  • a suitable propellant 24, e.g. nitrocellulose grains, is contained in the case 10 and is ignited by a primer 26 mounted in the base element 14.
  • the exterior surface, at least, of the combustible cartridge case 10 is completely coated with a novel coating composition 28 more fully described hereinafter.
  • the cartridge case 10, which is coated according to the present invention is a well-known type of porous combustible cartridge case, which is composed of a nitrocellulose of moderate nitrogen content, reinforcing fibers, e.g. Kraft or synthetic fibers such as acrylics, and a resinous binder, such as polyvinylacetate, and is formed by conventional methods, e.g. felting or compression molding.
  • porous combustible cartridge cases containing nitrocellulose, reinforcing fibers and resin binders wherein at least the exterior surface of the case is covered with a novel coating consisting essentially of a dispersion of finely divided particles of RDX (cyclotrimethylenetrinitramine HMX (cyclotetramethylenetetranitramine) or PETN (pentaerythritol tetranitrate) in a polymeric resin, which is capable of thermally depolymerizing to the monomer, selected from the group consisting of alkyl methacrylate polymers, methacrylonitrile polymers, and alpha methyl styrene polymers.
  • RDX cyclotrimethylenetrinitramine HMX (cyclotetramethylenetetranitramine) or PETN (pentaerythritol tetranitrate)
  • RDX cyclotrimethylenetrinitramine HMX (cyclotetram
  • Such coating prevents the penetration of oil and water, including liquid water and water vapor, into the porous surface and interior of the cartridge case.
  • the resin depolymerizes to the volatile monomer and the solid high energy explosive, e.g., RDX, assists in burning the resin as well as the case, whereby little or no residue is left in the gun.
  • the novel coating compositions can be prepared by dispersing or dissolving the high energy explosive, such as RDX, in a solution of a solid resin of the aforesaid class in a suitable liquid organic solvent.
  • Suitable organic solvents do not affect the case deleteriously and include benzene, toluene, hexane and mixtures thereof, methylene chloride and percholoroethylene.
  • the liquid coating compositions can be applied to the cartridge case by usual methods such as spraying, brushing and dipping, the viscosity of the solution depending on the method of application.
  • the proportions of high energy explosive, polymeric resin and solvent in the coating solution may vary widely depending on the specific service requirements.
  • the solids or non-volatile portion of the liquid coating composition contains between 30 and 90 weight percent of the high energy explosive and between and 10 weight percent of the polymeric resin.
  • the solids content of the coating solution can range from about 5 to 50 weight percent, depending on the method of application to the combustible cartridge case.
  • a preferred formulation for such compositions comprises about 80 weight percent of RDX or other high energy explosive, and about 20 weight percent of alkyl methacrylate polymer, or other polymer of the aforesaid group, dissolved in a liquid solvent, especially wherein the high energy explosive and polymeric resin solids constitute about 25-35 weight percent of the solution.
  • the amount of resin-explosive composition coated on the cartridge case surface can be varied widely. Generally, such coating ranges from 2 to 20 weight percent of the cartridge case, corresponding to a calculated coating thickness of between about 3 and about 20 mils. For optimum protection against the deleterious effects of water penetration or absorption into the combustible cartridge case, the thickness of the coating ranges between about and mils. For maximum combustibility, the largest amount of RDX or other high energy explosive, consistent with the physical strength performance requirements of the coating, is employed.
  • the coating solution should be carefully applied to provide a continuous coating free from breaks, pinholes, etc., over at least the exterior surface of the combustible cartridge case.
  • the novel coating can be used in conjunction with a light topor undercoat of a resin of the aforesaid class containing no high energy explosive, whereby the water resistance of the case can be somewhat further improved in some instances.
  • Alkyl methacrylate polymers such as the polymeric methyl-, ethyl-, n-propyl-, isopropyl-, n-butyl, isobutyland 2-ethylhexyl methacrylates are the preferred resins for use in the coatings of the present invention.
  • the methyl-, ethyland butyl methacrylate polymers and mixtures thereof are particularly preferred for such use, since they combine excellent water and oil resistance, thermal depolymerization and consumability characteristics as Well as excellent mechanical properties of the coating films produced, e.g., stability, toughness, hardness and adhesion to the case, as well as both physical and chemical inertness with respect to the nitrocellulose of the cartridge case.
  • These properties are also possessed to a high degree by solid methacrylonitrile polymers and alpha methyl styrene polymers noted above; and such properties can be varied, as
  • thermoplastic polymeric resins of the aforesaid group on exposure to elevated temperatures can be substantially completely depolymerized to the monomer which is volatile under such conditions (N. Grassie, The Chemistry of High Polymer Degradation Processes, Interscience Publishers, New York, N.Y., p. 45, 79 1956)).
  • alkyl acrylate polymers acrylonitrile polymers and styrene polymers, as well as other polymers including polyethylene, polypropylene, and polyisobutenes, thermally degrade to form large amounts of solid or tarry carbonaceous deposits and hence are not desirable candidates for the present application where complete removal of the polymeric resin binder without any remaining residue after combustion is desired for optimum non-metallic cartridge case performance characteristics.
  • Combustible, porous, fiber reinforced, nitrocellulose cartridge cases coated with the novel protective coating compositions of this invention have been subjected to rigorous rain and humidity test cycles and then fired without leaving residue in the gun breech.
  • the solid high energy explosives RDX, HMX and PETN used in the coating are less sensitive to impact than liquid nitrate ester explosives, such as nitroglycerin and butanetriol trinitrate. This is important in processing and with regard to the safety of the coated cartridge during handling and transportation as well as under combat conditions.
  • liquid nitrate esters at ordinary temperatures migrate from a coating to the combustible cartridge case substrate; also, they volatilize therefrom at elevated temperatures and crystallize at sub-zero temperatures, thereby changing the ballistic properties of the coating.
  • the present invention provides coatings which possess stable ballistic characteristics.
  • a liquid coating composition was prepared by dissolving 30 parts by weight of ethyl methacrylate polymer of high molecular weight and 0.91 inherent viscosity (sold under the trademark Elvacite 2042 by E. I. duPont de Nemours & Co.), and 10 parts by weight of butyl methacrylate polymer of high molecular weight and 0.53 ,inherent viscosity (sold under the trademark Elvacite 2044 by E. I. duPont de Nemours & Co.) in a mixture of 220 parts by weight of methylene chloride and 220 parts by weight of toluene. parts by weight of standard RDX powder (97% passed through a No. 325 US. Standard Sieve) were dispersed in the resulting solution with agitation.
  • standard RDX powder 97% passed through a No. 325 US. Standard Sieve
  • the liquid coating composition thus obtained was sprayed over the exterior surface of a 152mm porous combustible cartridge case, consisting of 8 weight percent of kraft fibers 26 weight percent of acrylic fibers 55 weight percent of nitrocellulose (12.6% N) 10 weight percent of polyvinylacetate resin binder 1 weight percent of diphenylamine stabilizer liquid water and oil absorption obtained by means of the aforesaid protective coatings.
  • the approximate coating thickness was calculated from the case surface area coated and the amount of non-volatile coating Table 1 shows that when the part of the uncoated (control) cartridge case normally exposed to the moist atmosphere (i.e., the exterior surface of the case) was given a 12-13 mils thick coating of the aforesaid RDX/ethyl methacrylate-butyl methacrylate polymer system, the WVTR was reduced from 602 (average) g/24 hr/m to 109 g/24 hr/m and when the interior surface of the case was also similarly coated with the same system, the WVTR was reduced to 91 g/ 24 hr/m A further improvement was obtained by applying a 1-3 mil topcoat of 100% of said methacrylate polymer resin over the RDX/methacrylate polymer coating (samples 6 and 7).
  • EXAMPLE 2 152mm combustible cartridge cases of the type described in example 1, whose exterior surfaces had been protected with a 12-13 mil coating of 80% RDX/ 15% ethylmethacrylate polymer/5% butylmethacrylate polymer, as described in example 1, were loaded with a standard propellant and fitted with a primer and a projectile. A number of the cartridges thus obtained were subjected to a simulated rain storm for 12 hours, totalling 8 inches of rain. The cartridges, both wet and dry, were fired from a 152mm cannon. The dry cartridges left no residue in the breech after firing, while the cartridges exposed to the rain left substantially no residue (a few harmless dust specks).
  • the polymer coatings eliminate hang fires" and are consumed during the combustion of the powder charge.
  • the uncoated end surfaces permit the powder to be readily ignited by ordinary percussion primers even though the outer surface is coated with the methacrylate polymer, which is a very efiective combustion retardant.
  • a porous, combustible cartridge case comprising nitrocellulose, reinforcing fibers and a resinous binder, wherein at least the exterior surface of the case is covered with a substantially water-impermeable, consumable coating consisting essentially of finely divided particles of a solid high energy explosive of the group consisting of cyclotrimethylenetrinitramine, cyclotetramethylenetetranitramine and pentaerythritol tetranitrate, dispersed in a thermally depolymerizable, solid polymeric resin of the group consisting of alkyl methacrylate polymers, methacrylonitrile polymers and alpha methyl styrene polymers.
  • a cartridge case according to claim 1, wherein the resin is an alkyl methacrylate polymer.
  • alkyl methacrylate polymer is a methyl methacrylate polymer, an ethyl methacrylate polymer or a butyl methacrylate polymer and mixtures thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Paints Or Removers (AREA)

Abstract

Porous combustible cartridge cases containing nitrocellulose, reinforcing fibers and a resinous binder, are rendered resistant to water and oil by providing the exterior surface with a consumable coating consisting essentially of RDX, HMX or PETN dispersed in a polymeric resin, e.g., an alkyl methacrylate, which is capable of thermally depolymerizing to the monomer.

Description

[ Dec. 23, 1975 United States Patent 1191 Axelrod et al.
[5 COMBUSTIBLE CARTRIDGE CASE 3 550 532 12/1970 Zimmerman. 102/43 R 3,670,649 6/1972 Hartlein et l02/D1G. 1
[75] Inventors Sydney Axelml New York 3,703,868 11/1972 Braak....... 102/1310. 1
Quinlan Walter Brenner, Teaneck, NJ.
[73] Assignee: The United States of America as represented by the Secretary of the Primary Examiner-Charles T. Jordan Army, Washington, DC.
Apr. 23, 1974 Attorney, Agent, or FirmNathan Edelberg; Robert P. Gibson; A. Victor Erkkila [22] Filed:
[57] ABSTRACT Porous combustible cartridge cases containing nitro- 21 Appl. No.: 463,237
cellulose, reinforcing fibers and a resinous binder, are rendered resistant to water and oil by providing the exterior surface with a consumable coating consisting a o Pmr im h .wm dho mwm a e 6 D. r .mm u dwm .W Nm T 08 Et fl .m P8. W rme 2 ol m m Xkl Mflm Hn m ,ad xw w-m we C f m s 0..me 0mm .m o 3 emw eyP .JR e my 20 ml SW m 1 M o e e on; m m rT i ,mSDP H67 99 H 3 30 93 1 MM 6 25 1 1 3 3 US. Patent Dec. 23, 1975 3,927,616
COMBUSTIBLE CARTRIDGE CASE BACKGROUND OF THE INVENTION This invention relates to a novel and improved com bustible, non-metallic cartridge case, and particularly to a porous, fiber reinforced nitrocellulose cartridge case provided with a coating, which is resistant to penetration by water and oil and promotes the complete consumability of the cartridge case.
Combustible cartridge cases are generally composed of nitrocellulose, reinforcing fibers and a resinous binder. A case of such type is filled with a propellant and fitted with a primer and a projectile to form a cartridge. Compared with metallic cases, the non-metallic cartridge cases possess the dual advantages of lower weight and cost.
A common method of fabricating combustible, nonmetallic cartridge cases comprises dispersing nitrocellulose fibers or powder, reinforcing fibers, such as kraft and other cellulosic fibers, and synthetic fibers, such as acrylics and polyesters, together with resin binders and other components, i.e., stabilizers, etc., in water and collecting the fibers on a felting die. The felted fiber form is then molded into the desired shape using appropriately shaped matched molds, cured and dried. The finished cartridge case has a porous fibrous structure, which must be maintained to ensure the rapid propagation of the flame through the case material during firing. However, due to its porous structure and content of fibers, particularly cellulosic fibers, the non-metallic cartridge case will absorb liquid water as well as permit the penetration of water vapor, which adversely affects the firing and ballistic performance of the ammunition and causes incomplete combustion of the cartridge case. In addition, contact with oily substances, such as hydraulic fluids, also degrades the combustion characteristics of such non-metallic cartridge cases.
Various attempts to overcome the aforesaid deficiencies have included coating the cartridge case surface with a plastic film, such. as nitrocellulose, alkyd resins, and polyvinylbutyral resins. Generally, it was found that if a coating was thick enough to protect the cartridge case against both liquid water and water vapor, the flame could not propagate throughout the case during the firing cycle with the result that the case did not burn completely and left residue in the gun. On the other hand when the amount of coating was reduced so that the coating did not interfere with the combustion of the case, the coating failed to adequately protect the case against the penetration of liquid water and water vapor, which also produced an incomplete combustion of the case with resultant residue in the gun. Such residue presents an intolerable hazard, since it can smolder and cause accidental preignition of the cartridge case of the next round loaded into the gun. In addition, absorbed water or water vapor degrades the ballistic performance of the ammunition.
An object of the present invention is to provide a coating, which will render the combustible cartridge case insensitive to water and oil.
Another object of the invention is to provide a combustible cartridge case whose exterior surface is coated with a composition, which renders the case substantially impermeable to water and oil, so that upon firing of the ammunition the ballistic level of the ammunition will not be adversely affected and little, if any, residue will remain in the gun due to the coating or the absorption of water or oil by said case.
The foregoing and other objects will become apparent from the following disclosure.
SUMMARY AND DETAILED DESCRIPTION OF THE DRAWING AND THE INVENTION The drawing illustrates a longitudinal cross-sectional view of a typical, assembled combustible cartridge. As shown in the drawing, the assembled cartridge comprises a generally cylindrical cartridge case 10 consisting of a tubular casing 12 and a base element 14, which can be attached to the lower end of casing 12 by adhesive means 16. A metal projectile 18 provided with a rotating band 20 is mechanically or adhesively attached to the upper end 22 of casing 12. A suitable propellant 24, e.g. nitrocellulose grains, is contained in the case 10 and is ignited by a primer 26 mounted in the base element 14.
In accordance with the present invention the exterior surface, at least, of the combustible cartridge case 10 is completely coated with a novel coating composition 28 more fully described hereinafter. Further, the cartridge case 10, which is coated according to the present invention, is a well-known type of porous combustible cartridge case, which is composed of a nitrocellulose of moderate nitrogen content, reinforcing fibers, e.g. Kraft or synthetic fibers such as acrylics, and a resinous binder, such as polyvinylacetate, and is formed by conventional methods, e.g. felting or compression molding.
In accordance with this invention, there is provided an improvement in porous combustible cartridge cases containing nitrocellulose, reinforcing fibers and resin binders, wherein at least the exterior surface of the case is covered with a novel coating consisting essentially of a dispersion of finely divided particles of RDX (cyclotrimethylenetrinitramine HMX (cyclotetramethylenetetranitramine) or PETN (pentaerythritol tetranitrate) in a polymeric resin, which is capable of thermally depolymerizing to the monomer, selected from the group consisting of alkyl methacrylate polymers, methacrylonitrile polymers, and alpha methyl styrene polymers. Such coating prevents the penetration of oil and water, including liquid water and water vapor, into the porous surface and interior of the cartridge case. Under the elevated temperatures produced when the round is fired, the resin depolymerizes to the volatile monomer and the solid high energy explosive, e.g., RDX, assists in burning the resin as well as the case, whereby little or no residue is left in the gun.
The novel coating compositions can be prepared by dispersing or dissolving the high energy explosive, such as RDX, in a solution of a solid resin of the aforesaid class in a suitable liquid organic solvent. Suitable organic solvents do not affect the case deleteriously and include benzene, toluene, hexane and mixtures thereof, methylene chloride and percholoroethylene. The liquid coating compositions can be applied to the cartridge case by usual methods such as spraying, brushing and dipping, the viscosity of the solution depending on the method of application.
The proportions of high energy explosive, polymeric resin and solvent in the coating solution may vary widely depending on the specific service requirements. In general, the solids or non-volatile portion of the liquid coating composition contains between 30 and 90 weight percent of the high energy explosive and between and 10 weight percent of the polymeric resin.
Also, the solids content of the coating solution can range from about 5 to 50 weight percent, depending on the method of application to the combustible cartridge case. A preferred formulation for such compositions comprises about 80 weight percent of RDX or other high energy explosive, and about 20 weight percent of alkyl methacrylate polymer, or other polymer of the aforesaid group, dissolved in a liquid solvent, especially wherein the high energy explosive and polymeric resin solids constitute about 25-35 weight percent of the solution.
The following illustrates representative liquid coating compositions of the present invention:
a. methylene chloride 220 grams ethyl methacrylate polymer 20 grams butyl methacrylate polymer 5 grams RDX 80 grams b. methylene chloride ll grams toluene llO grams ethyl methacrylate polymer 20 grams butyl methacrylate polymer grams PETN 80 grams 1:. methylene chloride 50 grams toluene 160 grams ethyl methacrylate polymer 25 grams methyl methacrylate polyme 5 grams HMX 90 grams d. methylene chloride 48 grams toluene 96 grams hexane 96 grams methyl methacrylate polymer 18 grams butyl methacrylate polymer 2 grams RDX 83 grams The amount of resin-explosive composition coated on the cartridge case surface can be varied widely. Generally, such coating ranges from 2 to 20 weight percent of the cartridge case, corresponding to a calculated coating thickness of between about 3 and about 20 mils. For optimum protection against the deleterious effects of water penetration or absorption into the combustible cartridge case, the thickness of the coating ranges between about and mils. For maximum combustibility, the largest amount of RDX or other high energy explosive, consistent with the physical strength performance requirements of the coating, is employed. For RDX this amount is about 80 weight percent of the solids content of the coating composi tion. The coating solution should be carefully applied to provide a continuous coating free from breaks, pinholes, etc., over at least the exterior surface of the combustible cartridge case. Also, the novel coating can be used in conjunction with a light topor undercoat of a resin of the aforesaid class containing no high energy explosive, whereby the water resistance of the case can be somewhat further improved in some instances.
Alkyl methacrylate polymers, such as the polymeric methyl-, ethyl-, n-propyl-, isopropyl-, n-butyl, isobutyland 2-ethylhexyl methacrylates are the preferred resins for use in the coatings of the present invention. The methyl-, ethyland butyl methacrylate polymers and mixtures thereof are particularly preferred for such use, since they combine excellent water and oil resistance, thermal depolymerization and consumability characteristics as Well as excellent mechanical properties of the coating films produced, e.g., stability, toughness, hardness and adhesion to the case, as well as both physical and chemical inertness with respect to the nitrocellulose of the cartridge case. These properties are also possessed to a high degree by solid methacrylonitrile polymers and alpha methyl styrene polymers noted above; and such properties can be varied, as
desired, to a limited extent by choice of the nature and degree of polymerization of the resin employed. Further, thermoplastic polymeric resins of the aforesaid group on exposure to elevated temperatures can be substantially completely depolymerized to the monomer which is volatile under such conditions (N. Grassie, The Chemistry of High Polymer Degradation Processes, Interscience Publishers, New York, N.Y., p. 45, 79 1956)). By contrast, alkyl acrylate polymers, acrylonitrile polymers and styrene polymers, as well as other polymers including polyethylene, polypropylene, and polyisobutenes, thermally degrade to form large amounts of solid or tarry carbonaceous deposits and hence are not desirable candidates for the present application where complete removal of the polymeric resin binder without any remaining residue after combustion is desired for optimum non-metallic cartridge case performance characteristics.
Combustible, porous, fiber reinforced, nitrocellulose cartridge cases coated with the novel protective coating compositions of this invention, have been subjected to rigorous rain and humidity test cycles and then fired without leaving residue in the gun breech. Also, the solid high energy explosives RDX, HMX and PETN used in the coating are less sensitive to impact than liquid nitrate ester explosives, such as nitroglycerin and butanetriol trinitrate. This is important in processing and with regard to the safety of the coated cartridge during handling and transportation as well as under combat conditions. Further, liquid nitrate esters at ordinary temperatures migrate from a coating to the combustible cartridge case substrate; also, they volatilize therefrom at elevated temperatures and crystallize at sub-zero temperatures, thereby changing the ballistic properties of the coating. By use of the aforesaid solid explosives, which do not exhibit these deleterious properties of the liquid nitrate esters, the present invention provides coatings which possess stable ballistic characteristics.
The following examples serve to illustrate specific embodiments of the coated cartridge cases of the present invention. However, it will be understood that they are illustrative only and do not in any way limit the invention.
EXAMPLE 1 A liquid coating composition was prepared by dissolving 30 parts by weight of ethyl methacrylate polymer of high molecular weight and 0.91 inherent viscosity (sold under the trademark Elvacite 2042 by E. I. duPont de Nemours & Co.), and 10 parts by weight of butyl methacrylate polymer of high molecular weight and 0.53 ,inherent viscosity (sold under the trademark Elvacite 2044 by E. I. duPont de Nemours & Co.) in a mixture of 220 parts by weight of methylene chloride and 220 parts by weight of toluene. parts by weight of standard RDX powder (97% passed through a No. 325 US. Standard Sieve) were dispersed in the resulting solution with agitation.
The liquid coating composition thus obtained" was sprayed over the exterior surface of a 152mm porous combustible cartridge case, consisting of 8 weight percent of kraft fibers 26 weight percent of acrylic fibers 55 weight percent of nitrocellulose (12.6% N) 10 weight percent of polyvinylacetate resin binder 1 weight percent of diphenylamine stabilizer liquid water and oil absorption obtained by means of the aforesaid protective coatings. The approximate coating thickness was calculated from the case surface area coated and the amount of non-volatile coating Table 1 shows that when the part of the uncoated (control) cartridge case normally exposed to the moist atmosphere (i.e., the exterior surface of the case) was given a 12-13 mils thick coating of the aforesaid RDX/ethyl methacrylate-butyl methacrylate polymer system, the WVTR was reduced from 602 (average) g/24 hr/m to 109 g/24 hr/m and when the interior surface of the case was also similarly coated with the same system, the WVTR was reduced to 91 g/ 24 hr/m A further improvement was obtained by applying a 1-3 mil topcoat of 100% of said methacrylate polymer resin over the RDX/methacrylate polymer coating (samples 6 and 7).
TABLE 2 Liquid Water Resistance of Treated and Untreated Cases* Protective Treatment Appropriate Thickness Liquid Water Sample (both sides coated) (per side) mils Absorbed by wt.
1 control 45.3 2 control 43.1 3 80 RDX/2O resin 12-13 1.89 4 ditto 13-14 1.99 5 100% resin 11-12 1.58 6 Same as 3 plus a 15-16 (includes 137 1 mil topcoat of topcoat) 100% resin The cases were immersed for 24 hours under about 6 inches of water so that both the exterior and interior surfaces contacted the water.
TABLE 3 Oil Vapor Transmission Rates of Treated and Untreated Cases Approximate Protective Treatment Thickness (per OVTR* OVTR* Sample (both sides coated) side) mils gl24 hr/m g/24 hr/lOO in 1 control 39 2.5 2 control 219 3 RDX/ZO resin 12-13 19 1.2 4 ditto 13-14 19 1.2 5 resin lll2 13 0.84 6 same as 3 plus l-3 15-16 13 0.84
mil topcoat of 100% resin OVTR Oil Vapor Transmission Rate, ASTM E 96-99, except that water was replaced by Aeroshell Fluid 6042l(petroleum base hydmulic fluid) marketed by the Shell Oil Company composition applied.
TABLE 1 Water Vapor Transmission Rates of Treated and Untreated Cases Approximate 'WVl'R Water Vapor Transmission Rate. ASTM E 96-66 TABLE 4 Liquid Oil Resistance of Treated and Untreated Cases Sample (both sides coated) Protective Treatment Appropriate Thickness Oil (per side) mils Absorbed control 39.4
TABLE 4-continued Liquid Oil Resistance of Treated and Untreated Cases* topcoat of 100% resin *1 hour immersion under V2" of Aeroshell Fluid 60421, both exterior and interior surfaces exposed.
EXAMPLE 2 152mm combustible cartridge cases of the type described in example 1, whose exterior surfaces had been protected with a 12-13 mil coating of 80% RDX/ 15% ethylmethacrylate polymer/5% butylmethacrylate polymer, as described in example 1, were loaded with a standard propellant and fitted with a primer and a projectile. A number of the cartridges thus obtained were subjected to a simulated rain storm for 12 hours, totalling 8 inches of rain. The cartridges, both wet and dry, were fired from a 152mm cannon. The dry cartridges left no residue in the breech after firing, while the cartridges exposed to the rain left substantially no residue (a few harmless dust specks). Another group of the coated cartridges was subjected to a 10 day cycling, during each 24 hour period of which they were exposed for 16 hours to 105F at 95% relative humidity and for 8 hours at 70F at 95% relative humidity. These cartridges left no residue in the breech after firing. By contrast, cartridges made in the same manner from the same components but not provided with the aforesaid protective coating, left a substantial amount of residue in the breech, which had to be removed prior to firing the next round. US. Pat. No. 2,349,048 discloses the coating of a string of smokeless powder comprising nitrocellulose and nitroglycerin with a combustion deterrent coating of a high molecular weight polymethacrylate ester, and then cutting the string. The polymer coatings eliminate hang fires" and are consumed during the combustion of the powder charge. The uncoated end surfaces permit the powder to be readily ignited by ordinary percussion primers even though the outer surface is coated with the methacrylate polymer, which is a very efiective combustion retardant. The
but serves to promote combustion of the coating and the case as well as protect the case against penetration of water and oil, whereby little, if any, residue remains in the gun when the cartridge is fired, even after expopatent does not disclose the present invention, wherein sure to water, and stable ballistic performance is achieved.
The foregoing disclosure is merely illustrative of the principles of this invention and is not to be interpreted in a limiting sense. We wish it to be understood that we do not desire to be limited to exact details of construction shown and described for obvious modifications will occur to a person skilled in the art.
What is claimed is:
l. A porous, combustible cartridge case comprising nitrocellulose, reinforcing fibers and a resinous binder, wherein at least the exterior surface of the case is covered with a substantially water-impermeable, consumable coating consisting essentially of finely divided particles of a solid high energy explosive of the group consisting of cyclotrimethylenetrinitramine, cyclotetramethylenetetranitramine and pentaerythritol tetranitrate, dispersed in a thermally depolymerizable, solid polymeric resin of the group consisting of alkyl methacrylate polymers, methacrylonitrile polymers and alpha methyl styrene polymers.
2. A cartridge case according to claim 1, wherein the coating contains between 30 and 90 weight percent of the high energy explosive and between and 10 weight percent of the polymeric resin. 7
3. A cartridge case according to claim 1, wherein the resin is an alkyl methacrylate polymer.
4. A cartridge case according to claim 3, wherein the alkyl methacrylate polymer is a methyl methacrylate polymer, an ethyl methacrylate polymer or a butyl methacrylate polymer and mixtures thereof.
5. A cartridge case according to claim 3, wherein the alkyl methacrylate polymer amounts to about 20 weight percent and the solid high energy explosive is cyclotrimethylenetrinitramine and amounts to about weight percent of the coating.

Claims (5)

1. A POROUS COMBUSTIBLE CATRIDGE CASE COMPRISING NITROCELLULOSE REINFORCING FIBERS AND A RESINOUS BINDER, WHEREIN AT LEAST THE EXTERIOR SURFACE OF THE CASE IS COVERED WITH A SUBSTANTIALLY WATER-IMPERMEABL, CONSUMABLE COATING CONSISTING ESSENTIALLY OF FINELY DIVIDED PARTICLES OF A SOLID HIGH ENERGY EXPLOSIVE OF THE GROUP CONSISTING OF CYCLOTRIMETHYLENETRINITRAMINE, CYCLOTETRAMETHYLENETETRANITRAMINE AND PENTRAERYTHRITOL TETRANITRATE, DISPERSED IN A THERMALLY DEPOLYMERIZABLE SOLID POLYMERIC RESIN OF THE GROUP CONSISTING OF ALKYL METHACRYKATE POLYMERIC, METHACRYLONITRILE POLYMERS AND ALPHA METHYL STYRENE POLYMERS.
2. A cartridge case according to claim 1, wherein the coating contains between 30 and 90 weight percent of the high energy explosive and between 70 and 10 weight percent of the polymeric resin.
3. A cartridge case according to claim 1, wherein the resin is an alkyl methacrylate polymer.
4. A cartridge case according to claim 3, wherein the alkyl methacrylate polymer is a methyl methacrylate polymer, an ethyl methacrylate polymer or a butyl methacrylate polymer and mixtures thereof.
5. A cartridge case according to claim 3, wherein the alkyl methacrylate polymer amounts to about 20 weight percent and the solid high energy explosive is cyclotrimethylenetrinitramine and amounts to about 80 weight percent of the coating.
US463237A 1974-04-23 1974-04-23 Combustible cartridge case Expired - Lifetime US3927616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US463237A US3927616A (en) 1974-04-23 1974-04-23 Combustible cartridge case

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US463237A US3927616A (en) 1974-04-23 1974-04-23 Combustible cartridge case

Publications (1)

Publication Number Publication Date
US3927616A true US3927616A (en) 1975-12-23

Family

ID=23839404

Family Applications (1)

Application Number Title Priority Date Filing Date
US463237A Expired - Lifetime US3927616A (en) 1974-04-23 1974-04-23 Combustible cartridge case

Country Status (1)

Country Link
US (1) US3927616A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3987731A (en) * 1976-01-16 1976-10-26 The United States Of America As Represented By The Secretary Of The Army Composite protective coating for combustible cartridge cases
US4365558A (en) * 1978-12-15 1982-12-28 Societe Nationale Des Poudres Et Explosifs Combustible objects, in particular combustible cartridge cases, which are heat-resistant
US4453860A (en) * 1977-03-02 1984-06-12 Dynamit Nobel Aktiengesellschaft Firedamp-safe method for stud driving cartridges
US4572078A (en) * 1982-04-14 1986-02-25 Morton Thiokol, Inc. Cased cartridge ammunition ignition booster
EP0260419A2 (en) * 1986-09-03 1988-03-23 Dynamit Nobel Aktiengesellschaft Combustible propellant cartridge case with an improved temperature resistance
US4766812A (en) * 1986-11-13 1988-08-30 L'etat Francais Represente Par Le Delegue Ministeriel Pour L'armement Varnish protecting a caseless or combustible-case round of ammunition against thermoinitiation
US5054399A (en) * 1988-07-05 1991-10-08 The United States Of America As Represented By The Secretary Of The Air Force Bomb or ordnance with internal shock attenuation barrier
US5237927A (en) * 1991-10-21 1993-08-24 Olin Corporation Energetic consumable cartridge case
US5323707A (en) * 1991-08-05 1994-06-28 Hercules Incorporated Consumable low energy layered propellant casing
US5339741A (en) * 1992-01-07 1994-08-23 The Walt Disney Company Precision fireworks display system having a decreased environmental impact
US5526750A (en) * 1992-01-07 1996-06-18 The Walt Disney Company Fireworks projectile having combustible shell
US5739462A (en) * 1995-06-27 1998-04-14 The Walt Disney Company Method and apparatus for creating pyrotechnic effects
US20030192632A1 (en) * 2002-04-08 2003-10-16 Nelaev Victor Petrovich Method for production of nitrocellulose base for consolidated charges and consolidated propellant charge based thereon
US20070289189A1 (en) * 2006-06-20 2007-12-20 Hilti Aktiengesellschaft Cartridge magazine
FR2928917A1 (en) * 2008-03-21 2009-09-25 Eurenco France Sa Liquid composition, useful as a precursor for finish coating of pyrotechnic filler, comprises energetic filler in a crosslinkable plastic binder
US10254092B1 (en) * 2007-05-23 2019-04-09 Vista Outdoor Operations Llc Advanced muzzle loader ammunition
US20230107457A1 (en) * 2021-09-27 2023-04-06 General Dynamics Ordnance and Tactical System - Canada of Valleyfield Inc. Combustible containers manufactured using reactive injection molding of azido polymers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3264993A (en) * 1965-04-22 1966-08-09 Atlantic Res Corp Combustible cartridge case composition and process
US3504630A (en) * 1968-03-14 1970-04-07 Us Army Combustible cartridge with fibrous porous base having crystalline explosive disposed therein
US3550532A (en) * 1967-08-25 1970-12-29 Theodore Zimmerman Moisture-proof combustible cartridge case
US3670649A (en) * 1970-08-13 1972-06-20 Dow Corning Combustible cartridges
US3703868A (en) * 1970-07-07 1972-11-28 Hercules Inc Protective surface covering having heat and moisture resistant properties for caseless ammunition
US3730094A (en) * 1970-06-12 1973-05-01 Us Army Energetic protective coating for caseless ammunition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3264993A (en) * 1965-04-22 1966-08-09 Atlantic Res Corp Combustible cartridge case composition and process
US3550532A (en) * 1967-08-25 1970-12-29 Theodore Zimmerman Moisture-proof combustible cartridge case
US3504630A (en) * 1968-03-14 1970-04-07 Us Army Combustible cartridge with fibrous porous base having crystalline explosive disposed therein
US3730094A (en) * 1970-06-12 1973-05-01 Us Army Energetic protective coating for caseless ammunition
US3703868A (en) * 1970-07-07 1972-11-28 Hercules Inc Protective surface covering having heat and moisture resistant properties for caseless ammunition
US3670649A (en) * 1970-08-13 1972-06-20 Dow Corning Combustible cartridges

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3987731A (en) * 1976-01-16 1976-10-26 The United States Of America As Represented By The Secretary Of The Army Composite protective coating for combustible cartridge cases
US4453860A (en) * 1977-03-02 1984-06-12 Dynamit Nobel Aktiengesellschaft Firedamp-safe method for stud driving cartridges
US4365558A (en) * 1978-12-15 1982-12-28 Societe Nationale Des Poudres Et Explosifs Combustible objects, in particular combustible cartridge cases, which are heat-resistant
US4572078A (en) * 1982-04-14 1986-02-25 Morton Thiokol, Inc. Cased cartridge ammunition ignition booster
EP0260419A2 (en) * 1986-09-03 1988-03-23 Dynamit Nobel Aktiengesellschaft Combustible propellant cartridge case with an improved temperature resistance
EP0260419A3 (en) * 1986-09-03 1989-10-04 Dynamit Nobel Aktiengesellschaft Combustible propellant cartridge case with an improved temperature resistance
US4766812A (en) * 1986-11-13 1988-08-30 L'etat Francais Represente Par Le Delegue Ministeriel Pour L'armement Varnish protecting a caseless or combustible-case round of ammunition against thermoinitiation
US5054399A (en) * 1988-07-05 1991-10-08 The United States Of America As Represented By The Secretary Of The Air Force Bomb or ordnance with internal shock attenuation barrier
US5323707A (en) * 1991-08-05 1994-06-28 Hercules Incorporated Consumable low energy layered propellant casing
US5237927A (en) * 1991-10-21 1993-08-24 Olin Corporation Energetic consumable cartridge case
US5339741A (en) * 1992-01-07 1994-08-23 The Walt Disney Company Precision fireworks display system having a decreased environmental impact
US5526750A (en) * 1992-01-07 1996-06-18 The Walt Disney Company Fireworks projectile having combustible shell
US5627338A (en) * 1992-01-07 1997-05-06 The Walt Disney Company Fireworks projectile having distinct shell configuration
US5739462A (en) * 1995-06-27 1998-04-14 The Walt Disney Company Method and apparatus for creating pyrotechnic effects
US20030192632A1 (en) * 2002-04-08 2003-10-16 Nelaev Victor Petrovich Method for production of nitrocellulose base for consolidated charges and consolidated propellant charge based thereon
US20070289189A1 (en) * 2006-06-20 2007-12-20 Hilti Aktiengesellschaft Cartridge magazine
US7690290B2 (en) * 2006-06-20 2010-04-06 Hilti Aktiengesellschaft Cartridge magazine
US10254092B1 (en) * 2007-05-23 2019-04-09 Vista Outdoor Operations Llc Advanced muzzle loader ammunition
FR2928917A1 (en) * 2008-03-21 2009-09-25 Eurenco France Sa Liquid composition, useful as a precursor for finish coating of pyrotechnic filler, comprises energetic filler in a crosslinkable plastic binder
US20230107457A1 (en) * 2021-09-27 2023-04-06 General Dynamics Ordnance and Tactical System - Canada of Valleyfield Inc. Combustible containers manufactured using reactive injection molding of azido polymers

Similar Documents

Publication Publication Date Title
US3927616A (en) Combustible cartridge case
US4452653A (en) Method of coating ammunition with a protective surface layer
US5218166A (en) Modified nitrocellulose based propellant composition
US3730094A (en) Energetic protective coating for caseless ammunition
US3987731A (en) Composite protective coating for combustible cartridge cases
US3442213A (en) Propellant charge for small arms ammunition
US3727512A (en) Process for the surface treatment of non metallic cases such as cartridges, and the so treated cases
KR102050552B1 (en) Burn rate modifier
US2379056A (en) Propellent powder
US4091729A (en) Low vulnerability booster charge caseless ammunition
KR102057710B1 (en) Burn rate modifier
US5237928A (en) Combustible cartridge case
US3212440A (en) Molded caseless small arms ammunition
US2385135A (en) Propellant smokeless powder
US2965466A (en) Explosive
US3392669A (en) Erosion reducer
US3280746A (en) Combustible cartridge case of felted fibrous material with synthetic resin and process
US3682726A (en) Nitrocellulose grain having crosslinked polymeric deterrent coating and process of making
EP0260419B1 (en) Combustible propellant cartridge case with an improved temperature resistance
US2131352A (en) Propellant explosive
US7051658B2 (en) Temperature-independent propellant powder
US2865729A (en) Coated smokeless powder
US4395934A (en) Wear reducer
DE3825581C1 (en) Combustible or consumable cartridge cases for ammunition - made of wrapping(s) of fibres of polyester, polyamide, polyolefin. polyacrylate, polyurethane, metal glass, coal etc.
US3117043A (en) Granular smokeless powder with peroxide coating