US3921163A - Alpha-numerical symbol display system - Google Patents

Alpha-numerical symbol display system Download PDF

Info

Publication number
US3921163A
US3921163A US443109A US44310974A US3921163A US 3921163 A US3921163 A US 3921163A US 443109 A US443109 A US 443109A US 44310974 A US44310974 A US 44310974A US 3921163 A US3921163 A US 3921163A
Authority
US
United States
Prior art keywords
signals
vector
circuit
circuits
multiplying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US443109A
Other languages
English (en)
Inventor
Philippe Giraud
Jacques Marien
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Application granted granted Critical
Publication of US3921163A publication Critical patent/US3921163A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G1/00Control arrangements or circuits, of interest only in connection with cathode-ray tube indicators; General aspects or details, e.g. selection emphasis on particular characters, dashed line or dotted line generation; Preprocessing of data
    • G09G1/06Control arrangements or circuits, of interest only in connection with cathode-ray tube indicators; General aspects or details, e.g. selection emphasis on particular characters, dashed line or dotted line generation; Preprocessing of data using single beam tubes, e.g. three-dimensional or perspective representation, rotation or translation of display pattern, hidden lines, shadows
    • G09G1/08Control arrangements or circuits, of interest only in connection with cathode-ray tube indicators; General aspects or details, e.g. selection emphasis on particular characters, dashed line or dotted line generation; Preprocessing of data using single beam tubes, e.g. three-dimensional or perspective representation, rotation or translation of display pattern, hidden lines, shadows the beam directly tracing characters, the information to be displayed controlling the deflection and the intensity as a function of time in two spatial co-ordinates, e.g. according to a cartesian co-ordinate system
    • G09G1/10Control arrangements or circuits, of interest only in connection with cathode-ray tube indicators; General aspects or details, e.g. selection emphasis on particular characters, dashed line or dotted line generation; Preprocessing of data using single beam tubes, e.g. three-dimensional or perspective representation, rotation or translation of display pattern, hidden lines, shadows the beam directly tracing characters, the information to be displayed controlling the deflection and the intensity as a function of time in two spatial co-ordinates, e.g. according to a cartesian co-ordinate system the deflection signals being produced by essentially digital means, e.g. incrementally
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R13/00Arrangements for displaying electric variables or waveforms
    • G01R13/20Cathode-ray oscilloscopes
    • G01R13/208Arrangements for measuring with C.R. oscilloscopes, e.g. vectorscope

Definitions

  • Means are provided to vary the speed of scan and the amplification gain for deflection in dis- [56] References Cited crete values when there is a change of colour. Further means are provided to select the dc. voltages and the UNITED STATES PATENTS multiplying co-efficient from two sets of values corre- 3,510,865 5/1970 Callahan et al.
  • the present invention relates to a cathode ray tube display system intended for displaying graphic or alphanumeric data according to a random scanning.
  • the invention applies advantageously to data-display systems such as electronic attitude director indicators where the data to be displayed concerns various flight parameters and where the tube is a colour CRT display.
  • This data consists of vectors, curves, symbols, or alphanumeric characters, complex traces being assumed to be formed by linking together vectors.
  • the scanning of the tube is of the so-called random type, which means that the electron beam traces out the item of data in question directly, the different items of data being displayed one after the other in the course of each image-scan sequence.
  • the spot is made to move in a line between the end points of a vector by means of X and Y deflection signals which vary in a saw-tooth pattern.
  • the scanning circuit includes integrating means. If the integration takes place with a constant integration period the trace speed is inversely proportional to the length of the vector and brilliance varies as a function of this parameter.
  • the display system further enables data received in digital form to be used with either cartesian or polar coordinates as desired. It also allows the duration of image scan to be optimised by considerably reducing the switching dead-times between successive items of data, and the scanning speed to be changed quickly when changing colours.
  • a cathode ray tube display system for displaying according to a random scanning successive vectors representative of graphic data, comprising a cathode ray tube with X and Y deflection means; a scanning circuit for providing X and Y deflection signals to said deflexion means respectively and comprising an integrator circuit having a determined time constant duration and receiving a reference dc. voltage for producing a sawtooth signal, a comparator circuit receiving said sawtooth signal and a threshold dc. voltage for controlling said integrator, two multiplying circuits receiving simultaneously said sawtooth signal and being each connected in series with an adding circuit, said adding circuits providing said deflection signals respectively; and generating means for generating said do.
  • said generating means comprising switching means for selecting, for each vector, said do. voltages and said multiplying signals from a first and a second sets of values corresponding to a first and a second operation modes respectively, the ratio between the threshold and reference voltages being proportional to the length of the vector whatever the operation mode selected.
  • FIG. 2 a simplified diagram of a scanning circuit used in the invention
  • FIG. 3 a diagram of part of FIG. 2, showing the special circuits employed to modify the circuit of FIG. 2 when using a polychromatic tube;
  • FIG. 4 an exemplary embodiment of the display system according to the invention using a scanning circuit as in FIGS. 2 and 3;
  • FIG. 5 a diagram of a multiplying converter circuit
  • FIG. 6 a diagram of an adding and variable-gain amplifying circuit
  • FIG. 7 a diagram of one possible embodiment of the calculating circuit in FIG. 4, and
  • FIGS. 8 and 9 a diagram of the screen and a curve of variation intended to show the methods employed in the calculating circuit in FIG. 7..
  • FIG. 1 shows the representative components of a vector and the corresponding deflection signals.
  • a vector PO is defined by two components Cl and C2 which correspond to the differences between the co-ordinates of the end points.
  • the coordinates of P are XP, YP and those of Q are XQ, YO while the respresentative components are C1 XQ and C2 YQ YP.
  • C1 L cos R and C2 L sin R L being the length of the vector PQ and R the angle formed between direction OX and this vector (the angle in the figure being positive).
  • the corresponding deflection voltages UX(I) and UY(t), which are applied respectively to the X and Y deflector elements of the tube, are shown respectively at the bottom and at the left of FIG. 1.
  • the initial values UXP and UYP enable the beam to be first positioned instantaneously at the beginning P of the trace, being taken as the point of rest when there are no deflection voltages.
  • the time at which trace PQ begins is to and the time at which it ends to T.
  • the trace from P to Q is brought about by sawtooth voltages ABC for X and DEF for Y, their duration being T.
  • Their amplitude varies in linear fashion from zero at time to to respective values UXQ-UXP proportional to C1, and UYQ-UYP proportional to C2.
  • the proportional factor may be the same or there may be two different factors K1 and K2, depending on whether the X and Y sensitivities are to be the same or different.
  • This trace speed is constant if it remains independent of the length parameter L, i.e. if the condition (T/L) To constant is satisfied, To being the time taken to trace a unit component represented by a vector of length L0 1.
  • FIG. 2 is a simplified diagram of a scanning circuit for generating deflection signals. It includes means for generating sawtooth signals which operate in a known way by integrating a predetermined DC voltage level, or reference voltage, for a predetermined period of time.
  • the generator means comprise a single integrator l which receives a reference voltage U at time to and which supplies at its output a sawtooth signal of the form K3 U-t, K3 being a constant introduced by circuit 1. This signal is zero when t to and then increases in a linear fashion until time to T.
  • the integration is stopped at time to Tby a threshold comparator 2 in which the signal K3 U.t is compared to a threshold value S, duration T thus being equal to (S/K3U).
  • threshold S is a DC voltage So of constant value
  • the reference voltage U takes the form (Uo/L), with U0 being a constant. If on the other hand voltage U is a constant DC voltage U0, the threshold S takes the form S SoL (So being a constant).
  • Circuits 3 and 4 are multiplier circuits which receive the sawtooth signal simultaneously through one of their I U0 L L these signals are given by:
  • the initial values for positioning at P are obtained by adding values UXP and UYP respectively to the signals supplied by the multiplying circuits 3 and 4 to form deflection signals UX and UY (FIG. 1).
  • a first adding circuit 5 is connected in series with the multiplying circuit 3 and receives a signal SXP corresponding to UXP through a second input at time to, while its output feeds a signal UX to the horizontal deflectors 6 of a cathode ray tube 7.
  • a second adding circuit 8 in series with multiplying circuit 4 receives a signal SYP corresponding to UYP and feeds a signal UY to the vertical deflectors 9.
  • Block 10 represents ancillary means producing the various signals U, S, Mx, My, SXP and SYP.
  • these means comprise a digital computer which supplies the different items of data XP, Y? and X0, YQ for each vector in digital form, these items of data being transmitted to the display unit.
  • the latter may for example incorporate: an input buffer store having random and sequential access which receives the data from the computer; a circuit for addressing the buffer store so as to extract from it the successive items of data to be displayed in the course of each image scan; a circuit for decoding the data extracted; a digital/analogue conversion circuit for the decoded data; and ancillary circuits comprising synchronising circuits.
  • the display tube is of the colour CRT type.
  • Applying a very high voltage, the level of which may vary in steps, to one electrode of the tube allows a colour to be selected.
  • red, yellow and green may be produced independently in a beam penetration cathode ray tube display by applying three different levels of the very high voltage.
  • the very high voltage causes the speed of the electrons forming the beam to vary as they move in a longitudinal direction along the gun axis.
  • the velocity of the line trace (or trace speed), i.e., the brilliance will vary, increasing or decreasing, depending on the color selected.
  • FIG. 3 shows some of the circuits in the diagram in FIG. 2 as well as the arrangements made to achieve a simultaneous action.
  • the integrator 1 comprises an integrating amplifier of the operational type made up of: an amplifier 15, a resistive component R1 between the source U and the input of amplifier l5, and a capacitive component C connected to give negative feedback between the output and input of amplifier 15.
  • the output signal K3U-t may be expressed in the form R1C10 being the time constant of integration of components R1 and C10. This time constant may be varied by altering the value of either of the components R1 and C10. In the present instance resistor R1 is altered by switching when there is a change of colours.
  • the switching circuits l7 and 18 are controlled via an intermediate circuit 19 which receives order 51 and identifies the cir- 6 cuit to be operated from it.
  • Signal S1 may thus be a digital signal and circuit 19 may be made up of simple logic components.
  • the same circuit 19 is used to control the gain of two variable-gain amplifiers simultaneously.
  • the adding circuits 5 and 8 in FIG. 2 are replaced by circuits 20 and 21 which combine a summing circuit follewed by a variable-gain amplifier. Circuits of this type are known in the form of operational circuits.
  • the gain control signals are set beforehand to achieve the desired result, i.e. that any particular vector should be positioned in the same way whichever colour is selected. Where there are three colours, three gain co-efficients arecalculated in this way.
  • the reference voltage U is applied to the integrator via a switching circuit 22.
  • This circuit is instructed to close at the time to when a vector begins to be traced and to open at the time to Twhen the vector in question finishes being traced.
  • a control signal S2 such as a pulse, is applied to one input of an intermediate circuit 23 at time to, circuit 23 being for example a bistable flip-flop one of whose outputs controls the switching circuit 22.
  • Output S3 of the threshold comparator 2 supplies the second input of change-over circuit 23.
  • a second output of the latter controls a switching circuit 24 in parallel with the integrating capacitor C10, switch 24 being made to open from to to to T by having signal S2 applied to it at to, and to close from to Tto the time when the next vector begins by having signal S3 applied to it at time to T.
  • Switch 24 causes capacitor C10 to be short-circuited and rapidly discharged at time to T.
  • FIG. 4 A preferred embodiment of a display system using a colour CRT, such as a beam penetration cathode ray tube, is shown in the diagram in FIG. 4.
  • the system in question is of the electronic attitude director indicator type for example.
  • Measuring apparatus such as probes, sensors, inertia units, etc... supply measurements corresponding to various flight parameters in the form of electrical signals. After being digitally coded, this data is transmitted to a digital computer and then to a display unit which may incorporate a circuit arrangement similar to that described above for block 10 in FIG. 2.
  • the point at which the succession of display circuits is broken into is that at which the digital signals for positioning the successive vectors and those for controlling the switches in the scan circuit are delivered.
  • This point may be situated for example, at the output of the decoding circuits.
  • Block 30 symbolises all the circuits lying upstream of this point, these circuits being arranged in accordance with known techniques and lying outside the scope of the invention.
  • the co-ordinates are understood to be supplied either in cartesian form (XP, YP XQ, YQ) or in polar form (L, cos R, sin R) as the case may be. It is in fact better for certain datato use polar co-ordinates in view of the nature of the measurement signals and so as not to overload the computer needlessly. For other data cartesian co-ordinates are used.
  • the control signals comprise the signal S2 for the vector considered to begin to be traced, the colour instruction signal S1 and a co-ordinate instruction signal S4.
  • the latter enables a distinction to be made between whether cartesian or polar co--ordinates are to be used for the current vector.
  • Two digital subtracting circuits 31 and 32 supply components C1 and C2 respectively on the basis of sig- 7 nals XP, X and YP, YQ.
  • a digital circuit forms a signal the value of which is equal to or proportional to from C1 and C2.
  • a switching circuit 34 receives signal l/L at one input, and a digital signal U at a second input, and is controlled by signal S4. The output of this circuit transmits l/L or U depending on whether the co-ordinate instruction S4 is equivalent to the use of cartesian or polar co-ordinates.
  • Value U may be produced constantly by a store circuit or a register 35.
  • a digital/analogue conversion circuit 36 receives the output of switch 34 and supplies the appropriate reference voltage U to integrator 1 via switching circuit 22. Circuits 1 to 4 and 19 to 22 are equivalent to those in FIG.
  • a change of threshold in response to the co-ordinate instruction is accomplished by a switching circuit 37 controlled by the signal S4, which gives the threshold S appropriate to the type of co-ordinates being used.
  • circuits 30 supply a digital value L which, having been converted into analogue form in block 36, is applied to a first input of switching circuit 37.
  • a second input of this circuit receives from a circuit at 35, a voltage So which may be produced in the same way as Uo.
  • Circuit 38 supplies MX to multiplying circuit 3, having received value C1 at one input and value cos R at a second.
  • circuit 39 receives value C2 and sin R and supplies MY to multiplying circuit 4.
  • the signals SYP and SXP applied to the combined summing circuits and variable-gain amplifiers and 21 result from the conversion of digital signals XP and Y? in 36.
  • the appropriate connections are not shown to simplify the figure.
  • the signals C1, C2 or cos R, sin R applied to the switching circuits 38 and 39 may also be in analogue form after being converted in 36, although the control S4 may still be in digital form.
  • the signals are preferably applied in digital form and MX and MY are then digital signals likewise and the circuits 3 and 4 used are of the multiplying digital/analogue converter type.
  • the D/A converting circuit 36 may be simplified in this way.
  • FIG. 5 shows, as a reminder, a diagram of a multiplying D/A converter circuit which may be used to form circuit 3 for example.
  • the signal MX considered is one of four digits so as not to overburden the Figure.
  • Each of the connections which transmits a digit in a given position in MX controls a respective switching circuit (41, 42, 43 or 44).
  • a local reference voltage U1 is transmitted by each of the circuits 41 to 44 if the appropriate digit isa l
  • a resistor network 45 and an operational amplifier 46 complete the circuit.
  • the output signal is made equal to NUl, N representing a number corresponding to the digital signal MX.
  • the binary value 001 l of MX is equal to a number N of 3 and the value of the output is 3U1.
  • An extra connection allows information on the sign of MX to be transmitted by, for example, letting digit 0 be equivalent to and digit 1 to The sign is given by the the digital information C1 or cos R discussed above and depends on whether XQ is less than XP or whether angle R is negative.
  • An additional switching circuit 47 is controlled by the sign data and switches through value Ul or U1 as the case may be, the output signal becoming U1 N or U1 N respectively.
  • FIG. 6 shows a diagram of a summing and variablegain amplifying circuit such as circuit 20 (FIG. 3 or 4) which receives signal SXP and the output of the associated multiplying circuit 3. It incorporates an operational amplifier 50 which is connected in a known way as an adder by applying input signals to it through two resistive components 51 and 52 which form an adder 53. The change-over between discrete predetermined levels of gain which occurs when changing colours is accomplished by altering the value of the resistor connected to give negative feedback between the output and input of the amplifier.
  • the appropriate circuit combines three resistive components 54, 55, 56 and two switching circuits 57, 58 controlled from circuit 19 by signal S1, assuming that the type of display envisaged uses three different colours.
  • FIG. 7 shows a simplified diagram of an embodiment of the calculating circuit 33 in FIG. 4.
  • the digital components C l and C2 at the outputs of the subtracting circuits 31 and 32 include an item of sign information.
  • the so-called twos complement binary code is usually used with systems of this type which include a computer, and digital circuits 61 and 62 enables the absolute values I Cl I and C2 I to be obtained which are used for circuit 33.
  • Circuits 61 and 62 may consist of a switching or multiplexer circuit, a complementing circuit, and an adding circuit.
  • the calculating circuit is arranged to calculate the value l/L to an approximation such that consecutive variations in brilliance and position are small, of no consequence and imperceptible to the observer.
  • the calculating circuit 33 may be produced in a compact and relatively simple form using integrated circuits.
  • the amount of change represented by each component C1, C2 is calculated as a function of the appropriate dimension of the screen along X and Y, and of the positioning of the point of origin 0 on the screen. If point 0 is considered to be at the centre of a screen as shown in FIG. 8, the maximum values CIM and C2M of the components are equivalent to half the appropriate dimensions of the screen, and their sign may be either negative or positive.
  • Each of the distances 0 to ClM and 0 to C2M is divided into a small number m of areas so as to give only m values of Cl and m values of C2, m being 16 for example, m is selected to such a way as to give rise to only a limited amount of error which is compatible with the operating criteria mentioned above.
  • FIG. 9 is shown a function I/ FEW which is equivalent to l/L where C2 A is a constant.
  • a given change DL in Y corresponds to a small change in X as the origin is approached and a greater and greater one as it recedes.
  • the m values selected for C l (and for C2) are therefore distributed over the envisaged range ClM (and C2M) in a non-uniform manner. The distribution is such that the ratio between two successive selected values of the function is substantially constant, i.e.
  • the result is m predetermined values of l/L i.e. 256 when m 16.
  • the means employed allow firstly the nearest predetermined values C1 and C2 to be selected and then the corresponding value of l/L.
  • the circuits used comprise a circuit 63 for addressing a store 65 and, for the Y channel which receives IC2 I similar circuits 64 and 66.
  • the function of the addressing circuit 63 (or 64) is to identify the area to which the input signal corresponds and to select the appropriate nearest value of IClI or I C2I in the store.
  • each of the stores 65 (or 66) permanently contains m binary bits corresponding to these areas which constitute the m separate values of the component C1 (or C2) selected for the calculation.
  • C 18 and C are the values extracted from the stores, when m 16 these values may be four-digit binary words. They are then used in the same way to address, via cricuits 67 and 68, a third store 69 in which are held the m predermined values of l/L given by the m values for X and the m values for Y. Circuits 63 to 69 are produced using known techniques. The combination 67, 68, 69 may for example be formed as integrated circuits of the programmable bipolar read only memory type.
  • Each of the groupings 63, 65 and 64, 66 may also be produced from a programmable bipolar read only memory by dividing the digital input connections into two sets and programming the store accordingly; for example, if I C1 I is an eight bit number, two set of four bits may be selected to address the store after decoding and to extract the desired value from the m stored values.
  • a switching circuit such as circuit 23 in FIG. 2 may be a simple fieldeffect transistor.
  • signals S1, S2 and S4 intended for the various switching operations and which may be produced in different ways. These signals are generally made up of one or more pulses depending on the type of control to be exerted.
  • the scan circuit and the system described with reference to FIGS. 2 to 7 may be modified in a number of ways which provide the specified characteristics and these modifications are understood to fall within the scope of the invention.
  • the facility of using polar or cartesian co-ordinates as desired and the fact of employing predominantly digital processing make possible a compact and lightweight embodiment which is of advantage when used to form a piece of airborne equipment.
  • An alpha-numerical symbol display system for displaying, according to a random scanning, successive vectors representative of graphic data on a color cathode ray tube with equal and uniform brilliance and a consistent positioning of the trace irrespective of the color scan selected and of the vector length, said system comprising:
  • sawtooth generating means for providing a sawtooth signal having a determined and different slope value for each color scan and including an integrator circuit having a determined time constant duration for integrating a reference d.c. voltage to produce a ramp output signal, a comparator circuit for comparing said ramp signal to a threshold d.c. voltage to control said integrator;
  • variable gain amplifiers connected in series with said adding circuits respectively and providing X and Y deflection signals to said deflection means respectively;
  • P. generating means for generating said d.c. voltages and further said multiplying signals and adding signals and including switching means for selecting, for each vector, said d.c. voltages and said multiplying signals from a first and a second sets of values corresponding to a first and to a second operation modes respectively, said generating means providing further positioning coordinate signals of the vector in question and which are polar-coordinate signals for the first operation mode and cartesian-coordinate signals for the second operation mode, said generating means comprising further control means for providing control signals in the case of color scan change, on the one hand, to said integrator circuit to change the said slope value by varying its time constant duration and, on the other hand, to said variable gain amplifiers to vary their respective gain in discrete step values, the ratio between the threshold voltage and the reference voltage being proportional to the length of the vector in question whatever the operation mode selected; and
  • G a controlled VHT generator for providing to said cathode ray tube different VHT voltages corresponding to said color scans.
  • a display system wherein said generating means provides for the first operation mode, a predetermined constant reference voltage, a threshold voltage proportional to the length of the vector to be displayed, and multiplying signals proportional to the directive cosines of the polar co-ordinates of the vector, a first signal corresponding to the sine and a second to the cosine, said generating means providing for the second operation mode, a predetermined constant threshold voltage, a reference voltage which is inversely proportional to the length of the vector to be 1 1 displayed, and multiplying signals proportional to the components which represent the cartesian co-ordinates of the vector, at first signal corresponding to the component for an X scanning axis and the second to that for an Y scanning axis.
  • a display system wherein the integrator circuit comprises passive components which establish said time constant duration, and at least one sub-circuit which combines another passive component in series with a controlled switching circuit, a control signal being applied to the said switching circuit from said generating means when a change of color occurs.
  • said generating means comprises a digital computer to produce digital signals corresponding to the said vector coordinate signals and to the said switching control signals, and further four two-input switching circuits for selecting said reference and threshold voltages and said multiplying signals respectively according to the operation mode in question, a common control signal being 12 applied simultaneously to these four two-input switching circuits.
  • a display system wherein the multiplying signals are provided in digital form to the multiplying circuits which are of the multiplying digitalanalogue converter type.
  • said generating means comprises further two digital subtractor circuits to supply, on the basis of the cartesian positional coordinates provided by said digital computer, the representative X and Y components of the vector in question, and a digital calculating circuit to calculate the inverse parameter of the length of the vector from the said X and Y vector components.
  • a display system wherein the said calculating circuit comprises three programmable bipolar read-only memories, storing m, m and m words respectively and programmed to select the stored value closest to the true value from m predetermined stored values of the said parameter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Controls And Circuits For Display Device (AREA)
US443109A 1973-02-20 1974-02-15 Alpha-numerical symbol display system Expired - Lifetime US3921163A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR7305938A FR2218646B1 (US07223432-20070529-C00017.png) 1973-02-20 1973-02-20

Publications (1)

Publication Number Publication Date
US3921163A true US3921163A (en) 1975-11-18

Family

ID=9115107

Family Applications (1)

Application Number Title Priority Date Filing Date
US443109A Expired - Lifetime US3921163A (en) 1973-02-20 1974-02-15 Alpha-numerical symbol display system

Country Status (5)

Country Link
US (1) US3921163A (US07223432-20070529-C00017.png)
JP (1) JPS5435740B2 (US07223432-20070529-C00017.png)
DE (1) DE2407919C3 (US07223432-20070529-C00017.png)
FR (1) FR2218646B1 (US07223432-20070529-C00017.png)
GB (1) GB1442272A (US07223432-20070529-C00017.png)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4314351A (en) * 1979-01-30 1982-02-02 Thomson-Csf Curve-generating device for visual display of symbols on a cathode-ray screen
US4413323A (en) * 1980-08-05 1983-11-01 Sundstrand Data Control, Inc. Digital symbol generator with symbol error checking
US4507656A (en) * 1982-09-13 1985-03-26 Rockwell International Corporation Character/vector controller for stroke written CRT displays
US4535328A (en) * 1982-09-13 1985-08-13 Rockwell International Corporation Digitally controlled vector generator for stroke written CRT displays
US20050052344A1 (en) * 2001-11-06 2005-03-10 Sophie Wuerger Colour calibration
US20110051844A1 (en) * 2006-03-24 2011-03-03 Broadcom Corporation Programmable Hybrid Transmit Baseband Module

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3984827A (en) * 1974-09-19 1976-10-05 General Electric Company Beam repositioning circuitry for a cathode ray tube calligraphic display system
DE2909036A1 (de) * 1979-03-08 1980-09-11 Gerhard Krause Anordnung zum graphischen verarbeiten von mathematischen und logischen programmen und graphische programme
US4500879A (en) * 1982-01-06 1985-02-19 Smith Engineering Circuitry for controlling a CRT beam

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3510865A (en) * 1969-01-21 1970-05-05 Sylvania Electric Prod Digital vector generator
US3587083A (en) * 1967-09-28 1971-06-22 Xerox Corp Character generation and display system
US3590309A (en) * 1969-06-23 1971-06-29 Hendrick Electronics Inc Character display system
US3597757A (en) * 1969-01-22 1971-08-03 Jacques J Vincent Carrefour Visualization device with sets of variable characters
US3611346A (en) * 1969-04-21 1971-10-05 Sanders Associates Inc Variable rate line generator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3576461A (en) * 1969-03-19 1971-04-27 Rca Corp Constant velocity vector generator
US3638214A (en) * 1970-01-23 1972-01-25 Rca Corp Vector generator
US3649819A (en) * 1970-10-12 1972-03-14 Information Int Inc Vector generator for rectangular cartesian coordinate positioning system
FR2134821A5 (US07223432-20070529-C00017.png) * 1971-04-21 1972-12-08 Cit Alcatel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3587083A (en) * 1967-09-28 1971-06-22 Xerox Corp Character generation and display system
US3510865A (en) * 1969-01-21 1970-05-05 Sylvania Electric Prod Digital vector generator
US3597757A (en) * 1969-01-22 1971-08-03 Jacques J Vincent Carrefour Visualization device with sets of variable characters
US3611346A (en) * 1969-04-21 1971-10-05 Sanders Associates Inc Variable rate line generator
US3590309A (en) * 1969-06-23 1971-06-29 Hendrick Electronics Inc Character display system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4314351A (en) * 1979-01-30 1982-02-02 Thomson-Csf Curve-generating device for visual display of symbols on a cathode-ray screen
US4413323A (en) * 1980-08-05 1983-11-01 Sundstrand Data Control, Inc. Digital symbol generator with symbol error checking
US4507656A (en) * 1982-09-13 1985-03-26 Rockwell International Corporation Character/vector controller for stroke written CRT displays
US4535328A (en) * 1982-09-13 1985-08-13 Rockwell International Corporation Digitally controlled vector generator for stroke written CRT displays
US20050052344A1 (en) * 2001-11-06 2005-03-10 Sophie Wuerger Colour calibration
US7425965B2 (en) * 2001-11-06 2008-09-16 Trucolour Limited Colour calibration
US20110051844A1 (en) * 2006-03-24 2011-03-03 Broadcom Corporation Programmable Hybrid Transmit Baseband Module
US8170142B2 (en) * 2006-03-24 2012-05-01 Broadcom Corporation Programmable hybrid transmit baseband module

Also Published As

Publication number Publication date
DE2407919B2 (de) 1977-03-17
DE2407919C3 (de) 1981-09-10
JPS49115433A (US07223432-20070529-C00017.png) 1974-11-05
FR2218646B1 (US07223432-20070529-C00017.png) 1976-09-10
GB1442272A (en) 1976-07-14
FR2218646A1 (US07223432-20070529-C00017.png) 1974-09-13
JPS5435740B2 (US07223432-20070529-C00017.png) 1979-11-05
DE2407919A1 (de) 1974-08-22

Similar Documents

Publication Publication Date Title
US3320409A (en) Electronic plotting device
US2428811A (en) Electronic computing device
US3047851A (en) Electronic character generating and displaying apparatus
US3325802A (en) Complex pattern generation apparatus
US3921163A (en) Alpha-numerical symbol display system
US5131071A (en) Fuzzy inference apparatus
US3952297A (en) Constant writing rate digital stroke character generator having minimal data storage requirements
US3333147A (en) Line drawing system
EP0049360B1 (en) Graphic output system
GB1390830A (en) Caracter representation systems
US3435278A (en) Pincushion corrected deflection system for flat faced cathode ray tube
US3775760A (en) Cathode ray tube stroke writing using digital techniques
US3649819A (en) Vector generator for rectangular cartesian coordinate positioning system
US3746912A (en) Method of and means for recording line drawings on the screen of a cathode ray tube under computer control
US3539860A (en) Vector generator
US3239833A (en) Logarithmic analog to digital converter
US3527980A (en) Digital variable intensity display
US3422304A (en) Logic controlled deflection system
GB1404685A (en) Polychromatic graphic visual display assembly
US3403391A (en) Integrated versatile display control mechanism
US3183342A (en) Hybrid arithmetic unit
US3869085A (en) Controlled current vector generator for cathode ray tube displays
US4023027A (en) Circle/graphics CRT deflection generation using digital techniques
US4507656A (en) Character/vector controller for stroke written CRT displays
US3675230A (en) Apparatus for decoding graphic-display information