US3925865A - Fabric bulking unit - Google Patents

Fabric bulking unit Download PDF

Info

Publication number
US3925865A
US3925865A US409180A US40918073A US3925865A US 3925865 A US3925865 A US 3925865A US 409180 A US409180 A US 409180A US 40918073 A US40918073 A US 40918073A US 3925865 A US3925865 A US 3925865A
Authority
US
United States
Prior art keywords
fabric
vessel
nozzle
loop
bulking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US409180A
Inventor
Donald K Christian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US409180A priority Critical patent/US3925865A/en
Priority to US05/640,421 priority patent/US4112558A/en
Application granted granted Critical
Publication of US3925865A publication Critical patent/US3925865A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C29/00Finishing or dressing, of textile fabrics, not provided for in the preceding groups

Definitions

  • a bulking unit including a vessel having a fabric path therethrough. Drive rolls are provided along a portion of the fabric path so as to direct fabric into and out of a fabric loop within the vessel.
  • a gaseous treating unit is provided within the fabric loop and extends along the length thereof. The gaseous treating unit has a plurality of high velocity gas jets directed against the fabric with the angle of impingement of gas onto the fabric being substantially perpendicular thereto. Subsequent to the bulking unit, a cooling air chamber may be provided to cool the bulked fabric.
  • a loop control means is provided within the vessel to maintain an appropriate sized loop.
  • the present invention is yet another improvement of a technique for bulking a textile fabric and has certain definite advantages over the prior art attendant thereto as will be discussed hereinafter.
  • a heated gas such as air, for example, is employed whereby the temperature of the air may exceed the boiling point of water, for example, without the necessity of a completely pressurized system.
  • Another object of the present invention is to provide an improved apparatus for bulking a knit fabric.
  • Another object of the present invention is to provide an improved bulking process for textile materials.
  • Still another object of the present invention is to provide an improved process for the bulking of textile fabric utilizing a high velocity, heated gas as the bulking medium.
  • the apparatus of the present invention comprises a vessel, said vessel having a fabric path therethrough; means to drive a fabric along said path, said drive means being provided at the entrance and exit of the path with no intermediate stationary support means located therealong; means to direct high velocity gas against said fabric along said path; means to control the length of a fabric loop along said path and means to remove fabric from said vessel, said fabric removal means being coordinated with said loop control means whereby tension on said fabric is controlled in said loop.
  • an insulated vessel is preferably provided within which is located a pressurized gas manifold having a plurality of high velocity nozzles extending therealong.
  • a pressurized gas manifold having a plurality of high velocity nozzles extending therealong.
  • One preferred embodiment of the invention provides a high velocity nozzle at the entrance and exit of the fabric loop extending across the width of the fabric path. Driven rolls are provided at the entrance and exit of the vessel so as to control fabric feed into the vessel and also fabric exit from the vessel.
  • a loop control means is provided to continuously control the length of the fabric loop in the vessel, the loop control being operatively associated with the exit drive roll so as to continuously maintain a proper length loop.
  • Pressurized air or other gas at an elevated temperature is impinged upon the fabric, substantially perpendicular thereat. The heated gas thus heats the fabric to a predetermined temperature, while at the same time affording a substantial mechanical working action of the fabric. The fabric is bulked thereby.
  • the process of the present invention comprises the steps of feeding a fabric along a fabric path and providing a fabric loop thereat; controlling the length of the fabric loop so as to control tension on the fabric; and substantially impinging a heated gas against said fabric so as to produce a substantial mechanical action on the fabric without providing any substantial lateral movement of the fabric away from the gas stream.
  • air'or some other gas is heated to a predetermined temperature which can exceed that of the boiling point of water and is provided under pressure in a manifold having a plurality of nozzles extending therefrom and directed in the direction of the path of travel of the fabric along at least one portion of the loop.
  • the nozzle is positioned so as to provide an upward force against the fabric around a driven roll at the entrance to the vessel so as to insure a good mechanical action on the fabric.
  • FIG. 1 is a side elevational schematic of a bulking unit according to the teachings of the present invention.
  • FIG. 2 is a side cross sectional view of a nozzle arrangement according to the teachings of the present invention.
  • FIG. 3 is a cross sectional view of a nozzle arrangement taken along a line lII--III in FIG. 2.
  • a bulking vessel generally indicated as 10 is shown.
  • Vessel 10 is comprised of side walls 12 that are preferably stainless steel and thermally insulated to conserve heat in the bulking area.
  • a gas pressure manifold Positioned within vessel 10 and along the length thereof so as to permit treatment of the entire width of a fabric passing therethrough is a gas pressure manifold generally indicated as 20.
  • Gas pressure vessel 20 is, in effect, a manifold that extends across the width of the treating area and has at least one and preferably a plurality of high velocity gaseous nozzles 30 extending through side walls 22 in communication with the interior thereof.
  • Each nozzle 30 is positioned at a particular angle so as to direct gas at high velocity against a fabric F according to the predetermined angle and thus impart a substantial mechanical action thereon.
  • the fabric F is fed into vessel 10 by a pair of driven rolls 40 and 41 that are operating at predetermined speeds.
  • fabric F encounters the second driven roll 41 and passes partially therearound. Heated air under pressure at high velocity exists nozzle 30 and impinges against fabric F so as to cause heat from the air to heat the fabric to a particular predetermined temperature while at the same time mechanically acting upon the fabric so as to distort same to facilitate bulking.
  • the fabric is distended upwardly away from its normal path.
  • the bulking unit of the present invention may be employed in conjunction with other process equipment such as, for example, a tenter frame, a washer or the like.
  • process equipment such as, for example, a tenter frame, a washer or the like.
  • the air or other gas within the pressure chamber is heated so as to accomplish bulking of the fabric, the fabric will exit vessel 10 at an elevated temperature. As such, it
  • Cooling zone 70 may be desirable to provide a cooling zone 70 subsequent to exit passageway 14 of vessel 10.
  • Cooling zone 70 may be a purely ambient zone, a zone wherein artificial cooling is employed so as to make rapidly reduce the temperature of the fabric, or the like.
  • Struts 34 are unified by a baffle 35 which extends across the entire width of nozzle 30 and serves as a baffle for diffusion of gas being dispensed therefrom.
  • bafile 35 has a cutaway portion 36 along a central location thereof.
  • Wall members 22 adjacent nozzle 30 are provided with an adjustment member 24. Movement of adjustment member 24 inwardly or outwardly will thus cause a slight deflection of members 31 and 32 that define nozzle throat 37 whereby a predetermined relationship may be established in the nozzle 30 so as to further delineate the type flow pattern of the gas exiting therefrom.
  • the temperature of the gas being handled by nozzle 30 is such that bulking is imparted to the fabric.
  • the fabric passes under the bottom of a manifold 20 from whence the pressurized gas is expelled and forms a loop therearound.
  • a loop control device 50 senses the length of the loop and controls the rotational speed of drive roll 61 and/or drive roll 60 so as to remove fabric from vessel 10 through exit 14 at a speed required to provide the loop of the desired length.
  • a further nozzle 30 is provided adjacent drive roll 61 and exit 14 so as to further treat fabric F. Once fabric F passes out exit 14 and around drive roll 60, it may then pass through an optional cooling zone and to further processing.
  • the gas utilized to bulk fabric according to the present invention may be maintained at such temperature as desired for the particular fabric being treated. Further, the gas may be handled at a particular pressure to achieve desired mechanical agitation of the fabric. There is no general limit to the particular gas suitable for use according to the present teachings, though air is generally preferred. Other ingredients such as cleaning solvents or the like may be entrained in the gas according to the dictates of the process.
  • Bulking apparatus for textile fabric comprising:
  • a pressure manifold received in said vessel and extending at least along the effective treating width thereof, said manifold having at least one upwardly oriented nozzle therein at a predetermined angle;
  • c. means to feed a textile fabric to the treating vessel

Abstract

A bulking unit including a vessel having a fabric path therethrough. Drive rolls are provided along a portion of the fabric path so as to direct fabric into and out of a fabric loop within the vessel. A gaseous treating unit is provided within the fabric loop and extends along the length thereof. The gaseous treating unit has a plurality of high velocity gas jets directed against the fabric with the angle of impingement of gas onto the fabric being substantially perpendicular thereto. Subsequent to the bulking unit, a cooling air chamber may be provided to cool the bulked fabric. A loop control means is provided within the vessel to maintain an appropriate sized loop.

Description

' United States Patent Christian FABRIC BULKING UNIT [76] Inventor: Donald K. Christian, 1 l9 Woodbine Ter., Spartanburg, SC. 29301 [22] Filed: Oct. 24, 1973 I [21] Appl. No.: 409,180
[52] US. Cl 26/185; 28 /72 FT; 68/5 D [51] Int. CI. D06C l/00 [58] Field of Search 68/5 D; 239/455; 28/72 FT; 26/185 [56] References Cited UNITED STATES PATENTS 1,627,250 5/1927 Parker 239/455 3,002,700 10/1961 Mohring 239/455 3,074,261 l/l963 Wilcox 68/5 D 3,367,039 2/1968 Jacobsen 68/5 D X 3,492,838 2/1970 Reiners et a1... 68/5 D 3,603,119 9/1971 Kawaguchi 68/5 D 10/1973 Bous et al. 68/5 D [4 1 Dec. 16, 1975 FOREIGN PATENTS OR APPLICATIONS 678,901 7/1939 Germany 239/455 Primary Examiner-Robert R. Mackey [57] ABSTRACT A bulking unit including a vessel having a fabric path therethrough. Drive rolls are provided along a portion of the fabric path so as to direct fabric into and out of a fabric loop within the vessel. A gaseous treating unit is provided within the fabric loop and extends along the length thereof. The gaseous treating unit has a plurality of high velocity gas jets directed against the fabric with the angle of impingement of gas onto the fabric being substantially perpendicular thereto. Subsequent to the bulking unit, a cooling air chamber may be provided to cool the bulked fabric. A loop control means is provided within the vessel to maintain an appropriate sized loop.
4 C-laims, 3 Drawing Figures US. Patent Dec. 16, 1975 Sheet 1 of 3 U.S. Patent Dec. 16,1975 Sheet 2 of3 3,925,865
U.S. Patsnt Dec. 16, 1975 Sheet 3 of3 3,925,865
FABRIC BULKING UNIT BACKGROUND OF THE INVENTION Numerous techniques have heretofore been devised for treating textile fabrics, particularly knitted goods so as to bulk the goods and thus increase the cover factor of same. Various and sundry techniques have been devised for bulking such fabrics, including the immersion of the fabrics in a heated liquid such as water, agitating the fabric in a heated liquid, agitating the liquid and the like.
The present invention is yet another improvement of a technique for bulking a textile fabric and has certain definite advantages over the prior art attendant thereto as will be discussed hereinafter. A heated gas such as air, for example, is employed whereby the temperature of the air may exceed the boiling point of water, for example, without the necessity of a completely pressurized system.
SUMMARY OF THE INVENTION It is an object of the present invention to provide an improved apparatus for bulking textile fabric.
Another object of the present invention is to provide an improved apparatus for bulking a knit fabric.
Another object of the present invention is to provide an improved bulking process for textile materials.
Still another object of the present invention is to provide an improved process for the bulking of textile fabric utilizing a high velocity, heated gas as the bulking medium.
Generally speaking, the apparatus of the present invention comprises a vessel, said vessel having a fabric path therethrough; means to drive a fabric along said path, said drive means being provided at the entrance and exit of the path with no intermediate stationary support means located therealong; means to direct high velocity gas against said fabric along said path; means to control the length of a fabric loop along said path and means to remove fabric from said vessel, said fabric removal means being coordinated with said loop control means whereby tension on said fabric is controlled in said loop.
More specifically, an insulated vessel is preferably provided within which is located a pressurized gas manifold having a plurality of high velocity nozzles extending therealong. One preferred embodiment of the invention provides a high velocity nozzle at the entrance and exit of the fabric loop extending across the width of the fabric path. Driven rolls are provided at the entrance and exit of the vessel so as to control fabric feed into the vessel and also fabric exit from the vessel. Moreover, a loop control means is provided to continuously control the length of the fabric loop in the vessel, the loop control being operatively associated with the exit drive roll so as to continuously maintain a proper length loop. Pressurized air or other gas at an elevated temperature is impinged upon the fabric, substantially perpendicular thereat. The heated gas thus heats the fabric to a predetermined temperature, while at the same time affording a substantial mechanical working action of the fabric. The fabric is bulked thereby.
The apparatus of the present invention may be provided with a variable nozzle whereby different air flow patterns may be impinged upon fabric passing thereby. The nozzles extend along substantially the entire width of the fabric and are presented in one or more locations 2 around the fabric loop. Baffles are provided internally of the gas manifold to afford a proper diffusion of the gas at the nozzle entrance. The gas thereby extends directly from the nozzle and impinges against the fabric according to the desired angle and pattern.
Generally speaking, the process of the present invention comprises the steps of feeding a fabric along a fabric path and providing a fabric loop thereat; controlling the length of the fabric loop so as to control tension on the fabric; and substantially impinging a heated gas against said fabric so as to produce a substantial mechanical action on the fabric without providing any substantial lateral movement of the fabric away from the gas stream. Specifically, air'or some other gas is heated to a predetermined temperature which can exceed that of the boiling point of water and is provided under pressure in a manifold having a plurality of nozzles extending therefrom and directed in the direction of the path of travel of the fabric along at least one portion of the loop. Preferably, the nozzle is positioned so as to provide an upward force against the fabric around a driven roll at the entrance to the vessel so as to insure a good mechanical action on the fabric.
The apparatus and process of the present invention may be employed in any suitable textile process where it is desirable to bulk a textile fabric either in line separately from other portions of the process. For example, the bulking unit of the present invention may be deployed at the end of a tenter frame, adjacent a textile washer, or the like.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side elevational schematic of a bulking unit according to the teachings of the present invention.
FIG. 2 is a side cross sectional view of a nozzle arrangement according to the teachings of the present invention.
FIG. 3 is a cross sectional view of a nozzle arrangement taken along a line lII--III in FIG. 2.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Making reference to the Figures, a specific embodiment of the present invention will now be described in detail. Referring to FIG. 1, a bulking vessel generally indicated as 10 is shown. Vessel 10 is comprised of side walls 12 that are preferably stainless steel and thermally insulated to conserve heat in the bulking area. Positioned within vessel 10 and along the length thereof so as to permit treatment of the entire width of a fabric passing therethrough is a gas pressure manifold generally indicated as 20. Gas pressure vessel 20 is, in effect, a manifold that extends across the width of the treating area and has at least one and preferably a plurality of high velocity gaseous nozzles 30 extending through side walls 22 in communication with the interior thereof. Each nozzle 30 is positioned at a particular angle so as to direct gas at high velocity against a fabric F according to the predetermined angle and thus impart a substantial mechanical action thereon. As shown in FIG. 1, the fabric F is fed into vessel 10 by a pair of driven rolls 40 and 41 that are operating at predetermined speeds. Immediately inside vessel 10, making entrance through passageway 12, fabric F encounters the second driven roll 41 and passes partially therearound. Heated air under pressure at high velocity exists nozzle 30 and impinges against fabric F so as to cause heat from the air to heat the fabric to a particular predetermined temperature while at the same time mechanically acting upon the fabric so as to distort same to facilitate bulking. In the illustration of FIG. 1, the fabric is distended upwardly away from its normal path. The fabric path without air pressure is approximately shown in solid lines. Positioned within vessel is a loop control device 50. Loop control device 50 may be any conventional loop control system that primarily senses the length of the fabric loop within the vessel 10 and is operatively associated through conventional means with driven rollers 60 and/or 61 so as to control the length of the loop in vessel 10 and thus further control the degree of bulking to which the fabric will be subjected. For example, the loop control device could be of the type described in US. Pat. No. 3,721,376 granted Mar. 20, 1973 to Christian et al.
As mentioned earlier, the bulking unit of the present invention may be employed in conjunction with other process equipment such as, for example, a tenter frame, a washer or the like. In this regard, since the air or other gas within the pressure chamber is heated so as to accomplish bulking of the fabric, the fabric will exit vessel 10 at an elevated temperature. As such, it
may be desirable to provide a cooling zone 70 subsequent to exit passageway 14 of vessel 10. Cooling zone 70 may be a purely ambient zone, a zone wherein artificial cooling is employed so as to make rapidly reduce the temperature of the fabric, or the like.
It may be desirable to vary the geometry of the nozzles through which the gas passes for impingement onto the fabric F. In this regard, reference is made to FIGS. 2 and 3. The nozzle generally indicated as is shown received between side walls 22 of pressure vessel 20. The nozzle passageway or throat 37 is provided by a pair of elements 31 and 32 which may have bevels 33 at the rear end thereof. It may be desirable as shown in FIG. 2 to dispose members 31 and 32 in parallel relationship so as to provide a straight walled nozzle slot across the width of the bulking zone. Secured on opposite sides of members 31 and 32 are struts 34 which are spaced apart along the width of nozzle 30 (See FIG. 3) and extend rearwardly beyond the end of members 31 and 32. Struts 34 are unified by a baffle 35 which extends across the entire width of nozzle 30 and serves as a baffle for diffusion of gas being dispensed therefrom. Note that bafile 35 has a cutaway portion 36 along a central location thereof. Wall members 22 adjacent nozzle 30 are provided with an adjustment member 24. Movement of adjustment member 24 inwardly or outwardly will thus cause a slight deflection of members 31 and 32 that define nozzle throat 37 whereby a predetermined relationship may be established in the nozzle 30 so as to further delineate the type flow pattern of the gas exiting therefrom.
Gas flow from within vessel 20 will not flow directly into the throat 37 of nozzle 30. Instead, baffle 35 is encountered and the air or other gas flows around baffle 35 between struts 34 as shown by the arrows in FIG. 2. In this fashion, the angle of air exiting from nozzle 30 is better controlled.
Insofar as gas impingement on the fabric is concerned, it should be pointed out that angular impingement of the gas on the fabric is undesirable to the point that the fabric may be moved away from the treating zone in a direction to the right or left of the longitudinal axis of the nozzle 30. Obviously, the force of the gas exiting the nozzle 30 will force the fabric directly away from the slot, but a lateral or sidewise motion is the undesirable feature being referred to. It is thus preferred that the net force of air being expelled from nozzle 30 should be approximately perpendicular to the surface of the fabric. In this regard, the net force may be a vector force since it may be desirable to modify certain areas of the slots to provide a predetermined mechanical motion to achieve an improved bulking action while at the same time maintaining the fabric in proper position with respect to nozzle 30.
Generally speaking, the process of the present invention proceeds as follows. A fabric F is fed by driven roll 40 into treating vessel 10 where it is engaged by a driven roll 41 and passes partially therearound. Immediately after roll 41, fabric F experiences an impingement of gas from a nozzle 30 that forces the fabric upwardly away from nozzle 30. Preferably, the impingement of gas is perpendicular to the surface of the fabric and is of sufficient magnitude to impart a substantial mechanical action to the fabric. This mechanical action is in either an undulating fashion caused by the speed of travel of the fabric compared with the velocity of the treating fluid or a rolling action created by the fabric advancing to the apex of the treating fluid flow path and then by its own weight progressing downward into the treatment vessel. This action is very effective in releasing the plastic memory or crimp memory of the synthetic fibers such as but not limited to polyester and nylon. Furthermore, the temperature of the gas being handled by nozzle 30 is such that bulking is imparted to the fabric. Furthermore, the fabric passes under the bottom of a manifold 20 from whence the pressurized gas is expelled and forms a loop therearound. A loop control device 50 senses the length of the loop and controls the rotational speed of drive roll 61 and/or drive roll 60 so as to remove fabric from vessel 10 through exit 14 at a speed required to provide the loop of the desired length. As shown in FIG. 1, a further nozzle 30 is provided adjacent drive roll 61 and exit 14 so as to further treat fabric F. Once fabric F passes out exit 14 and around drive roll 60, it may then pass through an optional cooling zone and to further processing.
The gas utilized to bulk fabric according to the present invention may be maintained at such temperature as desired for the particular fabric being treated. Further, the gas may be handled at a particular pressure to achieve desired mechanical agitation of the fabric. There is no general limit to the particular gas suitable for use according to the present teachings, though air is generally preferred. Other ingredients such as cleaning solvents or the like may be entrained in the gas according to the dictates of the process.
Having described the present invention in detail, it is obvious that one skilled in the art will be able to make variations and modifications thereto without departing from the scope of the invention. Accordingly, the scope of the present invention should be determined only by the claims appended thereto.
What is claimed is:
1. Bulking apparatus for textile fabric comprising:
a. a treating vessel;
b. a pressure manifold received in said vessel and extending at least along the effective treating width thereof, said manifold having at least one upwardly oriented nozzle therein at a predetermined angle;
c. means to feed a textile fabric to the treating vessel;
d. means to withdraw the textile fabric from the treating vessel, the fabric passing in transit through the vessel between said feeding and withdrawing means over the upwardly oriented nozzle and forming a downwardly extending loop therebetween; and
e. means adjacent the loop for sensing the extent thereof for controlling the rate of travel of the fabric through the vessel, the fabric being solely and freely supported on an upwardly directed air stream generated by the nozzle of the pressure manifold and bulked by actions induced therein by said air stream between the feeding and withdrawing means.
geometric pattern of a gas exiting therefrom.

Claims (4)

1. Bulking apparatus for textile fabric comprising: a. a treating vessel; b. a pressure manifold received in said vessel and extending at least along the effective treating width thereof, said manifold having at least one upwardly oriented nozzle therein at a predetermined angle; c. means to feed a textile fabric to the treating vessel; d. means to withdraw the textile fabric from the treating vessel, the fabric passing in transit through the vessel between said feeding and withdrawing means over the upwardly oriented nozzle and forming a downwardly extending loop therebetween; and e. means adjacent the loop for sensing the extent thereof for controlling the rate of travel of the fabric through the vessel, the fabric being solely and freely supported on an upwardly directed air stream generated by the nozzle of the pressure manifold and bulked by actions induced therein by said air stream between the feeding and withdrawing means.
2. Bulking apparatus as defined in claim 1 wherein said treating vessel includes means to thermally insulate same to conserve heat therein.
3. Bulking apparatus as defined in claim 1 wherein said manifold is provided with a plurality of longitUdinally extending and upwardly oriented nozzles therein, one nozzle being provided adjacent to the feeding means and another nozzle adjacent to the withdrawing means, the fabric being freely upwardly supported by the air streams generated thereby.
4. Bulking apparatus as defined in claim 3 wherein means are provided to adjust the nozzles to vary the geometric pattern of a gas exiting therefrom.
US409180A 1973-10-24 1973-10-24 Fabric bulking unit Expired - Lifetime US3925865A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US409180A US3925865A (en) 1973-10-24 1973-10-24 Fabric bulking unit
US05/640,421 US4112558A (en) 1973-10-24 1975-12-15 Fabric bulking process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US409180A US3925865A (en) 1973-10-24 1973-10-24 Fabric bulking unit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/640,421 Continuation-In-Part US4112558A (en) 1973-10-24 1975-12-15 Fabric bulking process

Publications (1)

Publication Number Publication Date
US3925865A true US3925865A (en) 1975-12-16

Family

ID=23619372

Family Applications (2)

Application Number Title Priority Date Filing Date
US409180A Expired - Lifetime US3925865A (en) 1973-10-24 1973-10-24 Fabric bulking unit
US05/640,421 Expired - Lifetime US4112558A (en) 1973-10-24 1975-12-15 Fabric bulking process

Family Applications After (1)

Application Number Title Priority Date Filing Date
US05/640,421 Expired - Lifetime US4112558A (en) 1973-10-24 1975-12-15 Fabric bulking process

Country Status (1)

Country Link
US (2) US3925865A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4837902A (en) * 1987-07-17 1989-06-13 Milliken Research Corporation Fabric softening apparatus
US4918795A (en) * 1987-07-17 1990-04-24 Milliken Research Corporation Method to soften fabric by air impingement
US5598615A (en) * 1995-07-07 1997-02-04 K. K. Age Silk velvet textile and method of manufacturing the same
WO1998014654A1 (en) * 1996-10-02 1998-04-09 Milliken Research Corporation Method and apparatus for web treatment
US6178607B1 (en) 1996-01-29 2001-01-30 Milliken & Company Method for treating a crease sensitive fabric web
US20020176958A1 (en) * 2000-04-06 2002-11-28 Nord Thomas D. Wiping cloth

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES532408A0 (en) * 1984-05-11 1985-04-01 Vinas Jaime Anglada METHOD FOR THE DRY TREATMENT OF A TISSUE AND APPARATUS FOR ITS REALIZATION
ES2005222A6 (en) * 1987-05-12 1989-03-01 Vinas Jaime Anglada Apparatus for dry treatment of a fabric.
CA2053375A1 (en) * 1990-10-12 1992-04-13 Louis Dischler Method and apparatus for modifying fibers and fabric by fatiguing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1627250A (en) * 1926-06-03 1927-05-03 William B Parker Adjustable lip-spray nozzle
US3002700A (en) * 1958-07-26 1961-10-03 Mohring Gustav Nozzle on heat-treatment machines for textile fabrics and the like
US3074261A (en) * 1961-04-04 1963-01-22 Riggs & Lombard Inc Apparatus for treating webs
US3367039A (en) * 1965-05-19 1968-02-06 H G Weber And Company Inc Tensioning and reversal of web without rollers
US3492838A (en) * 1965-10-22 1970-02-03 Gerber & Co Gmbh Apparatus for steaming looped textile material or carpeting
US3603119A (en) * 1969-03-13 1971-09-07 Rabushiki Kaisha Ichikin Rogyo Apparatus for heat treatment of fabric
US3763669A (en) * 1970-08-07 1973-10-09 Rosenkranz & Co Gmbh System for bulking yarn

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE678901C (en) * 1937-06-06 1939-07-24 Danneberg & Quandt Gas slot burner
DE1635346A1 (en) * 1966-10-12 1971-07-08 Vepa Ag Method and device for heat treatment, in particular of textile goods
US3594914A (en) * 1968-08-31 1971-07-27 Mitsubishi Rayon Co Process and apparatus for continuously relaxing textile fabrics
DE1913932A1 (en) * 1969-03-19 1970-10-01 Artos Meier Windhorst Kg Process and device for the continuous heat treatment of porous, heavier material webs

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1627250A (en) * 1926-06-03 1927-05-03 William B Parker Adjustable lip-spray nozzle
US3002700A (en) * 1958-07-26 1961-10-03 Mohring Gustav Nozzle on heat-treatment machines for textile fabrics and the like
US3074261A (en) * 1961-04-04 1963-01-22 Riggs & Lombard Inc Apparatus for treating webs
US3367039A (en) * 1965-05-19 1968-02-06 H G Weber And Company Inc Tensioning and reversal of web without rollers
US3492838A (en) * 1965-10-22 1970-02-03 Gerber & Co Gmbh Apparatus for steaming looped textile material or carpeting
US3603119A (en) * 1969-03-13 1971-09-07 Rabushiki Kaisha Ichikin Rogyo Apparatus for heat treatment of fabric
US3763669A (en) * 1970-08-07 1973-10-09 Rosenkranz & Co Gmbh System for bulking yarn

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4837902A (en) * 1987-07-17 1989-06-13 Milliken Research Corporation Fabric softening apparatus
US4918795A (en) * 1987-07-17 1990-04-24 Milliken Research Corporation Method to soften fabric by air impingement
US5598615A (en) * 1995-07-07 1997-02-04 K. K. Age Silk velvet textile and method of manufacturing the same
US6178607B1 (en) 1996-01-29 2001-01-30 Milliken & Company Method for treating a crease sensitive fabric web
WO1998014654A1 (en) * 1996-10-02 1998-04-09 Milliken Research Corporation Method and apparatus for web treatment
US5822835A (en) * 1996-10-02 1998-10-20 Milliken Research Corporation Method and apparatus for web treatment
US20020176958A1 (en) * 2000-04-06 2002-11-28 Nord Thomas D. Wiping cloth

Also Published As

Publication number Publication date
US4112558A (en) 1978-09-12

Similar Documents

Publication Publication Date Title
US4304053A (en) Steam and hot air operated drying device and method for textile articles of clothing
US3521378A (en) Combination drying and tentering machine
US3579679A (en) Tensionless liquid treating apparatus and method
US3925865A (en) Fabric bulking unit
US3594914A (en) Process and apparatus for continuously relaxing textile fabrics
US4023385A (en) Oscillating valve for jet dye beck
US5274892A (en) Process and apparatus for shrinking textile fabrics
US3990274A (en) Apparatus for continuously processing fabric
US3810315A (en) Apparatus for treating materials
US5309613A (en) Process and apparatus for improving the handle and surface of textile fabrics and knitted materials
US4010550A (en) Continuous processing apparatus and method for textile fabrics
GB866755A (en) Apparatus for washing web towelling or other strip textile material
US4339856A (en) Apparatus for continuous untwisting and crimping of a cloth
US4409709A (en) Apparatus for continuous untwisting and crimping of a cloth
US4052796A (en) Process and apparatus for the continuous finishing of webs of textiles, artificial leather and the like
JPS58132160A (en) Method and apparatus for loosening knitted fabric
US4947528A (en) Method and apparatus to erect pile fibers
US4125921A (en) Apparatus for gas-singeing knitted fabrics
US4247969A (en) Method for moisture conditioning of compressively treated fabric
US4614096A (en) System for the continuous and open-width washing of a fabric
US2597490A (en) Apparatus for treating textile materials
CA1046786A (en) Washing of elongate materials
US3501931A (en) Apparatus for the liquid treatment of a circulating band of material in a bath
US3253311A (en) Apparatus for converting tubular knitted fabric to open width form
KR20010049409A (en) Apparatus and method for heatsetting a knitted fabric in tubular form