US3923433A - Die-cast rotor housing for rotary combustion engines - Google Patents

Die-cast rotor housing for rotary combustion engines Download PDF

Info

Publication number
US3923433A
US3923433A US489595A US48959574A US3923433A US 3923433 A US3923433 A US 3923433A US 489595 A US489595 A US 489595A US 48959574 A US48959574 A US 48959574A US 3923433 A US3923433 A US 3923433A
Authority
US
United States
Prior art keywords
shell
passages
wall
die
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US489595A
Inventor
Walter Ludwig Hermes
Murray Berkowitz
Charles Lombaerde
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rotary Power International Inc
Original Assignee
Curtiss Wright Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Curtiss Wright Corp filed Critical Curtiss Wright Corp
Priority to US489595A priority Critical patent/US3923433A/en
Priority to US05/564,359 priority patent/US3940104A/en
Priority to CA226,511A priority patent/CA1035703A/en
Application granted granted Critical
Publication of US3923433A publication Critical patent/US3923433A/en
Assigned to JOHN DEERE TECHNOLOGIES INTERNATIONAL, INC. reassignment JOHN DEERE TECHNOLOGIES INTERNATIONAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CURTISS-WRIGHT CORPORATION, A CORP. OF DE
Assigned to SNYDER, LARRY L., SNYDER, SHERYL K. reassignment SNYDER, LARRY L. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ROTARY POWER INTERNATIONAL, INC., A CORPORATION OF DE
Assigned to LOEB PARTNERS CORPORATION reassignment LOEB PARTNERS CORPORATION SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ROTARY POWER INTERNATIONAL, INC., A CORPORATION OF DE
Assigned to ROTARY POWER INTERNATIONAL, INC. reassignment ROTARY POWER INTERNATIONAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: JOHN DEERE TECHNOLOGIES INTERNATIONAL, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B55/00Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
    • F02B55/08Outer members for co-operation with rotary pistons; Casings
    • F02B55/10Cooling thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/06Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B2053/005Wankel engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This invention relates to rotary combustion engines of trochoidal type, and more particularly to a die-cast rotor housing having liquid cooling means for such engines.
  • the inner wall of the peripheral shell requires a certain thickness at its side faces both radially inward and outward of the coolant passages for the provision of gasket grooves, and in the prior art this thickness was carried uniformly across the axial width of the shell, that is, the passage went straight through in the axial direction. It was not recognized that the pattern of heat flux also varies axially across the width of the shell, with the highest heat input at the midplane between the side walls. An inner wall of constant thickness makes no provision for this circumstance, with the result that the thickness required to accommodate the gaskets, when carried straight across, leaves the thicknes at midplane too high to permit cooling at that point to the desired temperature of the working surface. Also, uneven cooling may cause distortions and occasional cracks, as well as undesirable wear and erosion of the inner surface.
  • Sand-casting is a slow and relatively expensive mode of fabrication, and it is desirable to form the shell by means of die-casting, which would greatly increase production and lower costs. It has heretofore been impracticable to form by die-casting a peripheral shell of a rotary engine wherein the generally axial coolant passages are canted radially inwardly from their axial ends toward the midplane of the shell in order to reduce the inner wall thickness at that location. When a casting die is opened to discharge the product, the several parts of the die must each be retracted only in a straight line.
  • the present invention overcomes these difficulties.
  • the present invention provides a die-cast doublewalled peripheral housing shell for rotary combustion engines of trochoidal type, having generally axially disposed coolant passages between the double walls thereof, the axially outer ends of the passages being disposed further radially outwardly than the midportions of the passages to provide a thin-sectioned inner wall at the midportion of the shell, and a means of die-casting the shell with a minimum number of mold parts. Provision is also made for forming the coolant passages with a smaller cross-section at the midplane of the shell than at the axial ends of the passages, in order to accelerate coolant flow at the center where heat input is highest and thereby minimize temperature variation across the shell.
  • the die-casting is performed in a permanent mold by pressure die-casting, by gravity-fed pressure casting, or by centrifugal casting.
  • a further object is to provide such a housing shell wherein the coolant passages have a smaller cross-section at the midportion than at their ends, to accelerate coolant flow in the midportions.
  • Still another object is to provide a multipart permanent mold for forming such peripheral shells.
  • FIG. 1 is a view along the axis of the generally annular, double-walled peripheral shell of the invention
  • FIG. 2 is a diagrammatic view and graph showing the relative rates of heat input to the peripheral shell in the axial direction in certain portions of the shell;
  • FIG. 3 is a cross-sectional elevation of an assembled permanent mold for foming the shell
  • FIG. 4 is a fragmentary cross-section in elevation taken on line 4-4 of FIG. 1 and showing one of the coolant passages;
  • FIG. 5 is a similar view showing another embodiment of the shell with a coolant passage of modified form.
  • FIG. 6 is a similar view taken on line 66 of FIG. 1 and showing one of the coolant passages in the portion of the shell wherein the inner wall is not thinned.
  • FIG. 1 shows a view of the side face of a peripheral shell or rotor housing 1 1 of a trochoidal engine of two lobes, although it will be understood that this invention is also applicable to such engines having other numbers of lobes.
  • the shell 11 has an inner trochoidal surface 12 and comprises a generally annular die-cast member having double walls spaced apart radially by ribs or webs 13, and generally axially oriented coolant passages 14 and 14a extending from side to side of the shell between the double walls and spaced apart circumferentially by webs 13.
  • the shell may be provided with a peripheral inlet port 16 and a peripheral outlet port 17 extending generally radially through the shell as shown, but it may be preferred to have either of such ports in one or both of the engine side walls 18 (shown in FIG. 2) which close the shell to form the engine cavity.
  • Each side face of the shell may also be provided with circumferential gasket grooves 19 disposed radially inside and outside the coolant passages, but alternatively may have the channels 192 for the gasketing arrangement shown in FIG. 5.
  • One or more bosses 21 for spark plugs, fuel injectors, or other uses may also be provided, disposed at appropriate locations.
  • the circumferential brackets A, B, C, and D surrounding the shell 11 denote zones of heat input to the shell, zones A, B, and C collectively comprising the region of highest heat input.
  • Bracket A delineates approximately the region of highest compression of the engine, wherein combustion is initiated.
  • Zone B is the region of initial expansion of the burning gases, and zone C is the region of final expansion before discharge of the gases through the exhaust post.
  • Zone D comprises principally the region of intake of fresh charge and the beginning of compression, wherein heat input to the shell from the interior of the engine cavity is negligible, but wherein the shell walls receive some heat by conduction from the regions where combustion takes place.
  • the shell passages receive the coolant from headers or other channels in a side wall and discharge it to similar channels in the opposite side wall.
  • Coolant from pumping means is introduced into the system usually at the beginning of the hot zone, and all of the passages are interconnected for flow of the coolant back and forth serially through the circumferentially disposed passages of the shell until taken off to a radiator. .For this reason the shell passages 14 in the hot region have small cross-sections to accelerate the flow, and are numerous to provide adequate cooling.
  • Passages 14a in the cool zone D may be fewer in number and a larger cross-section to accommodate the total flow, high velocity being of less importance in the cool
  • the peripheral shell 11 is formed of metal, and in sand-casting of the prior art has commonly been formed of iron or an aluminum alloy. For speed of production and resultant economy it is preferable that it should be die-cast in a permanent mold, of one of the die-casting alloys such as aluminum or magnesium. If the coolant passages were straight in the axial direction from one side of the shell to the other, the production of a suitable die would present no problem.
  • the side elements of the mold would each have a plurality of axially extending fingers which would meet at the midplane of the shell, and after the casting shot the side elements of the die would be retracted in the straight axial direction, leaving passages formed by the fingers.
  • Mold 23 is a multipart die having a pair of side pieces 24 each having a projection 26 of trochoidal profile protruding axially inwardly and meeting at the midplane of the mold cavity. These projections 26 define the trochoidal inner surface 12 of the completed shell casting. After solidification of the casting, side parts 24 are retracted in the straight axial direction, as shown by the broad arrows.
  • the draft angle on projections 26 need only be very slight, and has been somewhat exaggerated in the drawings. For a draw of one inch a taper of about /z between the axis and the surface is sufficient; for a draw of about three inches a taper of approximately 1 is suitable. For longer draws the taper may be appropriately increased.
  • the remainder of the mold comprises a plurality of circumferential pieces which collectively close around the side pieces 24 and their trochoidal projections 26 to define a generally annular mold cavity 27.
  • Circumferential pieces 28 have a generally L-shaped cross-section, one leg 29 of which surrounds and abuts a portion of the circumference of side piece 24, the other leg 31 meeting the corresponding leg 31 of the opposite circumferential piece which is a mirror image.
  • Each leg portion 29 of circumferential pieces 28 has protruding from its axial inner surface a plurality of finzone.
  • the number and proportions of coolant passages l4 and 14a shown in FIG. 1 are not intended to be specific, but only to illustrate a general relation.
  • the variant circumferential distribution of heat input I to the shell is provided for in the distribution of the coolant passages, but heat input in the hot region collectively denoted by the brackets A, B, and C also varies in the axial direction, across the width of the shell.
  • This is shown by the schematic representation of FIG. 2.
  • the peripheral shell 11 and the side walls 18 are fragmentarily shown, with a general curve 21 representing the pattern of heat distribution to the shell in the axial direction. Fromthe curve 21 it will be seen that the highest rate of heat input to the shell in the axial direction is approximately at the midplane 22 be tween the side walls 18, dropping off to a noticeably lower value in the vicinity of the side walls.
  • the fingers 32 are canted from strict parallelism with the axis, their inner ends being radially closer to the axis than their bases, the fingers thus pointing slightly inwardly toward a plane parallel with the axis.
  • the fingers protruding from each die part 28 have plane surfaces on their inner ends and meet the corresponding fingers protruding from the opposite side of the midpoint of the die, thue providing a thin inner wall of the housing shell 11 at the midplane 22.
  • each finger 32 is disposed and spaced apart in the circumferential direction, it is not practicable to have each finger pointing toward the axial line of the mode. Such a disposition would place the fingers in a conical array with a different angle for each, requiring a separate die part for each finger, each being retractable along a different angle. Instead, a certain number of fingers for passages 14 are grouped for a single die part. The type of grouping is shown in FIG. 1.
  • the passages for zone A can be grouped for forming by a single pair of opposed die parts 28, a second pair being used for the passages of zone B, and a third pair of zone C.
  • All the fingers 32 grouped on any single die piece 28 have their own axes parallel to each other and their inner ends slanted toward a plane which is approximately a plane including the chord of the curvature of the circumferential piece 28 from which they extend.
  • each piece 28 can be retracted in a direction parallel with the axes of its fingers, as shown by broad arrows in FIG. 3.
  • each die part 28 need not be precisely those shown under the brackets A, B, and C.
  • the number of passages which can be grouped and their circumferential extent depend in part of the degree of curvature in any given part of the housing, the size of the passages, and the desired thickness of the separating ribs. 1
  • Die parts 28 may also have a pair of circumferential lands 33 protruding from the inner faces of legs 29, for forming the gasket grooves 19, on land 33 being disposed radially inwardly of fingers 32 and the other land radially outwardly of the fingers.
  • the radially outward surfaces of lands 33 are sloped parallel with fingers 32, in order to offer no resistance when the die parts are retracted in a direction parallel with the fingers.
  • gasket channels 19a may be provided, as for forming the gasket channels 19a of the housing shown in FIG. 5.
  • Channels 19a receive a flat circumferential gasket which is apertured at the coolant passages, rather than the pair of O-rings or similar gaskets which are installed in channels 19.
  • gasket channels of the form 19a are to be utilized, the inner faces of legs 29 of die parts 28 will have flat circumferential protrusions of appropriate form and size, with the fingers 32 extending from the gasket-forming protrusions.
  • Gasket channels of either form of 19 or 19a may be provided in either of the housing embodiments shown in FIGS. 4 and 5.
  • the coolant passages 140 being in a generally cooler region of shell 11, need not have the inner wall of the shell thinned at the midplane.
  • Passages 14a may extend straight through in the axial direction between the walls of the shell.
  • passages 14a may be formed by a single pair of circumferential die pieces 36, shown at the bottom of FIG. 3, wherein the fingers 32 extend from the inner faces of die parts 36 in the straight axial direction, and the die parts are retracted axially, the circumferential curvature of the die part presenting no problem for retraction parallel with the mold axis.
  • the permanent mold assembly 23 is shown in FIG. 3 is a pressure die-casting mold, having a shot sleeve 37 and a ram 38 for injecting molten metal, and one or more appropriate venting apertures 39 disposed at convenient locations. Knockout pins may also be provided if required. that the shown for pressure die-casting, it is to be understood that the permanent mold may also be for gravity-fed pressure casting, or that centrifugal casting may be employed. Elements for closing and opening the mold are conventional and therefore not shown.
  • FIG. 4 is a fragmentary cross-section through a portion of a peripheral shell 11, showing one of the coolant passages 14.
  • the inner wall of the shell is thinnest at the midplane 22, having been formed by the slanted fingers 32 of the die parts 28 shown in FIG. 3, but still has enough thickness at its axial faces to hold the gasket grooves 19.
  • the passage 14 has a 6 substantially constant cross-section throughout its length, the onlyvariation being that of the draft angle of the fingers, which is negligible, being of the order of /z to 1.
  • FIG. 5 shows an embodiment wherein passage 14 has a markedly smaller crosssection at the midplane 22 than at the ends. This configuration is produced by giving the axes of the die fingers 32 a somewhat greater angle of slant toward the chordal plane than in the previous embodiment, and tapering off the radially inward sides of the fingers to the desired smaller cross-section at their meeting ends in the midplane of the mold.
  • the passages 14 of FIG. 5, reduced in their cross-section at the midportion by diminshing only their radial dimension in that region, have the advantage of gradual increase of the velocity of coolant flow from its entrance at one axial end of the passage to the midportion, followed by an equivalent decrease of velocity to its exit at the opposite end of the passage.
  • FIG. 6 shows one of the coolant passages 14a in the cooler portion of the shell 11, formed by die parts 36 having fingers extending axially, with a straight pull of the die.
  • this invention provides a permanent mold-cast peripheral rotor housing for a trochoidal engine, the shell being generally annular and having double walls with coolant passages extending in the generally axial direction therebetween, the inner wall in at least some of the passages being thinner at the midplane of the shell than at the axial side faces. Also provided is a method of diecasting such a shell, and a permanent mold for practicing the method.
  • a generally annular die-cast rotor housing shell for rotary internal combustion engines of the trochoidal type having a longitudinal axis and parallel side faces normal to the axis, the shell having an inner wall with a trochoidal inner surface and an outer wall spaced apart radially from the inner wall and having a plurality of generally axially oriented coolant passages therethrough between the inner and outer walls open at each side face and spaced circumferentially around the shell for flow of liquid coolant theret'hrough across the width of the shell in the generally axial direction
  • the improvement comprises: at least some of the coolant passges having rectilinear individual axes slanted from each side wall angularly to the inner trochoidal surface and meeting at an angle at a position radially closer to the shell axis at the mid-plane between the shell faces so that the the inner wall of the shell is thinner at the midportion than at the side faces, the coolant passages having slanted axes comprising a plurality of groups
  • each of the coolant passages having slanted axes has a substantially constant cross-section throughout its length from one side face to the other.
  • each of the passages having slanted axes has a cross-section gradually diminishing from relatively larger at each side face to relatively smaller at the midportion to gradually accelerate the flow of liquid coolant therethrough from one side face to the midportion and decelerate the flow from the midportion to the other side face.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

A die-cast peripheral housing for the rotor of rotary combustion engines, having cast-in passages for liquid cooling, the passages providing optimum wall thickness and coolant flow at the region of high heat input.

Description

United States Patent Hermes et a1. 1 1 Dec. 2, 1975 [54] DIE-CAST ROTOR HOUSING FOR ROTARY 3.289.647 12/1966 Turner ct a1 418/83 X COMBUSTION ENGINES 3.289.650 12/1966 Bentele Ct 211 i 1 418/101 X 3.575538 4/1971 Berkowitz 418/149 X [75] In ent rs: Walt r Lud ig Hermes, Cedar 3,830,598 8/1974 Ruf 418/83 x Grove; Murray Berkowitz, Woodcliff Lake; Charles FOREIGN PATENTS OR APPLICATIONS Lombaerde Ridgewood, all of 704.571 3/1965 Canada 123/801 [73] Assignee: Curtiss-Wright Corporation,
v WOOd'Ridge Ni Primary Examiner-C. J. Husar 22 Filed: J 18 1974 Assistant Examiner-Leonard Smith Attorney, Agent, or FirmVict0r D. Behn; Raymond [21] Appl. No.: 489,595 p Wallace [52] U.S. C]. 418/83 511 1111. c1. F01C 21/06 1 1 ABSTRACT [58] Fleld of Search 418/60 61 61 A die-cast peripheral housing for the rotor of rotary combustlon engines, having cast-1n passages for 11qu1d cooling, the passages providing optimum wall thick- [56] References Cited ness and coolant flow at the region of high heat input.
UNITED STATES PATENTS 3.250.260 5/1966 Heydrich 418/101 X 4 Claims, 6 Drawing Figures .5. Patent Dec. 2, 1975 Sheet 1 of3 3,923,433
US. Patent Dec. 2, 1975 Sheet 2 of3 3,923,433
FIGS
FIG. 5
US, Patent Dec. 2, 1975 Sheet 3 013 3,923,433
DIE-CAST ROTOR HOUSING FOR ROTARY COMBUSTION ENGINES BACKGROUND OF THE INVENTION This invention relates to rotary combustion engines of trochoidal type, and more particularly to a die-cast rotor housing having liquid cooling means for such engines.
In rotary engins of this type the pattern of heat flux is not uniform around the periphery of the engine because each of the various phases of the engine cycle always takes place adjacent to the same portion of the housing. As a result, the peripheral shell in the region in which the combustion phase occurs has a much higher rate of heat input than other portions of the shell. This was recognized in US. Pat. No. 3,007,460 to Bentele, Jones, and Sollinger, issued Nov. 7, 1961. In that patent axial passages for flow of liquid coolant through the double-walled peripheral shell are provided, there being more of such passages in the circumferential zone wherein combustion occurs.
The inner wall of the peripheral shell requires a certain thickness at its side faces both radially inward and outward of the coolant passages for the provision of gasket grooves, and in the prior art this thickness was carried uniformly across the axial width of the shell, that is, the passage went straight through in the axial direction. It was not recognized that the pattern of heat flux also varies axially across the width of the shell, with the highest heat input at the midplane between the side walls. An inner wall of constant thickness makes no provision for this circumstance, with the result that the thickness required to accommodate the gaskets, when carried straight across, leaves the thicknes at midplane too high to permit cooling at that point to the desired temperature of the working surface. Also, uneven cooling may cause distortions and occasional cracks, as well as undesirable wear and erosion of the inner surface.
In the copending US. application of Charles Jones, Ser. No. 489,825 filed July 18, 1974 and having a common assignee with the present invention, provision is made for balanced heat removal from the shell in accordance with the axial pattern of heat flux, by making the inner wall of the shell in the region of high heat input thinner at the axial midplane of the shell than at its axial edges. That invention, however, contemplates only sand-casting of the shell, which is the conventional way of forming such elements of a rotary engine.
Sand-casting is a slow and relatively expensive mode of fabrication, and it is desirable to form the shell by means of die-casting, which would greatly increase production and lower costs. It has heretofore been impracticable to form by die-casting a peripheral shell of a rotary engine wherein the generally axial coolant passages are canted radially inwardly from their axial ends toward the midplane of the shell in order to reduce the inner wall thickness at that location. When a casting die is opened to discharge the product, the several parts of the die must each be retracted only in a straight line. Since the coolant passages of a peripheral shell are circumferentially disposed around the generally annular housing, and since tthe axial ends of such canted passages are disposed further radially outwardly than at the mid-plane of the shell, normal die-casting practice would require a die with a separately movable finger or slide from each side to form each passage, each such slide being retractable along its own axis. The cost of such a die and the associated mechanism for withdrawing each finger separately along a different line would be prohibitive and would more than offset the savings ordinarily realized by die-casting.
The present invention overcomes these difficulties.
SU MMARY The present invention provides a die-cast doublewalled peripheral housing shell for rotary combustion engines of trochoidal type, having generally axially disposed coolant passages between the double walls thereof, the axially outer ends of the passages being disposed further radially outwardly than the midportions of the passages to provide a thin-sectioned inner wall at the midportion of the shell, and a means of die-casting the shell with a minimum number of mold parts. Provision is also made for forming the coolant passages with a smaller cross-section at the midplane of the shell than at the axial ends of the passages, in order to accelerate coolant flow at the center where heat input is highest and thereby minimize temperature variation across the shell. The die-casting is performed in a permanent mold by pressure die-casting, by gravity-fed pressure casting, or by centrifugal casting.
It is an object of this invention to provide a die-cast peripheral rotor housing for a trochoidal rotary engine.
It is another object to provide a die-cast rotory housing having generally annular double walls with coolant passages extending in a generally axial direction between the walls thereof, at least some of the passages having their axially outer ends disposed further radially outwardly than the midportion of the passages so that the shell inner wall is thinner at the midportion than at the side faces.
A further object is to provide such a housing shell wherein the coolant passages have a smaller cross-section at the midportion than at their ends, to accelerate coolant flow in the midportions.
Still another object is to provide a multipart permanent mold for forming such peripheral shells.
Other objects and advantages will become apparent on reading the following specification in connection with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view along the axis of the generally annular, double-walled peripheral shell of the invention;
FIG. 2 is a diagrammatic view and graph showing the relative rates of heat input to the peripheral shell in the axial direction in certain portions of the shell;
FIG. 3 is a cross-sectional elevation of an assembled permanent mold for foming the shell;
FIG. 4 is a fragmentary cross-section in elevation taken on line 4-4 of FIG. 1 and showing one of the coolant passages;
FIG. 5 is a similar view showing another embodiment of the shell with a coolant passage of modified form; and
FIG. 6 is a similar view taken on line 66 of FIG. 1 and showing one of the coolant passages in the portion of the shell wherein the inner wall is not thinned.
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a view of the side face of a peripheral shell or rotor housing 1 1 of a trochoidal engine of two lobes, although it will be understood that this invention is also applicable to such engines having other numbers of lobes. The shell 11 has an inner trochoidal surface 12 and comprises a generally annular die-cast member having double walls spaced apart radially by ribs or webs 13, and generally axially oriented coolant passages 14 and 14a extending from side to side of the shell between the double walls and spaced apart circumferentially by webs 13. The shell may be provided with a peripheral inlet port 16 and a peripheral outlet port 17 extending generally radially through the shell as shown, but it may be preferred to have either of such ports in one or both of the engine side walls 18 (shown in FIG. 2) which close the shell to form the engine cavity.
Each side face of the shell may also be provided with circumferential gasket grooves 19 disposed radially inside and outside the coolant passages, but alternatively may have the channels 192 for the gasketing arrangement shown in FIG. 5. One or more bosses 21 for spark plugs, fuel injectors, or other uses may also be provided, disposed at appropriate locations.
The circumferential brackets A, B, C, and D surrounding the shell 11 denote zones of heat input to the shell, zones A, B, and C collectively comprising the region of highest heat input. During operation of the engine a fresh charge of fuel-air mixture, or air for subsequent injection of fuel, is taken in through the inlet port. Bracket A delineates approximately the region of highest compression of the engine, wherein combustion is initiated. Zone B is the region of initial expansion of the burning gases, and zone C is the region of final expansion before discharge of the gases through the exhaust post. Zone D comprises principally the region of intake of fresh charge and the beginning of compression, wherein heat input to the shell from the interior of the engine cavity is negligible, but wherein the shell walls receive some heat by conduction from the regions where combustion takes place.
In an assembled engine the shell passages receive the coolant from headers or other channels in a side wall and discharge it to similar channels in the opposite side wall. Coolant from pumping means is introduced into the system usually at the beginning of the hot zone, and all of the passages are interconnected for flow of the coolant back and forth serially through the circumferentially disposed passages of the shell until taken off to a radiator. .For this reason the shell passages 14 in the hot region have small cross-sections to accelerate the flow, and are numerous to provide adequate cooling. Passages 14a in the cool zone D may be fewer in number and a larger cross-section to accommodate the total flow, high velocity being of less importance in the cool The peripheral shell 11 is formed of metal, and in sand-casting of the prior art has commonly been formed of iron or an aluminum alloy. For speed of production and resultant economy it is preferable that it should be die-cast in a permanent mold, of one of the die-casting alloys such as aluminum or magnesium. If the coolant passages were straight in the axial direction from one side of the shell to the other, the production of a suitable die would present no problem. The side elements of the mold would each have a plurality of axially extending fingers which would meet at the midplane of the shell, and after the casting shot the side elements of the die would be retracted in the straight axial direction, leaving passages formed by the fingers.
However, in the region of high heat input to the shell, that is, zones A, B, and C, it is desirable to have the inner wall of the shell thinner at the midplane than at its edges in order to remove heat therefrom in accordance with the pattern of axial heat input shown in FIG. 2, thus minimizing temperature variation across the shell. This is accomplished by providing the mold 23 shown in FIG. 3.
Mold 23 is a multipart die having a pair of side pieces 24 each having a projection 26 of trochoidal profile protruding axially inwardly and meeting at the midplane of the mold cavity. these projections 26 define the trochoidal inner surface 12 of the completed shell casting. After solidification of the casting, side parts 24 are retracted in the straight axial direction, as shown by the broad arrows. The draft angle on projections 26 need only be very slight, and has been somewhat exaggerated in the drawings. For a draw of one inch a taper of about /z between the axis and the surface is sufficient; for a draw of about three inches a taper of approximately 1 is suitable. For longer draws the taper may be appropriately increased.
The remainder of the mold comprises a plurality of circumferential pieces which collectively close around the side pieces 24 and their trochoidal projections 26 to define a generally annular mold cavity 27. Circumferential pieces 28 have a generally L-shaped cross-section, one leg 29 of which surrounds and abuts a portion of the circumference of side piece 24, the other leg 31 meeting the corresponding leg 31 of the opposite circumferential piece which is a mirror image.
Each leg portion 29 of circumferential pieces 28 has protruding from its axial inner surface a plurality of finzone. The number and proportions of coolant passages l4 and 14a shown in FIG. 1 are not intended to be specific, but only to illustrate a general relation.
The variant circumferential distribution of heat input I to the shell is provided for in the distribution of the coolant passages, but heat input in the hot region collectively denoted by the brackets A, B, and C also varies in the axial direction, across the width of the shell. This is shown by the schematic representation of FIG. 2. The peripheral shell 11 and the side walls 18 are fragmentarily shown, with a general curve 21 representing the pattern of heat distribution to the shell in the axial direction. Fromthe curve 21 it will be seen that the highest rate of heat input to the shell in the axial direction is approximately at the midplane 22 be tween the side walls 18, dropping off to a noticeably lower value in the vicinity of the side walls.
gers 32 extending inwardly in the generally axial direction, and of appropriate size and shape to form the coolant passages 14 of the peripheral shell. However, the fingers 32 are canted from strict parallelism with the axis, their inner ends being radially closer to the axis than their bases, the fingers thus pointing slightly inwardly toward a plane parallel with the axis. The fingers protruding from each die part 28 have plane surfaces on their inner ends and meet the corresponding fingers protruding from the opposite side of the midpoint of the die, thue providing a thin inner wall of the housing shell 11 at the midplane 22.
Since the fingers 32 are disposed and spaced apart in the circumferential direction, it is not practicable to have each finger pointing toward the axial line of the mode. Such a disposition would place the fingers in a conical array with a different angle for each, requiring a separate die part for each finger, each being retractable along a different angle. Instead, a certain number of fingers for passages 14 are grouped for a single die part. The type of grouping is shown in FIG. 1. The passages for zone A can be grouped for forming by a single pair of opposed die parts 28, a second pair being used for the passages of zone B, and a third pair of zone C. All the fingers 32 grouped on any single die piece 28 have their own axes parallel to each other and their inner ends slanted toward a plane which is approximately a plane including the chord of the curvature of the circumferential piece 28 from which they extend. Thus, after the casting has solidified in the mold each piece 28 can be retracted in a direction parallel with the axes of its fingers, as shown by broad arrows in FIG. 3.
It is to be understood that the groupings for each die part 28 need not be precisely those shown under the brackets A, B, and C. The number of passages which can be grouped and their circumferential extent depend in part of the degree of curvature in any given part of the housing, the size of the passages, and the desired thickness of the separating ribs. 1
Die parts 28 may also have a pair of circumferential lands 33 protruding from the inner faces of legs 29, for forming the gasket grooves 19, on land 33 being disposed radially inwardly of fingers 32 and the other land radially outwardly of the fingers. The radially outward surfaces of lands 33 are sloped parallel with fingers 32, in order to offer no resistance when the die parts are retracted in a direction parallel with the fingers.
Other means for forming gasket channels may be provided, as for forming the gasket channels 19a of the housing shown in FIG. 5. Channels 19a receive a flat circumferential gasket which is apertured at the coolant passages, rather than the pair of O-rings or similar gaskets which are installed in channels 19. When gasket channels of the form 19a are to be utilized, the inner faces of legs 29 of die parts 28 will have flat circumferential protrusions of appropriate form and size, with the fingers 32 extending from the gasket-forming protrusions. Gasket channels of either form of 19 or 19a may be provided in either of the housing embodiments shown in FIGS. 4 and 5.
The coolant passages 140 being in a generally cooler region of shell 11, need not have the inner wall of the shell thinned at the midplane. Passages 14a may extend straight through in the axial direction between the walls of the shell. In this case passages 14a may be formed by a single pair of circumferential die pieces 36, shown at the bottom of FIG. 3, wherein the fingers 32 extend from the inner faces of die parts 36 in the straight axial direction, and the die parts are retracted axially, the circumferential curvature of the die part presenting no problem for retraction parallel with the mold axis.
The permanent mold assembly 23 is shown in FIG. 3 is a pressure die-casting mold, having a shot sleeve 37 and a ram 38 for injecting molten metal, and one or more appropriate venting apertures 39 disposed at convenient locations. Knockout pins may also be provided if required. that the shown for pressure die-casting, it is to be understood thatthe permanent mold may also be for gravity-fed pressure casting, or that centrifugal casting may be employed. Elements for closing and opening the mold are conventional and therefore not shown.
FIG. 4 is a fragmentary cross-section through a portion of a peripheral shell 11, showing one of the coolant passages 14. The inner wall of the shell is thinnest at the midplane 22, having been formed by the slanted fingers 32 of the die parts 28 shown in FIG. 3, but still has enough thickness at its axial faces to hold the gasket grooves 19. As shown in FIG. 4 the passage 14 has a 6 substantially constant cross-section throughout its length, the onlyvariation being that of the draft angle of the fingers, which is negligible, being of the order of /z to 1.
Although the invention has been described thus far in connection with the forming of coolant passages of constant cross-section, it is desirable in some instances to have passages to diminished. cross-section in the midportion in order to accelerate coolant flow in that portion and further minimize temperature variation across the shell in the axial direction. FIG. 5 shows an embodiment wherein passage 14 has a markedly smaller crosssection at the midplane 22 than at the ends. This configuration is produced by giving the axes of the die fingers 32 a somewhat greater angle of slant toward the chordal plane than in the previous embodiment, and tapering off the radially inward sides of the fingers to the desired smaller cross-section at their meeting ends in the midplane of the mold. There is no tapering of the circumferential sides of the fingers, in order that the rib thicknesses and the circumferential width of the passages shall remain unchanged, and the tapering of the radially inward surfaces requires the higher degree of angularity from parallelism with the mold axis, in order that the midportion of the inner wall of the housing shell will have the same thickness as the minimum thickness of FIG. 4. Such an arrangement also allows the thin midportion of the inner wall to have considerable axial extent, as shown in FIG. 5. About one-fourth to one-half of the middle portion of the inner wall in such passages may have a constant thickness at the minimum value, approximately the middle one-third being a convenient proportion.
The passages 14 of FIG. 5, reduced in their cross-section at the midportion by diminshing only their radial dimension in that region, have the advantage of gradual increase of the velocity of coolant flow from its entrance at one axial end of the passage to the midportion, followed by an equivalent decrease of velocity to its exit at the opposite end of the passage.
FIG. 6 shows one of the coolant passages 14a in the cooler portion of the shell 11, formed by die parts 36 having fingers extending axially, with a straight pull of the die.
From the foregoing description it will be seen that this invention provides a permanent mold-cast peripheral rotor housing for a trochoidal engine, the shell being generally annular and having double walls with coolant passages extending in the generally axial direction therebetween, the inner wall in at least some of the passages being thinner at the midplane of the shell than at the axial side faces. Also provided is a method of diecasting such a shell, and a permanent mold for practicing the method.
What is claimed is:
l. A generally annular die-cast rotor housing shell for rotary internal combustion engines of the trochoidal type having a longitudinal axis and parallel side faces normal to the axis, the shell having an inner wall with a trochoidal inner surface and an outer wall spaced apart radially from the inner wall and having a plurality of generally axially oriented coolant passages therethrough between the inner and outer walls open at each side face and spaced circumferentially around the shell for flow of liquid coolant theret'hrough across the width of the shell in the generally axial direction, wherein the improvement comprises: at least some of the coolant passges having rectilinear individual axes slanted from each side wall angularly to the inner trochoidal surface and meeting at an angle at a position radially closer to the shell axis at the mid-plane between the shell faces so that the the inner wall of the shell is thinner at the midportion than at the side faces, the coolant passages having slanted axes comprising a plurality of groups of associated passages, each group of associated passages being circumferentially disposed along an arcutate portion of the generally annular shell, the associated passages of each group having their individual axes parallel to each other and nonparallel to the individual axes of the passages of other groups.
2. The combination recited in claim 1, wherein each of the coolant passages having slanted axes has a substantially constant cross-section throughout its length from one side face to the other.
3. The combination recited in claim 1, wherein each of the passages having slanted axes has a cross-section gradually diminishing from relatively larger at each side face to relatively smaller at the midportion to gradually accelerate the flow of liquid coolant therethrough from one side face to the midportion and decelerate the flow from the midportion to the other side face.
4. The combination recited in claim 3, wherein about one-fourth to one-half of the middle portion of the inner wall in the passages having slanted axes has a constant thickness less than the thickness at the side faces.

Claims (4)

1. A generally annular die-cast rotor housing shell for rotary internal combustion engines of the trochoidal type having a longitudinal axis and parallel side faces normal to the axis, the shell having an inner wall with a trochoidal inner surface and an outer wall spaced apart radially from the inner wall and having a plurality of generally axially oriented coolant passages therethrough between the inner and outer walls open at each side face and spaced circumferentially around the shell for flow of liquid coolant therethrough across the width of the shell in the generally axial direction, wherein the improvement comprises: at least some of the coolant passges having rectilinear individual axes slanted from each side wall angularly to the inner trochoidal surface and meeting at an angle at a position radially closer to the shell axis at the mid-plane between the shell faces so that the the inner wall of the shell is thinner at the midportion than at the side faces, the coolant passages having slanted axes comprising a plurality of groups of associated passages, each group of associated passages being circumferentially disposed along an arcutate portion of the generally annular shell, the associated passages of each group having their individual axes parallel to each other and nonparallel to the individual axes of the passages of other groups.
2. The combination recited in claim 1, wherein each of the coolant passages having slanted axes has a substantially constant cross-section throughout its length from one side face to the other.
3. The combination recited in claim 1, wherein each of the passages having slanted axes has a cross-section gradually diminishing from relatively larger at each side face to relatively smaller at the midportion to gradually accelerate the flow of liquid coolant therethrough from one side face to the midportion and decelerate the flow from the midportion to the other side face.
4. The combination recited in claim 3, wherein about one-fourth to one-half of the middle portion of the inner wall in the passages having slanted axes has a constant thickness less than the thickness at the side faces.
US489595A 1974-07-18 1974-07-18 Die-cast rotor housing for rotary combustion engines Expired - Lifetime US3923433A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US489595A US3923433A (en) 1974-07-18 1974-07-18 Die-cast rotor housing for rotary combustion engines
US05/564,359 US3940104A (en) 1974-07-18 1975-04-02 Mold for die-cast rotor housing for rotary combustion engines
CA226,511A CA1035703A (en) 1974-07-18 1975-05-08 Die-cast rotor housing for rotary combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US489595A US3923433A (en) 1974-07-18 1974-07-18 Die-cast rotor housing for rotary combustion engines

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/564,359 Division US3940104A (en) 1974-07-18 1975-04-02 Mold for die-cast rotor housing for rotary combustion engines

Publications (1)

Publication Number Publication Date
US3923433A true US3923433A (en) 1975-12-02

Family

ID=23944489

Family Applications (1)

Application Number Title Priority Date Filing Date
US489595A Expired - Lifetime US3923433A (en) 1974-07-18 1974-07-18 Die-cast rotor housing for rotary combustion engines

Country Status (2)

Country Link
US (1) US3923433A (en)
CA (1) CA1035703A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4664607A (en) * 1985-05-30 1987-05-12 Deere & Company Rotary engine cooling system with flow balancing
EP0277548A1 (en) * 1987-01-28 1988-08-10 John Deere Technologies International Inc. Rotating piston engine
US6126425A (en) * 1997-05-22 2000-10-03 T. D. Engineering Co., Ltd. Positive displacement pump
US20040135372A1 (en) * 2001-11-20 2004-07-15 Haney Morris G. Submersible pump drop pipe and casing assembly connection and method of manufacture
US20110156384A1 (en) * 2009-12-31 2011-06-30 Hennemann Thomas L Pipe With Reinforced Female End
US9121277B2 (en) 2012-02-06 2015-09-01 Pratt & Whitney Canada Corp. Rotary internal combustion engine with cooled insert
US9174403B2 (en) 2009-12-31 2015-11-03 Bilfinger Water Technologies, Inc. Method of manufacture of pipe with reinforced female end

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3250260A (en) * 1962-10-29 1966-05-10 Heydrich Fred Erhart Rotary engines
US3289650A (en) * 1964-11-18 1966-12-06 Curtiss Wright Corp Air cooled rotary combustion engine
US3289647A (en) * 1964-08-24 1966-12-06 Curtiss Wright Corp Cooling system for multi-unit rotary mechanisms
US3575538A (en) * 1969-07-24 1971-04-20 Curtiss Wright Corp Housing sealing means for rotary engines
US3830598A (en) * 1972-01-15 1974-08-20 Audi Ag Housings for rotary combustion engines

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3250260A (en) * 1962-10-29 1966-05-10 Heydrich Fred Erhart Rotary engines
US3289647A (en) * 1964-08-24 1966-12-06 Curtiss Wright Corp Cooling system for multi-unit rotary mechanisms
US3289650A (en) * 1964-11-18 1966-12-06 Curtiss Wright Corp Air cooled rotary combustion engine
US3575538A (en) * 1969-07-24 1971-04-20 Curtiss Wright Corp Housing sealing means for rotary engines
US3830598A (en) * 1972-01-15 1974-08-20 Audi Ag Housings for rotary combustion engines

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4664607A (en) * 1985-05-30 1987-05-12 Deere & Company Rotary engine cooling system with flow balancing
EP0277548A1 (en) * 1987-01-28 1988-08-10 John Deere Technologies International Inc. Rotating piston engine
AU599731B2 (en) * 1987-01-28 1990-07-26 Deere & Company Rotary engine cooling system
US6126425A (en) * 1997-05-22 2000-10-03 T. D. Engineering Co., Ltd. Positive displacement pump
US20040135372A1 (en) * 2001-11-20 2004-07-15 Haney Morris G. Submersible pump drop pipe and casing assembly connection and method of manufacture
US7470383B2 (en) * 2001-11-20 2008-12-30 Johnson Screens, Inc. Submersible pump drop pipe and casing assembly connection and method of manufacture
US20110156384A1 (en) * 2009-12-31 2011-06-30 Hennemann Thomas L Pipe With Reinforced Female End
US9174403B2 (en) 2009-12-31 2015-11-03 Bilfinger Water Technologies, Inc. Method of manufacture of pipe with reinforced female end
US9243728B2 (en) 2009-12-31 2016-01-26 Bilfinger Water Technologies, Inc. Pipe with reinforced female end
US9121277B2 (en) 2012-02-06 2015-09-01 Pratt & Whitney Canada Corp. Rotary internal combustion engine with cooled insert
US10247092B2 (en) 2012-02-06 2019-04-02 Pratt & Whitney Canada Corp. Rotary internal combustion engine with cooled insert

Also Published As

Publication number Publication date
CA1035703A (en) 1978-08-01

Similar Documents

Publication Publication Date Title
US5711268A (en) Rotary vane engine
US3995422A (en) Combustor liner structure
US3297006A (en) Rotary pumps and engines
US3102516A (en) Cooling system for rotary mechanisms
JPH06102963B2 (en) Gas turbine air cooling blade
US3923433A (en) Die-cast rotor housing for rotary combustion engines
US3333763A (en) Sealing arrangement for rotary engines
US5181490A (en) Rotary engine
CA2363363C (en) Cooling system for gas turbine stator nozzles
US3552876A (en) Pulse sensitive turbine nozzle
US4370955A (en) Rotary valve for an internal combustion engine
US4016850A (en) Ported cylinder construction for a two-cycle engine
US3722480A (en) Rotary combustion engine with improved firing channel
US3940104A (en) Mold for die-cast rotor housing for rotary combustion engines
ES407148A1 (en) Method of making a cooled valve for heat engine and valve obtained thereby
US3249095A (en) Combustion system for diesel type rotary engines
JPS5834649B2 (en) rotary engine
US4360317A (en) Three cycle per revolution wave compression supercharger
US3847517A (en) Rotary piston for a rotary internal combustion engine
US3703885A (en) Rotary piston internal combustion engines
US4558669A (en) Ignition apparatus for a rotary internal combustion engine
US3155311A (en) Housing construction for rotary mechanisms
US4090823A (en) Fluid-cooled rotary piston for Wankel-type mechanism
US3921593A (en) Cooling system for the cooling of the housing of a rotary piston internal combustion engine
US3139072A (en) Trochoid compensation for rotary engine

Legal Events

Date Code Title Description
AS Assignment

Owner name: JOHN DEERE TECHNOLOGIES INTERNATIONAL, INC., JOHN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CURTISS-WRIGHT CORPORATION, A CORP. OF DE;REEL/FRAME:005646/0925

Effective date: 19840223

AS Assignment

Owner name: SNYDER, SHERYL K.

Free format text: SECURITY INTEREST;ASSIGNOR:ROTARY POWER INTERNATIONAL, INC., A CORPORATION OF DE;REEL/FRAME:006027/0113

Effective date: 19920220

Owner name: SNYDER, LARRY L.

Free format text: SECURITY INTEREST;ASSIGNOR:ROTARY POWER INTERNATIONAL, INC., A CORPORATION OF DE;REEL/FRAME:006027/0113

Effective date: 19920220

Owner name: LOEB PARTNERS CORPORATION

Free format text: SECURITY INTEREST;ASSIGNOR:ROTARY POWER INTERNATIONAL, INC., A CORPORATION OF DE;REEL/FRAME:006027/0122

Effective date: 19920220

AS Assignment

Owner name: ROTARY POWER INTERNATIONAL, INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:JOHN DEERE TECHNOLOGIES INTERNATIONAL, INC.;REEL/FRAME:006031/0870

Effective date: 19911231