US3923848A - Process for preparing high molecular weight aliphatic carboxylic acids by chromosulfuric acid oxidation of {60 -olefins - Google Patents

Process for preparing high molecular weight aliphatic carboxylic acids by chromosulfuric acid oxidation of {60 -olefins Download PDF

Info

Publication number
US3923848A
US3923848A US498567A US49856774A US3923848A US 3923848 A US3923848 A US 3923848A US 498567 A US498567 A US 498567A US 49856774 A US49856774 A US 49856774A US 3923848 A US3923848 A US 3923848A
Authority
US
United States
Prior art keywords
olefins
oxidation
chromosulfuric acid
molecular weight
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US498567A
Inventor
Hans Schmidt
Werner Strabberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19732342823 external-priority patent/DE2342823C3/en
Application filed by Hoechst AG filed Critical Hoechst AG
Application granted granted Critical
Publication of US3923848A publication Critical patent/US3923848A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation

Definitions

  • the present invention provides a process for preparing saturated, high molecular weight, aliphatic monocarboxylic acids by oxidizing a-olefms having from 16 to 70 carbon atoms in the molecule or mixtures of such a-olefins in the molten state by means of aqueous chromosulfuric acid, which comprises adding to the molten olefins or mixtures of olefins prior to oxidizing of from 2 to 15% by weight, calculated on the olefins, of aliphatic monoor dialcohols having from to 40 carbon atoms in the molecule-optionally in the form of their fatty acid esters and then oxidizing with aqueous chromosulfuric acid.
  • the proportion of neutral matter in the oxidation products may be reduced by 10 to 50% or even more.
  • Suitable starting materials for the chromosulfuric acid oxidation according to the invention are for example a-olefins having more than carbon atoms in the molecule, for example l-hexadecene, l-octadecene and l-eicosene or a-olefins having up to about 70 carbon atoms, which may be prepared by oligomerizing ethylene. Commercial mixtures of a-olefins having from 22 to 28 or from 24 to 48 carbon atoms are preferably used.
  • aliphatic alcohols are saturated monoalcohols having from 10 to 40 carbon atoms, preferably straight chain primary alcohols, as for example decyl alcohol, dodecyl alcohol, tetradecyl alcohol, cctyl alcohol and especially stearyl alcohol and behenyl alcohol, moreover glycoland polyglycol monoalkyl ethers having higher alkyl groups, such as the etheralcohol glycol-monostearyl ether.
  • Synthetic monoalcohols for example those, prepared according to the known polyethylene synthesis with Ziegler catalysts followed by oxidative hydrolysis of the aluminium trialkyls are also suitable.
  • Aliphatic dialcohols having from 10 to 40 carbon atoms for example a,w-diols, such as l, l0-decane-diol or 1,19mondecane-diol, and optionally polyalkylene glycols are also suitable; it should be taken into consideration however that dicarboxylic acids are generally formed in the oxidation of diols, so that the use of diols is not recommended, if the acids resulting from the oxidation shall be free from dicarboxylic acids.
  • Esters of higher monoalcohols or diols with fatty acids having 2,3 or from 16 to 40 carbon atoms for example stearyl acetate, stearyl stearate and esters of the montanic acid are also suitable. They are first saponified under the oxidation conditions, so that their efficiency finally is based on the presence of the basic alcohols.
  • the aliphatic monoalcohols or diols are added to the molten a-olefin or a-olefin mixture to be oxidized in an amount of from 2 to 15, preferably of from 4 to 10 by weight, calculated on the olefins.
  • the oxidation is carried out in known manner.
  • Chromosulfuric acid containing per liter from 50 to 140 g of CrO preferably from to 120 g and from 300 to 650 g, preferably from 400 to 550 g of H 80 is used as oxidizing agent.
  • the oxidation temperature is in the range of from 60 to 180C, preferably of from to 120C.
  • the quantity of oxidizing agent required is from to 250 preferably from to 200 of CrO calculated on the weight of the olefin-alcohol mixture to be oxidized.
  • the oxidation is preferably carried out as follows:
  • the molten olefin-alcohol mixture is introduced into the chromosulfuric acid heated to the desired oxidation temperature by small amounts or continuously and the mixture is vigorously stirred during the whole reaction. It is also possible to add the oxidizing agent to the molten mass of the product to be oxidized. According to a preferred method the reaction is carried out in a multiple-stage process, while separating the depleted oxidant after each step.
  • the oxidation times are generally in the range of from 4 to 8 hours.
  • the high molecular weight, aliphatic carboxylic acids or carboxylic acid mixtures obtained having a relatively low content of neural matter are colourless and thermostable and are especially suitable for preparing waxlike esters, partial esters and amides, which may be used as lubricants in the plastics processing and in the preparation of floor waxes and polishing pastes.
  • synthelic alcohol according to Ziegler, having 24 carbon atoms "aarnonadecane diol molecule, or their fatty acid esters, and then oxidizing with the aqueous chromosulfuric acid at a temperature of 60 to 180C.
  • aqueous chromosulfuric acid used is a chromosulfuric acid containing per liter of from 50 to g of CrO and from 300 to 650 g of H 50

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

In the oxidation of higher Alpha -olefins by means of chromosulfuric acid the corresponding saturated higher aliphatic monocarboxylic acids are obtained in a high yield, if the oxidation is carried out in the presence of from 2 to 15 % by weight of saturated, aliphatic mono- or dialcohols having from 10 to 40 carbon atoms. The carboxylic acids obtained are suitable for preparing wax-like substances.

Description

United States Patent Schmidt et al. 1 Dec. 2, 1975 [54] PROCESS FOR PREPARING HIGH 2,470,515 5/1949 Myers ct a1. 260/413 MOLECULAR WEIGHT ALIPHATIC 2,644,837 7/1953 Schweitzer 1 260/484 CARBOXYLIC ACIDS BY 3,692,810 9/1972 Washecheck.... -60/413 gtgz gg OXDATION OF FOREIGN PATENTS OR APPLICATIONS a. 2,165,858 7/1973 Germany 260/413 [75] inventors: Hans Schmidt; Werner Strabberger, 2,262,130 7/1974 Germany 260/413 both of Gersthofen, Germany [73] Assignee: Hoechst Aktiengesellschaft, Primary Examinerwinston A, Douglas Frankfurt am Main, Germa y Assistant ExaminerP. E. Konopka [22] Filed: Aug- 19, 1974 Attorney, Agent, or FirmConno1ly and Hutz 121] App]. No.: 498,567
[57] ABSTRACT [30] Forelgn Application Pnon y Data In the oxidation of higher a-olefins by means of chr0- Aug. 24, 1973 Germany 2342823 mosulfuric acid the Corresponding Saturated higher aliphatic monocarboxylic acids are obtained in a high [52] US. Cl. 260/413 yield if the Oxidation is carried out in the presence of [51] Int Cl 2 CllC l/00 58 F. I a iii. u I I u I I a o s I Q l I llld R 2 l 0 can: monoor dialcohols having from 10 to 40 carbon atoms. The carboxylic acids obtained are suitable for [56] uNlTEfi gg lfgs gziENTs preparing wax-like substances.
2,450,858 10/1948 Fitzpatrick 260/413 2 Claims, N0 Drawings PROCESS FOR PREPARING I-IIGI-I MOLECULAR WEIGHT ALIPHATIC CARBOXYLIC ACIDS BY CHROMOSULFURIC ACID OXIDATION OF a-OLEFINS The present invention relates to a process for preparing high molecular weight, aliphatic monocarboxylic acids.
The preparation of high molecular weight aliphatic monocarboxylic acids by oxidizing a-olefins having from 16 to 70 carbon atoms in the molecule or technical mixtures of such olefins by means of chromosulfuric acid is known (cf. German Offenlegungsschrift No. 2,165,858). According to this process colourless, thermostable fatty or wax acids are obtained containing, however, a considerable proportion of unreacted starting material. It is moreover known that this proportion may be materially reduced by carrying out the oxidation in several steps (cf. German Offenlegungsschrift No. 2,262,130). In the first step at least 50% by weight of the required quantity of chromosulfuric acid is used, the consumed oxidation agent is then separated and the oxidation is terminated in one or several further steps.
It has now been found that the proportion of unreacted olefin may be further reduced surprisingly by using a-olefins of a-olefin mixtures diluted with small quantities of higher, aliphatic alxohols.
The present invention provides a process for preparing saturated, high molecular weight, aliphatic monocarboxylic acids by oxidizing a-olefms having from 16 to 70 carbon atoms in the molecule or mixtures of such a-olefins in the molten state by means of aqueous chromosulfuric acid, which comprises adding to the molten olefins or mixtures of olefins prior to oxidizing of from 2 to 15% by weight, calculated on the olefins, of aliphatic monoor dialcohols having from to 40 carbon atoms in the molecule-optionally in the form of their fatty acid esters and then oxidizing with aqueous chromosulfuric acid.
According to the process of the invention the proportion of neutral matter in the oxidation products, depending on the quantity of chromosulfuric acid and the oxidation method used, may be reduced by 10 to 50% or even more.
Suitable starting materials for the chromosulfuric acid oxidation according to the invention are for example a-olefins having more than carbon atoms in the molecule, for example l-hexadecene, l-octadecene and l-eicosene or a-olefins having up to about 70 carbon atoms, which may be prepared by oligomerizing ethylene. Commercial mixtures of a-olefins having from 22 to 28 or from 24 to 48 carbon atoms are preferably used.
Especially suitable aliphatic alcohols are saturated monoalcohols having from 10 to 40 carbon atoms, preferably straight chain primary alcohols, as for example decyl alcohol, dodecyl alcohol, tetradecyl alcohol, cctyl alcohol and especially stearyl alcohol and behenyl alcohol, moreover glycoland polyglycol monoalkyl ethers having higher alkyl groups, such as the etheralcohol glycol-monostearyl ether. Synthetic monoalcohols, for example those, prepared according to the known polyethylene synthesis with Ziegler catalysts followed by oxidative hydrolysis of the aluminium trialkyls are also suitable. Aliphatic dialcohols having from 10 to 40 carbon atoms, for example a,w-diols, such as l, l0-decane-diol or 1,19mondecane-diol, and optionally polyalkylene glycols are also suitable; it should be taken into consideration however that dicarboxylic acids are generally formed in the oxidation of diols, so that the use of diols is not recommended, if the acids resulting from the oxidation shall be free from dicarboxylic acids. Esters of higher monoalcohols or diols with fatty acids having 2,3 or from 16 to 40 carbon atoms, for example stearyl acetate, stearyl stearate and esters of the montanic acid are also suitable. They are first saponified under the oxidation conditions, so that their efficiency finally is based on the presence of the basic alcohols.
The aliphatic monoalcohols or diols are added to the molten a-olefin or a-olefin mixture to be oxidized in an amount of from 2 to 15, preferably of from 4 to 10 by weight, calculated on the olefins.
The oxidation is carried out in known manner. Chromosulfuric acid containing per liter from 50 to 140 g of CrO preferably from to 120 g and from 300 to 650 g, preferably from 400 to 550 g of H 80 is used as oxidizing agent. The oxidation temperature is in the range of from 60 to 180C, preferably of from to 120C. The quantity of oxidizing agent required is from to 250 preferably from to 200 of CrO calculated on the weight of the olefin-alcohol mixture to be oxidized.
The oxidation is preferably carried out as follows: The molten olefin-alcohol mixture is introduced into the chromosulfuric acid heated to the desired oxidation temperature by small amounts or continuously and the mixture is vigorously stirred during the whole reaction. It is also possible to add the oxidizing agent to the molten mass of the product to be oxidized. According to a preferred method the reaction is carried out in a multiple-stage process, while separating the depleted oxidant after each step. The oxidation times are generally in the range of from 4 to 8 hours.
As soon as the reaction is terminated, which may be determined by titration of the residual CrO stirring is stopped and the reaction mixture is cooled, whereby the oxidation product and the used up oxidant separate into two layers. The carboxylic acid phase is washed while stirring with diluted sulfuric acid at a temperature of from 90 to 100C until it is free from chromium lll salt and is then washed with water at the same temperature until it is free from sulfuric acid.
The high molecular weight, aliphatic carboxylic acids or carboxylic acid mixtures obtained having a relatively low content of neural matter are colourless and thermostable and are especially suitable for preparing waxlike esters, partial esters and amides, which may be used as lubricants in the plastics processing and in the preparation of floor waxes and polishing pastes.
The following examples illustrate the invention.
EXAMPLES 100 g each of a commercial mixture of a-olefins having from 24 to 28 carbon atoms were mixed in the molten state with variable amounts of higher, aliphatic monoor dialcohols and oxidized with chromosulfuric acid containing per liter 100 g of CrO and 540 g of H 80 while stirring at a temperature of from 110 to l 15C. The quantity of CrO was in the range of from to by weight, calculated on the olefmalcohol mixture used (1.18 or 1.65 liter). in examples 1 and 2 the whole quantity of chromosulfuric acid was first introduced, whereas the oxidation was carried out in a two-stage process in examples 3 and 4, with separation of the oxidant used up in the first stage. The test dates and the results are listed in the following table.
lated on the olefins, of saturated aliphatic monoor dialcohols having from to carbon atoms in the Exquantity of chromosulfuric Oxidation ample alcohol added acid by weight) product by weight) total first second acid neutral stage stage number matter y weight) a 125 125 0 80 38.0 b 2.5 decyl 125 125 0 74 22.9 1
c 5.0 stearyl 125 125 0 77 27.6 d 5.0 C 125 125 0 74 27.2
a 175 175 0 92 34.3 b 5.0 decyl 175 175 0 80 26.2 2
c 5.0 stearyl 175 I75 0 84 21.4 d 10.0 stearyl 175 175 0 88 20.0 a 125 75 50 86 25.9 3 b 5.0 decyl 125 75 50 78 22.2 c 5.0 stearyl 125 75 50 83 23.2 a 175 125 50 1 13 19.5 b 2.5 decyl 175 125 50 93 16.7 c 5.0 decyl 175 125 50 96 10.4 4
d 5.0 stearyl 175 125 50 106 8.6 c 10.0 stearyl 175 125 50 106 10.2 f 10.0 diol" 175 125 50 113 7.8
synthelic alcohol, according to Ziegler, having 24 carbon atoms "aarnonadecane diol molecule, or their fatty acid esters, and then oxidizing with the aqueous chromosulfuric acid at a temperature of 60 to 180C.
2. The process as claimed in claim 1, wherein the aqueous chromosulfuric acid used is a chromosulfuric acid containing per liter of from 50 to g of CrO and from 300 to 650 g of H 50

Claims (2)

1. A PROCESS FOR PREPARING SATURATED, HIGH MOLECULAR WEIGHT, ALIPHATIC MONOCARBOXYLIC ACIDS BY OXIDIZING IN THE MOLTEN STATE A-OLEFINS HAVING FROM 16 TO 70 CARBON ATOMS IN THE MOLECULE OR MIXTURES OF SUCH OLEFINS BY MEANS OF AQUEOUS CHROMO-SULFURIC ACID, WHICH COMPRISES ADDING TO THE MOLTEN OLEFINS OR MIXTURES OF OLEFINS PRIOR TO OXIDIZING FROM 2 TO 15 % BY WEIGHT, CALCULATED ON THE OLEFINS, OF SATURATED ALIPHATIC MONO- OR DIALCOHOLS HAVING FROM 10 TO 40 CARBON ATOMS IN THE MOLECULE, OR THEIR FATTY ACID ESTERS, AND THEN OXIDIZING WITH THE AQUEOUS CHROMOSULFURIC ACID AT A TEMPERATURE OF 60* TO 180*C.
2. The process as claimed in claim 1, wherein the aqueous chromosulfuric acid used is a chromosulfuric acid containing per liter of from 50 to 140 g of CrO3 and from 300 to 650 g of H2SO4.
US498567A 1973-08-24 1974-08-19 Process for preparing high molecular weight aliphatic carboxylic acids by chromosulfuric acid oxidation of {60 -olefins Expired - Lifetime US3923848A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19732342823 DE2342823C3 (en) 1973-08-24 Process for the production of higher molecular weight, aliphatic monocarboxylic acids

Publications (1)

Publication Number Publication Date
US3923848A true US3923848A (en) 1975-12-02

Family

ID=5890635

Family Applications (1)

Application Number Title Priority Date Filing Date
US498567A Expired - Lifetime US3923848A (en) 1973-08-24 1974-08-19 Process for preparing high molecular weight aliphatic carboxylic acids by chromosulfuric acid oxidation of {60 -olefins

Country Status (7)

Country Link
US (1) US3923848A (en)
JP (1) JPS5076017A (en)
BE (1) BE819199A (en)
CA (1) CA1028354A (en)
FR (1) FR2241527B1 (en)
GB (1) GB1452571A (en)
NL (1) NL7411058A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029682A (en) * 1974-12-23 1977-06-14 Emery Industries, Inc. Soaps and ester-soaps of α-olefin derived high molecular weight acids

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013007638B4 (en) * 2013-05-06 2019-04-25 Kahl GmbH & Co. KG Process for the preparation of an acid wax

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2450858A (en) * 1944-01-20 1948-10-05 J D Fitzpatrick Method of oxidizing unsaturated fatty bodies
US2470515A (en) * 1946-07-05 1949-05-17 Emery Industries Inc Plasticized prolamines
US2644837A (en) * 1951-04-27 1953-07-07 Du Pont Oxidation of olefinic compounds
US3692810A (en) * 1971-02-22 1972-09-19 Continental Oil Co Catalytic oxidation of olefins to yield carboxylic acids

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2450858A (en) * 1944-01-20 1948-10-05 J D Fitzpatrick Method of oxidizing unsaturated fatty bodies
US2470515A (en) * 1946-07-05 1949-05-17 Emery Industries Inc Plasticized prolamines
US2644837A (en) * 1951-04-27 1953-07-07 Du Pont Oxidation of olefinic compounds
US3692810A (en) * 1971-02-22 1972-09-19 Continental Oil Co Catalytic oxidation of olefins to yield carboxylic acids

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029682A (en) * 1974-12-23 1977-06-14 Emery Industries, Inc. Soaps and ester-soaps of α-olefin derived high molecular weight acids

Also Published As

Publication number Publication date
GB1452571A (en) 1976-10-13
JPS5076017A (en) 1975-06-21
NL7411058A (en) 1975-02-26
CA1028354A (en) 1978-03-21
DE2342823B2 (en) 1976-01-15
DE2342823A1 (en) 1975-03-20
BE819199A (en) 1975-02-26
FR2241527A1 (en) 1975-03-21
FR2241527B1 (en) 1979-01-05

Similar Documents

Publication Publication Date Title
US3756999A (en) Sprocess for the preparation of oxidation products of ethylene polymer
US3753968A (en) Selective reaction of fatty acids and their separation
EP0570411B1 (en) Alcohol production
CA2092041A1 (en) Decyl alcohol mixtures, phthalic esters obtainable therefrom and their use as plasticizers
US3923848A (en) Process for preparing high molecular weight aliphatic carboxylic acids by chromosulfuric acid oxidation of {60 -olefins
US2766267A (en) Organic acids from oxygen-bearing organic compounds
US3576881A (en) Preparation of modified oxo catalyst and process relating thereto
US2962513A (en) Manufacture of organoaluminum compounds
US3950365A (en) Method for purification of fatty acid mixtures
JPS6225682B2 (en)
EP0505807B1 (en) Olefin purification process
US3542857A (en) Production of vic-glycol esters
US3005846A (en) Production of acids and esters
US3299110A (en) Condensation of carboxylic acids and olefins to produce esters
US3816489A (en) Increasing the selectivity and yield in the production of carboxylic acids
US2060871A (en) Manufacture of hydrocarbons
CA1066832A (en) Mixed oxidation product on the basis of bark waxes and other waxes
US2928816A (en) Process for increasing the emulsifiability of a polyethylene/isopropanol telomer wax
DE4422777A1 (en) Process for the production of adipic acid or pentenoic acid
US2628938A (en) Production of greases using reaction products of alpha-hydroxy fatty acids
US3053883A (en) Use of metal salts to promote esterification
US3974194A (en) Method of separating cobalt catalyst from a liquid polyol ester product
US3185745A (en) Olefin dimerization
US3060046A (en) Process for the manufacture of hard waxes rich in ester from mixtures of montan wax acids and paraffins
US2800516A (en) 9, 11, 13-octadecatrienyl-1, 4-diol and other alcohols derived from oiticica oil