US3921035A - Solid state switching circuit - Google Patents

Solid state switching circuit Download PDF

Info

Publication number
US3921035A
US3921035A US489527A US48952774A US3921035A US 3921035 A US3921035 A US 3921035A US 489527 A US489527 A US 489527A US 48952774 A US48952774 A US 48952774A US 3921035 A US3921035 A US 3921035A
Authority
US
United States
Prior art keywords
turn
switching circuit
current
circuit
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US489527A
Inventor
Kenneth P Holmes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Esquire Inc
Original Assignee
Esquire Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Esquire Inc filed Critical Esquire Inc
Priority to US489527A priority Critical patent/US3921035A/en
Application granted granted Critical
Publication of US3921035A publication Critical patent/US3921035A/en
Assigned to WIDE-LITE INTERNATIONAL CORPORATION reassignment WIDE-LITE INTERNATIONAL CORPORATION ASSIGNS THE ENTIRE INTEREST. SUBJECT TO AGREEMENT DATED JUNE 30,1983 Assignors: ESQUIRE, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/28Modifications for introducing a time delay before switching
    • H03K17/292Modifications for introducing a time delay before switching in thyristor, unijunction transistor or programmable unijunction transistor switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1563Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators without using an external clock
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/60Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/60Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors
    • H03K17/615Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors in a Darlington configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/60Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors
    • H03K17/64Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors having inductive loads
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/26Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback
    • H03K3/28Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback
    • H03K3/281Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback using at least two transistors so coupled that the input of one is derived from the output of another, e.g. multivibrator
    • H03K3/286Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback using at least two transistors so coupled that the input of one is derived from the output of another, e.g. multivibrator bistable
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/07Starting and control circuits for gas discharge lamp using transistors

Definitions

  • the 315/205, 208, 291, 307, 311, DIG. 5, Switching device may also be employed in circuits 315/DIG, 7, 194, 287; 323/1 4, other than lamp ballasts, such as in circuit breaker ap- 323/17, 18, DIG, 1 plications and in operating light emitting diodes.
  • the heart of the switching device may be [56] References Ci d packaged in a convenient capsule for diverse applica- UNITED STATES PATENTS tions as selected by the device user.
  • FIG. 30 32 36 (R7) I? I9. 22 100 -Q Sheet 5 of 10 3,921,035
  • FIG. 47 272 T /275 M l i W W I I 274 202 230 350 7 svoc 274 I 200 1 278 225 ⁇ 352 35% T f 276 j i W m 1 l i 1 276 t 1 230 $354 I 202 l l 22a 364 6VDC 274 E5665? 356 I 276 7 I 1 M 200 226 I I 350 ISOLA/ ING I MEANS 505 i I I 1-76.48
  • This invention relates to switching circuits, such as switching circuits used in ballast circuits for high intensity gaseous discharge lamps utilizing mostly solid state devices.
  • ballasting of high intensity discharge lamps such as metal-additive arc lamps, employ transformers, capacitors, or inductor coils in various combinations to provide proper voltage for starting and for limiting the current during operation.
  • Such ballasts are large, relatively expensive, and not efficient at low cost.
  • the simple inductor ballast provides poor regulation for line voltage variations.
  • Regulated solid state ballasts have been developed, but heretofore no commercial ballast has been developed which is suitable for coping with the starting and operating conditions of high pressure mercury, sodium and metal halide lamps to give proper control of lamp wattage for wide ranges of lamp voltages, line voltage fluctuations and temperatures.
  • High frequency switching regulators in combination with an inductor have been employed under ideal conditions, but without success on a commercial scale.
  • Such prior art attempts have included a low rectification efficiency bridge and capacitor circuit for converting applied ac to nearly pure do for operation.
  • such attempts have included complex sensing networks for sensing current and voltage at the load and providing feedback to control the duty cycle of the switching circuit.
  • such circuits have been three-terminal devices, rather than the preferred twoterminal devices. In addition to the expensive complexities and use of high precision components, high losses in the drive circuit has also resulted in low overall circuit efficiency.
  • an improved ballasting circuit for a high intensity discharge lamp that includes a switching circuit which operates at high energy levels with low energy losses, and which provides satisfactory switching over a wide range of voltage fluctuations and temperature conditions, such operation achieving relatively low energy consumption.
  • a preferred embodiment of the present invention includes a regulating ballast circuit for a high intensity discharge lamp, comprising a solid-state switching circuit, turn-on means, turn-off means, and a small inductor element in series with the lamp.
  • the switching circuit utilize high-gain, high-beta means in the form of a Darlington pair. Also employed is a transistor connected as a current source for the Darlington pair.
  • the turn-off gain of the switching circuit is not dependent on the product of the betas of the transistors, but is related to the resistance values in the load circuits for the current source transistor and the Darlington pair.
  • the time required to turn on the switch is determined by the line voltage charging an RC network and a diac.
  • the time required to turn off the circuit is determined by a current sensing programmable unijunction circuit.
  • Switching rate of the switching circuit is determined by the level of the applied line voltage and of the lamp voltage. Variations effect the frequency of the switching and hence the current through the lamp is not maintained constant, but the cyclical switching does provide uniform average current values, thereby achieving regulation. Also, the rectification circuit to convert the applied ac to dc may be simple. There is no need for a large filter capacitor even though the applied line voltage may be high in ripple content. Such ripple does not degrade operation of the circuit.
  • the switching circuit is disclosed in applications other than in a regulating ballast circuit for a high intensity discharge lamp.
  • a regulating ballast circuit for a high intensity discharge lamp for example, it is shown as a high speed fuse, as a driving circuit for light emitting diodes and in encapsulated form for general application.
  • FIG. 1 is a simplified schematic diagram of a prior art switching circuit.
  • FIG. 2 is a simplified schematic of another prior art switching circuit.
  • FIG. 3 is a schematic diagram of the basic switching circuit employed in the present invention.
  • FIG. 4 is a schematic diagram of a preferred embodiment of the switching circuit employed in the present invention.
  • FIG. 5 is a block diagram of a preferred embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a preferred embodiment of the present invention.
  • FIG. 7 is a waveform diagram of somerepresentative voltage and current values o f the circuit illustrated in FIG. 6.
  • FIG. 8 is a waveform diagram showing the current being regulated through the lamp by the embodiment of the invention illustrated in FIG. 6.
  • FIG. 9 is a simplified schematic diagram of the basic turn-on circuit employed in the present invention.
  • FIG. 10 is a simplified schematic diagram of the basic turn-off circuit employed in the present invention.
  • FIG. 11 is a simplified schematic diagram of another embodiment of a turn-off circuit employed in the present invention.
  • FIGS. 12-18 are simplified schematic diagrams of device variations employable in the basic turn-on and turn-off circuits employed in the present invention.
  • FIG. 19' is a simplified schematic diagram of yet another turn-off circuit employed in the present inventron.
  • FIG. 20- is a simplified schematic diagram of another turn-on circuit having a turn-off element employed in the present invention.
  • FIG. 21 is a simplified schematic diagram of yet another turn-on circuit employed in the present invention.
  • FIGS. 22-25 are simplified schematic diagrams of illustrative constant current sources that may be employed in the turn-on circuit employed in the present invention.
  • FIG. 26 is a simplified schematic diagram of still another turn-on circuit employed in the present invention. employing a turn-off aid. v
  • FIG. 27 is a simplified schematic diagram of yet another turn-on circuit that may be employed in the present invention, including a turn-off aid.
  • FIG. 28 is a schematic diagram of a turn-off circuit in accordance with the present invention including diodes connected for high speed operation.
  • FIG. 29 is a partial schematic diagram of a ballast circuit in accordance with the present invention including components for reducing frequency of operation during warm-up of the associated high intensity discharge lamp.
  • FIG. 30 is a schematic diagram of a gain reduction network which may be employed with a turn-off circuit in accordance with the present invention.
  • FIG. 31 is a schematic diagram of an encapsulated prior art switching circuit.
  • FIG. 32 is a schematic diagram of an encapsulated switching circuit in accordance with the present invention.
  • FIG. 33 is a schematic diagram of another encapsulated switching circuit in accordance with the present invention.
  • FIG. 34 is a schematic diagram of a preferred encapsulated switching circuit in accordance with the present invention.
  • FIG. 35 is a schematic diagram of an encapsulated turn-off circuit in accordance with the present invention.
  • FIG. 36 is a partial schematic, partial block diagram of the switching circuit of the present invention employed to connect a dimmer circuit into a gas discharge ballast circuit.
  • FIG. 40 is a simplified schematic diagram of an application of an electronic switch to a ballast lamp through an LC switching circuit, thereby providing ac current to the lamp.
  • FIG. 41 is a simplified schematic diagram of an application of an electronic switch in accordance with the present invention, the connection being made to a ballast lamp through an autotransformer.
  • FIG. 42 is a simplified schematic diagram of an application of an electronic switch in a starter circuit for a ballast lamp in accordance with the present invention.
  • FIG. 43 is a schematic diagram of the electronic switch as a low power switching circuit to control a high powered transistor.
  • FIG. 44 is a schematic diagram of an alternate connection for a switching and a turn-off circuit in accordance with the present invention.
  • FIG. 45 is a simplified schematic and block diagram of an electronic switch in accordance with the present invention in an application as an electronic fuse in a dc circuit.
  • FIG. 46 is a block diagram of the electronic fuse shown in FIG. 45 connected in an ac circuit.
  • FIG. 47 is a simplilied schematic diagram of an electronic fuse as shown in FIG. 45 including a preferred embodiment of a turn-off circuit in accordance with the present invention.
  • FIG. 48 is a simplified schematic diagram of an electronic fuse as shown in FIG. 45 including an alternate embodiment of a turn-off circuit in accordance with the present invention.
  • FIG. 49 is a simplified schematic diagram of a switching circuit in accordance with the present invention in an application with a bi-stable light emitting diode.
  • FIG. 50 is a simplified schematic diagram of a switching circuit in accordance with the present invention in another application with a bi-stable light emitting diode.
  • FIG. 51 is a simplified schematic diagram of a circuit useful as the interface between digital logic and a bistable light emitting diode for turning on and off the device shown in FIGS. 49 and 50.
  • FIG. 1 a prior art switching circuit is shown comprising two transistors and a resistor.
  • the input to the circuit is applied to the base of npn transistor 14.
  • a resistor 10 is connected to the collector of transistor 14 and to the applied dc supply voltage.
  • a pnp transistor 12 is connected so that the base thereof is connected to the collector of transistor 14, the collector is connected to the base of transistor 14 and the emitter is connected to the applied dc voltage source.
  • a trigger voltage (and current) pulse is applied to the base of transistor 14.
  • the turn-on voltage is illustrated as a positive-going spike and the turn-off voltage is illustrated as a negative-going spike.
  • the triggering pulse may be any shape of low energy pulse that attains the required minimum amplitude. Other than this limitation, neither the amplitude nor the pulse width is critical.
  • The'pulse input applied to the base of transistor 14 turns on the transistor and establishes a current flow through the base-emitter junction thereof and a following current flow through the collector and emitter. The currentflow through the collector results in current through resistor 10, and hence a voltage drop there across. This voltage drop causes an emitterbase forward biasing of transistor 12, which causes it to turn on.
  • Transistor 12 is a low gain transistor and once turned on draws a small amount of the current through its emitter and collector passing from the power connection. The current flow is sufficient to cause the circuit to be regenerative until the negative input or triggering spike is applied. A total gain of one for transistors l2 and 14 is required for sustaining operation. This gain value is determined by the products of the betas of the two transistors.
  • Turn off is achieved by the application of a negative pulse.
  • the base current is removed from transistor 14 (actually the current from transistor 12 is drawn off at the input terminal) and the negative nature of the input reverse biases the base-emitter junction of transistor 14, further ensuring turn off.
  • transistor 14 turns off, transistor 12 turns off, thereby completing the switching action until receipt of another positive input pulse.
  • the gain of transistor 12 has to be within narrow and well-defined limits to achieve proper switching and the high turn-off gain that is desired. If the gain of transistor 12 is too low, then transistor 12 would not conduct enough in order to cause regenerative current flow with transistor 14 to cause the circuit to latch on. On the other'hand, if the gain oftransistor 12 is too high, then the turn off gain (i.e., /I of the circuit would be low, resulting in a low ratio of the load current to required input tum-off current.
  • FIG. 2 An important variation of the switch circuit shown in FIG. 1 is illustrated in FIG. 2, wherein a resistor 11 is added connected to the emitter of transistor 12.
  • This circuit is illustrated'as a-variable gain transistor (resistor 11 being a variable component) in General Electric Transistor Manual, 1964, at page 401.
  • the circuit is identical in operation to the circuit of FIG. 1, except that the amount of regeneration can be varied by changing the value of resistor 11. Hence, this gives control over the beta of the circuit.
  • FIG. 3 the basic switching mechanism of the present invention is illustrated.
  • diode 15 connected between the collector of transistor 14 (and the base of transistor 12) and resistor 10.
  • diode provides a voltage drop which closely matches the voltage drop across,thebase-to-emitter junction of 6 transistor 12. This has the effect of making the effective turn-off gain of the circuit substantially independent of the betas of the transistors and, hence, determinable by the resistance ratio of resistors 10 and 11.
  • high beta transistor means in the form of transistors 16 and 18 connected as a Darlington pair is used as the high gain portion of the switching circuit.
  • aDarlington pair exhibits high betas of -100 or more over a wide range of currents.
  • base-to-emitter resistors 20 and 22, respectively form shunts for base to emitter.
  • Pnp transistor 24 is connected to the Darlington pair so that the base thereof is connected to their collectors and the collector of transistor 24 is connected to the base of transistor 16.
  • a resistor 26 shunts the base and the emitter of transistor 24.
  • Diode 28 shunted by resistor 30 is connected to the collectors of the Darlington pair.
  • resistors 32 and 34 are connected to the power connection and then, respectively, to the emitter of transistor 24 and to diode 28.
  • the circuit of FIG. 4 may be compared with the operation of the prior art circuits shown in FIGS. 1 and 2, with some important differences to be hereafter explained.
  • an input spike applied to the base of transistor 16 will cause the Darlington pair to turn on, resulting in a current flow in the collector circuit thereof, and, hence, through resistor 34 and diode 28.
  • the voltage drop across the base-toemitter junction of transistor 24 turns this transistor on, thereby providing the base current to transistor 16 to sustain regenerate circuit operation.
  • the beta of transistor 24 can be either high or low and not effect the turn-on operation of the circuit. That is, the beta of transistor 24 is not critical to operation. It may be recalled that the betas of transistor 12 and 14 are critical in the prior art circuits shown in FIGS. 1 and 2. More importantly as will be explained below, the beta of transistor 24 is not critical in the operation of the circuit at turn off, either.
  • the negative applied pulse again draws the current through transistor 24 away from the base of transistor 16 and also reverse biases this transistor, thereby turning it off.
  • transistor 24 is like a current source, rather than the prior art voltagesource (e.g., transistor 12 of FIG. 1), and the application of a small negative pulse is sufficient to cause turn off without first increasing the amount of current drawn through transistor 24.
  • Diode 28 provides a forward voltage drop comparable to the base-to-emitter voltage drop of transistor 24. To ensure low charge storage time, resistor 30 is shunted across diode 28, although it may be omitted when a sufficiently fast-acting diode is employed. Resistance 26 increases the collector-to-emitter voltage capability of transistor 24 by reducing the leakage current therethrough.
  • turn-off current gain is defined as the ratio of the load current to the input or control current at turn off.
  • the load current is the current flowing out of terminal E and the control current is the current flowing to and from input terminal B.
  • pulsing on and off was discussed above with respect to pulses applied to the base of the npn transistor (or Darlington pair), if desired pulsing may be with respect to the base of pnp transistor 24.
  • FIG. 5 a block diagram of a high intensity discharge lamp ballast employing solid state switching regulation in accordance with the present invention is shown.
  • An ac input is applied to dc power converter 41, which, in turn, is connected to lamp 80 via connector 43 and to switching circuit 17 via connector 45.
  • Switching circuit 17 may be the circuit illustrated in FIG. 4 or may be one of the alternatives hereinafter disclosed.
  • Switching circuit 17 is connected both to voltage sensing turn-on circuit 57 and to current sensing turnoff circuit 73, as hereinafter disclosed. The output of these circuits are connected to output circuit 61 and starting circuit 63, which deliver power to lamp 80.
  • the output circuit is adequate to handle the power requirements encountered during starting conditions and therefore there is no separate starting circuit 63 in these embodiments.
  • FIGS. and 6 a preferred embodiment of an overall ballast circuit is shown utilizing the switching circuit of FIG. 4.
  • this circuit three pairs of rectifying diodes 40 and 42, 44 and 46, and 48 and 50 are shown connected to a three phase ac input.
  • the rectification is sufficient for operation, since it will be observed that the quality of the dc is reasonably good, there being only about 4 percent ripple. However, no further filtering is required for satisfactory performance since the high frequency operation of the circuit provides adequate regulation in spite of ripples occurring at low line frequencies.
  • the dc applied to the circuit will be applied through resistor 34, diode 28, resistor 52 connected thereto and capacitor 54 connected between resistor 52 and the output from the switching regulator.
  • the end of resistor 52 connected to the collector of transistor 18 may be connected to the circuit input, or in other words, to the junction connection of resistors 32 and 34.
  • capacitor 54 Connected also to capacitor 54 is the series connection of resistor 56 and diac 58, which, in turn, is connected to the base of transistor 16. Voltage builds up on capacitor 54 as shown at V,., on FIG. 7 until it reaches the threshold level necessary to fire diac 58. When this occurs, a current I discharges therethrough to be applied to the base of transistor 16.
  • the turn-off circuit includes programmable unijunction transistor 62 connected to the output of the switching circuit through resistor 64.
  • the output for the unijunction is connected to the base of npn transistor 74 and the gate of the unijunction is connected to a parallel combination of resistor 66 and capacitor 68.
  • Capacitor 68 is a small capacitor and provides a small delay to prevent premature firing of the unijunction.
  • a capacitor 70 connected at the output of the regulator is charged by the voltage resulting from the current flow through resistor 72, connected to supply current to inductor 60.
  • Resistor 67 is connected in series with resistor 66 and, together with resistor 66, is connected in parallel with resistor 72.
  • Diode 78 is connected across inductor 60 and lamp 80 and acts as a flyback or free-wheeling diode for providing a conducting path for the current in inductor 60.
  • FIG. 8 illustrates the good regulation properties of the circuit.
  • effective current is defined as either being the average current or the rms current. The term does not mean either instantaneous current or peak current.
  • a duty cycle regulation of substantially constant effective current is achieved by the circuits herein used in a lamp ballast application.
  • the dotted line assumes the build up of 1,, through the lamp at nominal line voltage. The current build up and decay times are as previously explained.
  • Charge up time of I, through the switch is determined by the value of wherein V is the output voltage from the switching regulator, V, is the voltage across lamp 80 and L is the value of the inductance of inductor 60.
  • V is nearly equal to the input voltage (only less the small voltage drops across resistor 34, resistor 72, diode 28 and the collector-to-emitter junctions of the Darlington when fully saturated).
  • a higher V causes a more rapid build up of I and a lower V causes a slower build up of I
  • the decay is always the same slope, viz., the slope caused by the time constants of the inductance of inductor 60 and the resistances of lamp 62 and diode 78. (Lamp 80 is nearly pure resistance at high frequencies.)
  • the minimum value-of I is not always the same. Therefore, the curve in solid line of FIG. 7 corresponding to a lower applied voltage, terminates at a lower value than for the dotted curve. (That is, the build-up of the turn-on charge on capacitor 54 is longer 9 than for the nominal input voltage and therefore 1,, has time to reach a lower value.)
  • the area under the curves, however, are essentially equal and therefore the regulation is kept relatively constant.
  • FIGS. 9-18 Illustrated in FIGS. 9-18 are several alternate component variations that may be employed in the circuit of FIG. 6.
  • FIG. 9 is the basic turn-on circuit comprising resistors 52 and 56, capacitor 54 and diac 58, exactly as they are shown in FIG. 6.
  • the connection to resistor 52 is marked as reference point C
  • the point between resistor 56 and diac 58 is marked as reference point A
  • the connection to capacitor 54 is marked as reference point E
  • the connection to diac 58 is marked as reference point B.
  • resistor 56 and diac 58 be reversed without effecting operation. This reversal of position is also permissible with all of the devices of FIGS. l2l8, as hereafter explained.
  • FIGS. l2l8 may be substituted between reference points A and B of FIG. 9 for diac 58.
  • FIG. 12 illustrates a silicon bilateral switch (588
  • FIG. 13 illustrates a 4-layer diode
  • FIG. 14 illustrates a silicon unilateral switch (SUS)
  • FIG. 15 illustrates a programmable unijunction transistor (PUT) with two resistors
  • FIG. 16 illustrates a silicon controlled rectifier (SCR) with two resistors.
  • SCR silicon controlled rectifier
  • FIG. 17 and FIG. 18 illustrate additional device arrangements that can be connected between points A and B
  • FIG. 17 is a PUT device with connecting terminals suitable for connection, to any of the devices illustrated in FIGS. 12-16. Also a Zener diode may be similarly connected.
  • FIG. 18 is an SCR device with connecting terminals suitable for connection to any of the devices illustrated in FIGS. 12-16. Also, a Zener diode may be similarly connected.
  • FIG. 10 illustrates a circuit which is the basic turnoff circuit of FIG. 6, deleting only small capacitor 68.
  • a zener diode may be substituted for resistor 67, if desired.
  • FIG. 11 shows a suitable turn-off alternative device variation in which 885 82 is connected between resistor 64 and npn transistor 74. That is SBS 82 is the active element operating as a latching device in place of unijunction transistor 62. In addition, the resistors connected to the gate of the unijunction transistor are not present.
  • FIGS. l2l8 may be substituted between reference points D and F, as illustrated.
  • the open terminal connections are suitable for accepting any of the devices shown in FIGS. 12-16.
  • FIG. 19 illustrates yet another alternate variation of turning off the basic switching circuit.
  • PUT device 84 is connected so that its cathode is connected to the base of transistor 86 and the collector of transistor 86 is connected to the emitter of transistor 12.
  • FIGS. l2l8 may be substituted for PUT device 84.
  • FIG. 20 illustrates a turnon circuit variation. Note that in this circuit the base of transistor 16-18 is connected to diode 88, which allows good npn turn-off and permits whatever device is connected across terminals XY to be turned off at the same time transistor 16-18 is turned off. Any of the varioils turn-on devices illustrated in FIGS. 9 and l2l8 may be connected to the terminals XY.
  • FIG. 21 illustrates yet another turn-on circuit variation.
  • This circuit is identical with FIG. 20 except that it includes terminals M*N to which a constant current source may be placed at the same time a turn-on device is placed at terminals XY. Alternatively a constant current source may be placed at XY if the turn-on device is placed at terminals MN.
  • FIGS. 22-25 illustrate various conventional constant current sources that may be used in conjunction with FIGS. 21, 26 and 27.
  • FIGS. 22 and 23 illustrate junction field effect transistors and FIGS. 24 and 25 illustrate conventional transistors, each in combination with a Zener diode, for accomplishing constant current operation.
  • FIG. 26 illustrates the addition to the previous circuits of an inductor and series resistor 92 connected from the base to the emitter of transistor l618. Note also that no diode 88 is used in this circuit. Turn on operation is the same as before. Turn-off operation is aided by the presence of inductor 90 across the emitter-base junction of transistor l'618 independent of other turn-off circuits. That is, the LR connection shunting the base-emitter of transistor l618 reverse biases transistor 16-18 during turn off independent of the connection across terminals XY.
  • FIG. 27 illustrates the alternative of including an element for aiding turn-off in a turn-on device.
  • the components are the same as in FIG. 21 with the addition of resistor 94 from diode 88 to the emitter of transistor 16-18 and bypass diode 89 located across terminals M-N.
  • resistor 94 from diode 88 to the emitter of transistor 16-18 and bypass diode 89 located across terminals M-N.
  • a sinusoidal current pulse would flow into the base and out of the emitter.
  • the charge on capacitor 56 reverse biases the base-emitter junction, the reverse bias current flowing from capacitor 56, through resistor 94, through diode 88 and diode 89. This operation has a tendency to turnoff transistor 16-18 independent of other turn-off circuits.
  • a shunting resistor across any of the inductors previously mentioned may be used.
  • resistor 52 in any of the above circuits may be replaced with a constant current source.
  • Illustrated in FIG. 28 is a method for improving the speed of turn-off of the switching circuit by the addition of diodes.
  • diode 96 placed in parallel with resistor 20 to enhance the base-emitter reverse biasing of transistor 18.
  • Diodes 98 and 100 may be employed with or without diode 96 to form a Baker clamp (R. H. Baker, Maximum Efficiency Switching Circuits, MIT Lincoln Laboratory Report, TR-I I0, 1956), keeping the Darlington pair out of saturation and reducing the amount of base storage charge. It
  • tunnel diodes may be used, Schmitt triggering may be used, a pulse transformer coupled to the base emitters of the transistors may be used and current transformer terminals may be used.
  • FIG. 29 a method is shown of reducing switching frequency during lamp warm up.
  • capacitor 54 is shorted until current 1,, through inductor 60 decreases below a set level during the off condition of transistor 16-18.
  • This switch operation is performed by connecting an npn transistor 102 so that its base is connected to resistor 72 through resistor 104 and its emitter is connected to inductor 60 while its collector is connected to capacitor 54.
  • An FET may be used in place of the npn transistor 102.
  • Turn-off gain can be reduced for very high 1 and the Darlington pair kept saturated by employing the circuit shown in FIG. 30.
  • a series resistor 106 and diode 108 are shown connected in parallel around resistor 32.
  • the Darlington pair is kept saturated by increasing the 1 /1 ratio with these two additional components.
  • the current gain is approximately equal to the ratio of the values of resistor 32 and 34.
  • the current gain approaches (with higher load currents) where the resistance values of resistors 34, 32 and 106 are respectively designated R1, R2 and R3.
  • Encapsulating components comprising the heart of basic circuits is common. Such encapsulation provides a package that may be presized, preassembled and pretested for inserting in a plurality of circuit applications. This is particularly advantageous for versatile circuits having a wide range of uses or for high volume circuit assembly. An appreciation of the advantages of such encapsulation may be further realized when it is considered that such circuits can be even manufactured to a great extent simultaneously using a common semi-conductor chip or slice as a substrate for some or all of the components in the assembly. Further, through photoengraving or similar techniques, the interconnecting wiring of the components may also be made as a manufacturing step in the making of the solid state assembly. For example, complementary transistors 112 and 114, identical to transistors 12 and 14 shown in FIGS.
  • the transistors may be packaged in a common capsule as shown in FIG. 31.
  • Four terminals to the capsule provide for external connections.
  • the collector of pnp transistor 112 is connected to terminal 300 and to the base of transistor 114.
  • the emitter-of npn transistor 114 is connected to terminal 303.
  • the collector of transistor 114 is connected to terminal 302 and the base of transistor 112.
  • the emitter of transistor 112 is connected to terminal 301'.
  • the transistors may be connected with appropriate resistors into either the circuit shown in FIG. 1 or in the circuit shown in 12 FIG. 2, or with the addition of a diode, into the circuit shown in FIG. 3.
  • FIG. 32 shows an encapsulated, high speed, switching circuit in accordance with the present invention.
  • this embodiment has four terminals 300, 301, 302 and 303 for external connections.
  • Terminal 300 is connected to the collector of pnp transistor 200 and to the base of npn transistor 204.
  • Terminal 301 is connected to the emitter of pnp transistor 200.
  • Terminal 302 is connected to the anode of diode 202 and the cathode of the diode is connected to the base of transistor 200 and to the collector of transistor 204.
  • Terminal '303 is connected to the emitter of npn transistor 204.
  • Transistor 204 is chosen such that it will exhibit a high gain over a wide range of applied operating currents.
  • terminal 301 and 302 may be connected through external resistors to an external positive power source.
  • terminal 300 When a positive voltage with respect to terminal 303 appears on terminal 300, the base-emitter junction of transistor 204 is forward biased, and current flows from the power source through diode 202, into the collector of transistor 204, and out the emitter of transistor 204.
  • voltage on the collector of transistor 204 decreases, causing the base-emitter junction of transistor 200 to be forward biased. Therefore current begins to flow into the emitter and out of the collector of transistor 200.
  • the ratio of collector current in transistor 204' to the base current in transistor 204 is determined by the ratio of the external resistors connected to terminals 301 and 302, and the ratio is not dependent on the value of the beta of transistor 204, as was the case in the prior art.
  • transistor 200 When "a negative voltage appears on terminal 300 with respect to terminal 303, the base-emitter junction of transistor204 is reversed biased, and the transistor cuts the current off, i.e., collector and emitter currents cease to flow. The voltage on the collector of transistor 204 increases and the voltage across diode 202 and the external resistance connected to terminal 302 goes to zero. during which time transistor 200 is reverse biased by the external voltage across the external resistance connected to terminal 301. Therefore, transistor 200 also turns off and the switching circuit returns to what might be termed its off condition.
  • the encapsulated device of FIG. 33 is an improvemerit-in the high speed switching circuit of FIG. 32. This improvement is accomplished by the inclusion of resistors 206, 208 and 210. One end of resistor 208 is connected to the base of transistor 200 and the other end of resistor 208 is connected to the emitter of transistor 200. One end of resistor 210 is connected to the base of transistor 204 and the other end of resistor 210 is connected to the emitter of transistor 204. Both resis-' 13 of shunted transistor 200. Resistor 206 is connected in parallel with diode 204 to reduce the forward recovery time of diode 202 so that the base-emitter junction of pnp transistor 200 will not remain forward biased when turn off is desirable.
  • the switching circuit of FIG. 33 operatesin exactly the same manner as the circuit in FIG. 32, with the exception that the leakage currents are now better controlled, and that the forward recovery time of diode 202 is now reduced.
  • FIG. 34 shows high speed switching device 500, which has five terminals 300, 301, 302, 303 and 304.
  • the device 500 is very similar to the device of FIG. 33 except that Darlington transistor 212 is substituted for transistor 204. Note that the collector of the Darlington, the base of the Darlington, and the emitter of the Darlington are substituted directly for the collector. base and emitter of transistor 204, respectively.
  • Darlington transistor 212 is such that it is provided with in ternal shunt resistors across each base-emitter junction of the two transistors. This switching circuit operates in a manner identical to that described in FIG. 32.
  • connection terminals 301 and 302 may be internally or externally connected together if the ratio of the emitter current to base-emitter voltage of transistor 200 is matched with the ratio of current through diode 202 to the voltage thereacross.
  • FIG. 35 shows an encapsulated turn-off circuit in accordance with the present invention and is identified as device 501, having terminals 320, 321, 322 and 323.
  • Device 501 is connected thusly: terminal 320 is connected to a first end of resistor 230, to a first end of resistor 232, to a first end of capacitor 236, and to a first end of resistor 238; terminal 321 is connected to the second end of resistor 238 and to the cathode of diode 240; terminal 322 is connected to the collector of transistor 226; terminal 323 is connected to the anode of diode 240 to the second end of capacitor 236, toa first end of resistor 234, and to the emitter of transistor 226; the second end of resistor 234 is connected to the second end of resistor 232 and to the gate of programmable unijunction transistor (PUT) 228; the cathode of PUT 228 is connected to the base of npn transistor 226;
  • PUT programmable un
  • resistor 234 may be replaced by a zener diode or anyof the devices shown in FIGS. 12-18 discussed above.
  • terminal 321 is preferably connected to ground, a negative voltage source may be applied to terminal 323, and a dc current flows into terminal 320, The dc current flowing into terminal 320 flows into the first end of resistor 238 to ground creating a voltage drop across resistor 238. This voltage drop plus the negative voltage of the source connected to terminal 323 equals the voltage across capacitor 236.
  • the voltage across capacitor 236 is such that the anode-togate voltage of PUT 228 exceeds 0.5 volts (determined by resistors 230, 232 and 234), current flows from the anode to the cathode of PUT 228. This provides a forward bias for the base-emitter junction of npn transistor 226.
  • This forward bias turns on transistor 226, thereby allowing the current from capacitor 236 to flow through resistor 230 and through the emitter of transistor 226. At this time. current is also flowing in the collector of transistor 226 in a direction inward from terminal 322 into device 501.
  • PUT 228 turns off. Therefore. the forward bias to the base of transistor 226 is removed, and transistor 226 turns off.
  • Vc negative source voltage l,,R when a negative voltage applied to terminal 323 is present
  • any of the encapsulated switching circuits shown in FIGS. 32-34 may be encapsulated together with the tum-off circuit of FIG. 35 in the same capsule or package.
  • FIG. 36 illustrates a utilization of encapsulated devices 500 and 501 plus additional circuitry to achieve an effective ballast lamp dimmer circuit.
  • FIG. 36 is connected as follows: a first end of inductor 244 is connected to the cathode of diode 242; the second end of inductor 244 is connected to a first terminal of ballast lamp 250; the second terminal of ballast lamp 250 is connected to the anode of diode 242, to a first end of resistor 216, and to a first end of resistor 214; the second end of resistor 214 is connected to terminal 302 of a device 500; the second end of resistor 216 is connected to terminal 301 of device 500; terminal 300 of device 500 is connected to terminal 322 of a device 501 and to a first end of diac 224; terminal 303 of device 5001s connected to terminal 320 of device 501 and to a first end of capacitor 220; the second end of capacitor 220 is connected to a first end of resistor 222; second end of
  • the circuit of FIG. 36 has some control disadvantages, however, when the external dimmer control voltage connected to terminal 323 of device 501 exceeds approximately 1.5 volts. It is conceivable that in that instance, once PUT 228 and transistor 226 are turned on, they will have sufficient voltage across them to maintain an on" condition. Therefore, a constant turn-off current is provided to Darlington transistor 212.
  • the circuit of FIG. 37 may be utilized.
  • the circuit of FIG. 37 is connected as follows: a first end of inductor 244 is connected to the cathode of diode 242; the second end of inductor 244 is connected to the first terminal of ballast lamp 250; the second terminal of ballast lamp 250 is connected to the anode of diode 242 and to first ends of resistor 214 and 216; the second end of resistor 216 is connected to terminal 301 of device 500; the second end of resistor 214 is connected to terminal 302 of device 500:, terminal 300 of device 500 is connected to a first end of diac 224 and to the collector of transistor 226; terminal 303 of device 500 is connected to a first end of capacitor 220 and the emitter of pnp transistor 254, a first end of capacitor 276 and a first end of resistor 238; terminal 304 of device 500 is connected to a first end of resistor 252; the second end of resistor 252 is
  • the base-to-emitter junction of transistor 226 is forward biased, thereby causing current to flow in the collector of transistor 226 in a direction outward from terminal 300 of device 500.
  • the current flow in the collector of transistor 226 causes a reverse bias to be placed on the base-to-emitter junction of Darlington transistor 212 of device 500, thereby attempting to turn it off.
  • a zener diode such as zener diode 262 in FIG. 38, may be substituted for resistor 234.
  • the switch of device 500 is turned on in the same manner as for FIG. 36 by capacitor 220, resistor 222 and diac 224, as described above.
  • the difference in the operation of the circuits of FIG. 36 and FIG. 37 is in the turn-off means employed.
  • FIG. 37 it is assumed that the switch of device 500 has been turned on, i.e., current is flowing from terminal 302 and 303 through the switch of device 500.
  • This current causes a voltage to appear at the first end of resistor 238, and the voltage on capacitor 236 increases.
  • the base-emitter junction of transistor 254 is forward biased when the voltage on resistor 238 exceeds its base-to-emitter voltage, and capacitor 236 continues to charge until the anodeto-gate voltage of PUT 228 is greater than 0.5 volts.
  • PUT 228 is turned on, and current flows into PUT 228 pulse current is applied to the Darlington. Therefore, the voltage stored in capacitor 236 must necessarily discharge through transistor 254, through resistor 230, through PUT 228 and through transistor 226.
  • transistor 254 When the voltage across resistor 238 has decreased to such a voltage level that the base-to-emitter of transistor 254 is no longer forward biased, transistor 254 turns off, thereby preventing any further current flow through it. PUT 228 then turns off since the anode-cathode current goes to Zero. Lastly, transistor 226 turns off, causing the collector current of transistor 226 to cease to flow. Hence, the length of time that the turn-off current is applied to Darlington transistor 212 of device 500 by the collector of transistor 226 is determined by the length of time it takes I9 X R to decrease below approximately 0.7 volt, approximately a base-emitter voltage drop of transistor 254.
  • the length of time that the turn-off pulse is applied might be sufficient to insure a complete turn off.
  • the RC time constant or delay circuit provides good noise immunity of the turnoff circuit by providing some delay, and hence helps prevent false triggering because of a spurious change of voltage with respect to time.
  • FIG. 38 is connected as follows: terminal 301 of device 500 is connected to the emitter of transistor 254, a first end of resistor 258, a first end of capacitor 267, a first end of capacitor 236 and a first end of resistor 238; terminal 300 of device 500 is connected to the collector of transistor 226; the collector of transistor 254 is connected to a first end of resistor 230; the second end of resisistor 230 is connected to a first end of capacitor 336; the second end of capacitor 336 is connected to the gate of PUT 228 and to the first end of resistor 260; the cathode of PUT 228 is connected to the base of transistor 226 and to the first end of resistor 280; the second end of resistor 260 -is connected to the cathode of Zener diode 262 and to the second end of resist
  • transistor switch of device 500 has been turned on by the combination of capacitor 220, resistor 222 and diac 224. Therefore, current is flowing through the switch and out of tenninal 301 of device 500 to the first end of resistor 238. A voltage appears at the first end of resistor 238, and the voltages on capacitor 236 and 267 begin to increase. When the voltage appearing across capacitor 267 exceeds the base-to-emitter junction voltage of transistor 254, transistor 254 turns on.
  • the voltage on capacitor 236 increases until the anode-to-gate PUT 226 exceeds 0.5 volts.
  • Zener diode 262 is used to maintain a very precise voltage on the gate of PUT 228. This voltage appears when the voltage on capacitor 236 is such that it exceeds the reverse breakdown voltage of Zener diode 262 by the voltage drop across resistor 258. Capacitor 336 begins to discharge when the voltage between the anode and the gate of PUT 228 exceeds 0.5 volts. PUT 228 turns on, thereby forward biasing the base-emitter junction of transistor 226. As before, a collector currentbegins to flow in the collector of transistor 226, thereby providing a reverse bias to Darlington transistor 212 included in devicee 500.
  • the circuit operation is identical to that of FIG. 37, except that by utilizing capacitor 267 and resistor 268 and diode 264, the length of time that a forward bias is applied to the base-emitter junction of transistor 254 is increased, thereby insuring that a turn-off pulse that is sufficiently long in time will be applied to turn-off Darlington transistor 212 of device 500.
  • Electronic switch 510 includes a switching circuit, voltage sensing turn-on circuit and a current sensing turn-off circuit, such as illustrated and described for FIG. and FIG. 6.
  • FIG. 39 shows electronic switch 510 being used to supply ballast control to lamp 250.
  • a dc power source (not shown) is connected to the input.
  • inductor 60 of FIG. 6 which may be identical to inductor 60 of FIG. 6, is in series with switch 510 and diode 242, which may be identical to diode 78, and is connected from the output of switch 510 to the return power connection.
  • double-pole, double-throw (DPDT) relay 298 interchanges the terminals of the lamp so that the same terminal does not have the same polarity of direct current applied to it at all times.
  • the rate of interchange may be determined by either an ac driven relay device 370, a dc driven relay or DPDT relay 298 may be operated manually at periodic intervals.
  • FIG. 40 illustrates a switching arrangement for applying ac current to a lamp load.
  • Ballast lamp 450 is connected to capacitor 442, which, in turn, is connected to coil 440.
  • Electronic switches 446 and 448 are connected together, the junction therebetween being con- 18 switch 446 is open, switch 448 is closed. Hence, operation is synchronous and complementary.
  • These switches are driven by an electronic ac drive 370, similar (but of higher frequency) to that used in the FIG. 39 configuration. Together these components comprise electronic drive 444.
  • ballast lamps require a relatively high voltage, on the order of several hundred volts, to sustain their operation.
  • a low dc voltage may be used to operate the ballast lamp when utilized in conjunction with an autotransformer 332, such as shown in FIG. 41.
  • the circuit is connected thusly: the input of electronic switch 510 is connected to the dc power input; the output of electronic switch 510 is connected to the common winding of autotransformer 332; the second terminal of the primary of autotransformer 332 is connected to the return of the dc input; the anode of diode 42 is connected to the first terminal of ballast lamp 250; the second terminal of the secondary of autotransformer 332 is connected to the cathode of diode 242 and the first end of inductor 244; and the second end of inductor 244 is connected to the second terminal of ballast lamp 250.
  • the autotransformer has a turn ratio of N to I, wherein N signifies the number of turns in the secondary of the autotransformer for each turn in the primary thereof.
  • the autotransformer ischosen so that the turns ratio N to 1 increases the dc input voltage to such a level as to maintain proper operation of the ballast lamp.
  • FIG. 42 shows a utilization of the basic electronic switch to provide starting voltage to a ballast lamp 250. Ordinarily, a starting voltage is established with additional electronics which creates a starter pulse. Utilizing the switch as shown in FIG. 42, however, this starting and continuous operation following starting can be accomplished using the same components without additional electronics.
  • Electron switch 510 as shown comprises the basic switching circuit described in FIGS. 32, 33 or 34, plus turn-off means and turn-on means, such as previously described for FIGS. 5 and 6.
  • the output of this switch is connected to the cathode of diode 242 and to one terminal of the primary of transformer 292; the other terminal of the primary of transformer 292 is connected to one terminal of the secondary of transformer 292, a first end of capacitor 294 and a first end of resistor 290; the second terminal of the secondary of transformer 292 is connected to one terminal of ballast lamp 250; the second terminal of ballast lamp 250 is connected to the second end-of capacitor 294, the second end of resistor 290 and the anode of diode 242.
  • norma] operation a positive voltage is supplied to the input of electronic switch 510 and the return of this positive voltage is applied to the anode of diode 242.
  • the voltage then occurring on the secondary of transformer 292 is N times the supply voltage, wherein N is the turns ratio of transformer 292. This secondary volt-

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

A switching circuit employed in one aspect of the invention a high intensity discharge lamp ballast, the switching circuit having high efficiency switching characteristics over a wide range of applied current conditions, temperatures and voltage variations and providing good regulation to the lamp. A Darlington pair operating in conjunction with a current source is used in a preferred embodiment for the switching device, the current supplied by such current source being dependent on the ratio of load resistors rather than on the product of the betas of the transistors. The switching device may also be employed in circuits other than lamp ballasts, such as in circuit breaker applications and in operating light emitting diodes. Furthermore, the heart of the switching device may be packaged in a convenient capsule for diverse applications as selected by the device user.

Description

United States Patent 1191 Holmes Nov. 18, 1975 SOLID STATE SWITCHING CIRCUIT Primary Examiner-James W. Lawrence 75 I t Kc th P. H l H t Assistant Examiner-E. R. LaRoche nven or nne o mes Ous on Tex Attorney, Age/1!, r Firm-Arnold, White 8/. Durkee [73] Assignee: Esquire, Inc., New York, NY. [22] Filed: July 18, 1974 1 1 ABSTRACT A switchin circuit em ed in one as ect of the in- 21 1. N .1 4 g P Y P 1 App 0 89 527 vent1on a high intensity discharge lamp ballast, the Related U.S. Application Data switching circuit having high efficiency switching [63] Continuation-in-part of Ser. No. 433,834. Jan. 15, Characteristics Over a Wide range of pp Current 1974, abandoned. conditions, temperatures and voltage variations and providing good regulation to the lamp. A Darlington [52] U.S. Cl. 315/307; 315/205; 315/208; pair operating in conjunction with a current source is 315/287; 315/291; 3l5/D1G. 7; 323/4; used in a preferred embodiment for the switching de- 323/ 18 vice, the current supplied by such current source 51 lm. c1. HOSB 41/231; oosr l/O8 ng dependent on the ratio of load resistors rather [58] Field of Search 307/297, 315; 315/200 R, than on the product of the betas of the transistors. The 315/205, 208, 291, 307, 311, DIG. 5, Switching device may also be employed in circuits 315/DIG, 7, 194, 287; 323/1 4, other than lamp ballasts, such as in circuit breaker ap- 323/17, 18, DIG, 1 plications and in operating light emitting diodes. Furthermore, the heart of the switching device may be [56] References Ci d packaged in a convenient capsule for diverse applica- UNITED STATES PATENTS tions as selected by the device user.
3,626,277 12/1971 Munson 315/194 x 109 Claims, 51 Drawing Figures \M)w- 0 1 V0 7 2 Q 1 D l W l V 1 v'v y'v'v W 42 1 34 28 if 64 66 -l 1- I I; 11 l cl *-1MM/--wvw4 3Q .44 5 i l 671 1 AC 1 1 26 l 1 80 r 52 L 68 1 --1 46 1 1 195; 1 i' E 1 i as i 56 i74 T 76 578 l I 1 M11 s I -l 50 1 1 1 ;K} 1 1 U.S.- Patent Nov. 18, 1975 Sheet 1 of 10 w 1 3 K 9 mm A G9 8 D 6 3 8 mm 1 uq Q m MN 3. 3 i w" Q a 1 ii a Q mm N w J i ll m DI m QM Eq mo? :3 Q95 m wt w 6E N wI 2: x 2 1 1\ Q \m L 9% US; Patent Nov. 18, 1975 Sheet30f 10 3,921,035
SUS
s05 -LAYER 0/005 FIG. 72
FIG/6 FIG. 75
FIG. I3 F I6. 74
FIG. 77
R W @W 0 6 m G 1 a H mi N FIG. 79
U.S. Patent Nov. 18, 1975 Sheet4of 10 3,921,035
F/G.22 FIG. 23
FIG. 24 F /G. 25 52 AA/QT L 16-78 /54 90% 56 X 92 (WU FIG. 26
.96 FIG. 30 32 36 (R7) I? I9. 22 100 -Q Sheet 5 of 10 3,921,035
US. Patent Nov. 18,1975
N 8 B R a 3 Sheet 9 of 10 3,921,035
US. Patent. Nov. 18, 1975 TURN ON 7 (RESET) 0 U.S. Patent Nov. 18, 1975 Sheet 10 of 10 3,921,035
3 FIG. 47 272 T /275 M l i W W I I 274 202 230 350 7 svoc 274 I 200 1 278 225 \352 35% T f 276 j i W m 1 l i 1 276 t 1 230 $354 I 202 l l 22a 364 6VDC 274 E5665? 356 I 276 7 I 1 M 200 226 I I 350 ISOLA/ ING I MEANS 505 i I I 1-76.48
l SENSING INPUT SENSOR I I J FIG 49 FIG 50 X L.E.D. 200
L l colvsr.
OFF INPUT INPU' 203 LEDS This application is a continuation-in-part of copending application Ser. No. 433,834, filed Jan. 15, 1974, now abandoned, of the same inventor.
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to switching circuits, such as switching circuits used in ballast circuits for high intensity gaseous discharge lamps utilizing mostly solid state devices.
2. Description of the Prior Art Conventional ballasting of high intensity discharge lamps, such as metal-additive arc lamps, employ transformers, capacitors, or inductor coils in various combinations to provide proper voltage for starting and for limiting the current during operation. Such ballasts are large, relatively expensive, and not efficient at low cost. Furthermore, the simple inductor ballast provides poor regulation for line voltage variations.
Regulated solid state ballasts have been developed, but heretofore no commercial ballast has been developed which is suitable for coping with the starting and operating conditions of high pressure mercury, sodium and metal halide lamps to give proper control of lamp wattage for wide ranges of lamp voltages, line voltage fluctuations and temperatures.
High frequency switching regulators in combination with an inductor have been employed under ideal conditions, but without success on a commercial scale. Such prior art attempts have included a low rectification efficiency bridge and capacitor circuit for converting applied ac to nearly pure do for operation. In addition, such attempts have included complex sensing networks for sensing current and voltage at the load and providing feedback to control the duty cycle of the switching circuit. Moreover, such circuits have been three-terminal devices, rather than the preferred twoterminal devices. In addition to the expensive complexities and use of high precision components, high losses in the drive circuit has also resulted in low overall circuit efficiency.
Therefore, it is a feature of this invention to provide an improved ballasting circuit for a high intensity discharge lamp that includes a switching circuit which operates at high energy levels with low energy losses, and which provides satisfactory switching over a wide range of voltage fluctuations and temperature conditions, such operation achieving relatively low energy consumption.
It is another feature of this invention to provide an improved ballasting circuit for high intensity discharge lamps that is self-regulatin g to provide uniform average current to the lamp with fluctuations in applied line voltage.
It is yet another feature of the present invention to provide improved positive, high speed, on-off switching of a silicon controlled switching circuit.
It is still another feature of this invention to provide an improved positive, high-speed, on-off switching device for application in either an ac or a dc circuit breaker application.
It is yet another feature of this invention to provide a means for encapsulating the basic components of an improved positive, high-speed, on-off switching device.
It is still another feature of this invention to provide an improved bi-stable light emitting diode circuit employing a positive, high-speed circuit.
SUMMARY OF THE INVENTION A preferred embodiment of the present invention includes a regulating ballast circuit for a high intensity discharge lamp, comprising a solid-state switching circuit, turn-on means, turn-off means, and a small inductor element in series with the lamp. The switching circuit utilize high-gain, high-beta means in the form of a Darlington pair. Also employed is a transistor connected as a current source for the Darlington pair. Hence, the turn-off gain of the switching circuit is not dependent on the product of the betas of the transistors, but is related to the resistance values in the load circuits for the current source transistor and the Darlington pair.
The time required to turn on the switch is determined by the line voltage charging an RC network and a diac. The time required to turn off the circuit is determined by a current sensing programmable unijunction circuit.
Switching rate of the switching circuit is determined by the level of the applied line voltage and of the lamp voltage. Variations effect the frequency of the switching and hence the current through the lamp is not maintained constant, but the cyclical switching does provide uniform average current values, thereby achieving regulation. Also, the rectification circuit to convert the applied ac to dc may be simple. There is no need for a large filter capacitor even though the applied line voltage may be high in ripple content. Such ripple does not degrade operation of the circuit.
Several alternate circuit variations for the switching circuit, the turn-on means and the turn-off means are also disclosed for achieving comparable switching performance.
In addition, the switching circuit is disclosed in applications other than in a regulating ballast circuit for a high intensity discharge lamp. for example, it is shown as a high speed fuse, as a driving circuit for light emitting diodes and in encapsulated form for general application.
BRIEF DESCRIPTION OF THE DRAWINGS So that the manner in which the above-recited features, advantages and objects of the invention, as well as others which will become apparent, are attained and can be understood in detail, more particular description of the invention briefly summarized above may be had by reference to the embodiments thereof which are illustrated in the appended drawings, which drawings form a part of this specification. It is to be noted, however, that the appended drawings illustrate only typical embodiments of the invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
In the Drawings:
FIG. 1 is a simplified schematic diagram of a prior art switching circuit.
FIG. 2 is a simplified schematic of another prior art switching circuit.
FIG. 3 is a schematic diagram of the basic switching circuit employed in the present invention.
FIG. 4 is a schematic diagram of a preferred embodiment of the switching circuit employed in the present invention.
FIG. 5 is a block diagram of a preferred embodiment of the present invention. v
FIG. 6 is a schematic diagram of a preferred embodiment of the present invention.
FIG. 7 is a waveform diagram of somerepresentative voltage and current values o f the circuit illustrated in FIG. 6.
FIG. 8 is a waveform diagram showing the current being regulated through the lamp by the embodiment of the invention illustrated in FIG. 6.
FIG. 9 is a simplified schematic diagram of the basic turn-on circuit employed in the present invention.
FIG. 10 is a simplified schematic diagram of the basic turn-off circuit employed in the present invention.
FIG. 11 is a simplified schematic diagram of another embodiment of a turn-off circuit employed in the present invention.
FIGS. 12-18 are simplified schematic diagrams of device variations employable in the basic turn-on and turn-off circuits employed in the present invention.
FIG. 19'is a simplified schematic diagram of yet another turn-off circuit employed in the present inventron.
FIG. 20- is a simplified schematic diagram of another turn-on circuit having a turn-off element employed in the present invention.
FIG. 21 is a simplified schematic diagram of yet another turn-on circuit employed in the present invention.
FIGS. 22-25 are simplified schematic diagrams of illustrative constant current sources that may be employed in the turn-on circuit employed in the present invention.
FIG. 26 is a simplified schematic diagram of still another turn-on circuit employed in the present invention. employing a turn-off aid. v
FIG. 27 is a simplified schematic diagram of yet another turn-on circuit that may be employed in the present invention, including a turn-off aid.
FIG. 28 is a schematic diagram of a turn-off circuit in accordance with the present invention including diodes connected for high speed operation.
FIG. 29 is a partial schematic diagram of a ballast circuit in accordance with the present invention including components for reducing frequency of operation during warm-up of the associated high intensity discharge lamp.
FIG. 30 is a schematic diagram of a gain reduction network which may be employed with a turn-off circuit in accordance with the present invention.
FIG. 31 is a schematic diagram of an encapsulated prior art switching circuit.
FIG. 32 is a schematic diagram of an encapsulated switching circuit in accordance with the present invention.
FIG. 33 is a schematic diagram of another encapsulated switching circuit in accordance with the present invention.
FIG. 34 is a schematic diagram of a preferred encapsulated switching circuit in accordance with the present invention.
FIG. 35 is a schematic diagram of an encapsulated turn-off circuit in accordance with the present invention.
FIG. 36 is a partial schematic, partial block diagram of the switching circuit of the present invention employed to connect a dimmer circuit intoa gas discharge ballast circuit.
cation of an electronic switch to a ballast lamp through a phase reversing DPDT relay in accordance with the present invention.
FIG. 40 is a simplified schematic diagram of an application of an electronic switch to a ballast lamp through an LC switching circuit, thereby providing ac current to the lamp.
FIG. 41 is a simplified schematic diagram of an application of an electronic switch in accordance with the present invention, the connection being made to a ballast lamp through an autotransformer.
FIG. 42 is a simplified schematic diagram of an application of an electronic switch in a starter circuit for a ballast lamp in accordance with the present invention.
FIG. 43 is a schematic diagram of the electronic switch as a low power switching circuit to control a high powered transistor.
FIG. 44 is a schematic diagram of an alternate connection for a switching and a turn-off circuit in accordance with the present invention.
FIG. 45 is a simplified schematic and block diagram of an electronic switch in accordance with the present invention in an application as an electronic fuse in a dc circuit.
FIG. 46 is a block diagram of the electronic fuse shown in FIG. 45 connected in an ac circuit.
FIG. 47 is a simplilied schematic diagram of an electronic fuse as shown in FIG. 45 including a preferred embodiment of a turn-off circuit in accordance with the present invention.
FIG. 48 is a simplified schematic diagram of an electronic fuse as shown in FIG. 45 including an alternate embodiment of a turn-off circuit in accordance with the present invention.
FIG. 49 is a simplified schematic diagram of a switching circuit in accordance with the present invention in an application with a bi-stable light emitting diode.
FIG. 50 is a simplified schematic diagram of a switching circuit in accordance with the present invention in another application with a bi-stable light emitting diode.
FIG. 51 is a simplified schematic diagram of a circuit useful as the interface between digital logic and a bistable light emitting diode for turning on and off the device shown in FIGS. 49 and 50.
DESCRIPTION OF PREFERRED EMBODIMENTS Now referring to the drawings and first to FIG. 1, a prior art switching circuit is shown comprising two transistors and a resistor. The input to the circuit is applied to the base of npn transistor 14. A resistor 10 is connected to the collector of transistor 14 and to the applied dc supply voltage. A pnp transistor 12 is connected so that the base thereof is connected to the collector of transistor 14, the collector is connected to the base of transistor 14 and the emitter is connected to the applied dc voltage source.
In operation of the FIG. 1 circuit a trigger voltage (and current) pulse is applied to the base of transistor 14. The turn-on voltage is illustrated as a positive-going spike and the turn-off voltage is illustrated as a negative-going spike. Although illustrated as a spike, the triggering pulse may be any shape of low energy pulse that attains the required minimum amplitude. Other than this limitation, neither the amplitude nor the pulse width is critical. The'pulse input applied to the base of transistor 14 turns on the transistor and establishes a current flow through the base-emitter junction thereof and a following current flow through the collector and emitter. The currentflow through the collector results in current through resistor 10, and hence a voltage drop there across. This voltage drop causes an emitterbase forward biasing of transistor 12, which causes it to turn on. Transistor 12 is a low gain transistor and once turned on draws a small amount of the current through its emitter and collector passing from the power connection. The current flow is sufficient to cause the circuit to be regenerative until the negative input or triggering spike is applied. A total gain of one for transistors l2 and 14 is required for sustaining operation. This gain value is determined by the products of the betas of the two transistors.
Turn off is achieved by the application of a negative pulse. In this instance, the base current is removed from transistor 14 (actually the current from transistor 12 is drawn off at the input terminal) and the negative nature of the input reverse biases the base-emitter junction of transistor 14, further ensuring turn off. When transistor 14 turns off, transistor 12 turns off, thereby completing the switching action until receipt of another positive input pulse.
It is apparent that the gain of transistor 12 has to be within narrow and well-defined limits to achieve proper switching and the high turn-off gain that is desired. If the gain of transistor 12 is too low, then transistor 12 would not conduct enough in order to cause regenerative current flow with transistor 14 to cause the circuit to latch on. On the other'hand, if the gain oftransistor 12 is too high, then the turn off gain (i.e., /I of the circuit would be low, resulting in a low ratio of the load current to required input tum-off current.
Hence, it may be seen that the criticality of the selection of a transistor 12 having proper but low beta properties is important. Not only is such selection expensive from a commercial view point, high and low tempera- 'ture and load current conditions changing the beta operation points have extremely adverse effects on operation of a practical circuit.
An important variation of the switch circuit shown in FIG. 1 is illustrated in FIG. 2, wherein a resistor 11 is added connected to the emitter of transistor 12. This circuit is illustrated'as a-variable gain transistor (resistor 11 being a variable component) in General Electric Transistor Manual, 1964, at page 401. The circuit is identical in operation to the circuit of FIG. 1, except that the amount of regeneration can be varied by changing the value of resistor 11. Hence, this gives control over the beta of the circuit.
Now referring to FIG. 3, the basic switching mechanism of the present invention is illustrated. The only difference between this circuit and the one illustrated in FIG. 2 is the addition of diode 15, connected between the collector of transistor 14 (and the base of transistor 12) and resistor 10. As will be more completely explained in connection with the FIG. 4 circuit, diode provides a voltage drop which closely matches the voltage drop across,thebase-to-emitter junction of 6 transistor 12. This has the effect of making the effective turn-off gain of the circuit substantially independent of the betas of the transistors and, hence, determinable by the resistance ratio of resistors 10 and 11.
Now referring to FIG. 4, the switching mechanism of the preferred embodiment of the present invention is illustrated. In this embodiment, high beta transistor means in the form of transistors 16 and 18 connected as a Darlington pair is used as the high gain portion of the switching circuit. Typically, aDarlington pair exhibits high betas of -100 or more over a wide range of currents. Conventionally base-to- emitter resistors 20 and 22, respectively, form shunts for base to emitter. Pnp transistor 24 is connected to the Darlington pair so that the base thereof is connected to their collectors and the collector of transistor 24 is connected to the base of transistor 16. A resistor 26 shunts the base and the emitter of transistor 24. Diode 28 shunted by resistor 30 is connected to the collectors of the Darlington pair. Finally, resistors 32 and 34 are connected to the power connection and then, respectively, to the emitter of transistor 24 and to diode 28.
In operation, the circuit of FIG. 4 may be compared with the operation of the prior art circuits shown in FIGS. 1 and 2, with some important differences to be hereafter explained. For example, an input spike applied to the base of transistor 16 will cause the Darlington pair to turn on, resulting in a current flow in the collector circuit thereof, and, hence, through resistor 34 and diode 28. The voltage drop across the base-toemitter junction of transistor 24 turns this transistor on, thereby providing the base current to transistor 16 to sustain regenerate circuit operation.
It should be noted that a Darlington pair has an extremely high beta over a wide range of collector currents and over a wide range of temperatures. Therefore, the beta of transistor 24 can be either high or low and not effect the turn-on operation of the circuit. That is, the beta of transistor 24 is not critical to operation. It may be recalled that the betas of transistor 12 and 14 are critical in the prior art circuits shown in FIGS. 1 and 2. More importantly as will be explained below, the beta of transistor 24 is not critical in the operation of the circuit at turn off, either.
At turn off, the negative applied pulse again draws the current through transistor 24 away from the base of transistor 16 and also reverse biases this transistor, thereby turning it off. However, the operation of transistor 24 is like a current source, rather than the prior art voltagesource (e.g., transistor 12 of FIG. 1), and the application of a small negative pulse is sufficient to cause turn off without first increasing the amount of current drawn through transistor 24.
The components connected to transistor 24 ensure that for a wide range of operation (i.e., temperature, voltage, collector currents) only the ratio of resistors 32 and 34 are important, not the betas of the respective transistors. Diode 28 provides a forward voltage drop comparable to the base-to-emitter voltage drop of transistor 24. To ensure low charge storage time, resistor 30 is shunted across diode 28, although it may be omitted when a sufficiently fast-acting diode is employed. Resistance 26 increases the collector-to-emitter voltage capability of transistor 24 by reducing the leakage current therethrough.
If with the various operating currents, the voltage drop across diode 28 and across the base-to-emitter junction of transistor 24 are nearly equal to each other,
then the voltage drop across resistors 32 and 34 remains nearly equal. Hence, the ratio of these resistance values determines the ratio of currents through transistor 24 and transistor 18, not the betas of the transistors, and hence, current turn-off gain is constant.
At turn off, transistor 24 cannot furnish more current than the resistor ratio permits. Hence, the current through transistor 24 is kept low and the effective turnoff current gain is high. The expression turn-off current gain as used herein is defined as the ratio of the load current to the input or control current at turn off. In FIG. 4 ,'the load current is the current flowing out of terminal E and the control current is the current flowing to and from input terminal B. By making the switching circuit portion of the regulating ballast circuit independent of the betas of the transistors and the input pulses of low energy and duty cycle, it is possible to use such circuit ,in an overall improved ballast circuit for regulated, low-loss operation of a high intensity discharge lamp.
Althought pulsing on and off was discussed above with respect to pulses applied to the base of the npn transistor (or Darlington pair), if desired pulsing may be with respect to the base of pnp transistor 24.
Now referring to FIG. 5, a block diagram of a high intensity discharge lamp ballast employing solid state switching regulation in accordance with the present invention is shown. An ac input is applied to dc power converter 41, which, in turn, is connected to lamp 80 via connector 43 and to switching circuit 17 via connector 45. Switching circuit 17 may be the circuit illustrated in FIG. 4 or may be one of the alternatives hereinafter disclosed.
Switching circuit 17 is connected both to voltage sensing turn-on circuit 57 and to current sensing turnoff circuit 73, as hereinafter disclosed. The output of these circuits are connected to output circuit 61 and starting circuit 63, which deliver power to lamp 80. In
many embodiments hereinafter described, the output circuit is adequate to handle the power requirements encountered during starting conditions and therefore there is no separate starting circuit 63 in these embodiments.
Now referring to FIGS. and 6, a preferred embodiment of an overall ballast circuit is shown utilizing the switching circuit of FIG. 4. In this circuit, three pairs of rectifying diodes 40 and 42, 44 and 46, and 48 and 50 are shown connected to a three phase ac input. The rectification is sufficient for operation, since it will be observed that the quality of the dc is reasonably good, there being only about 4 percent ripple. However, no further filtering is required for satisfactory performance since the high frequency operation of the circuit provides adequate regulation in spite of ripples occurring at low line frequencies.
The dc applied to the circuit will be applied through resistor 34, diode 28, resistor 52 connected thereto and capacitor 54 connected between resistor 52 and the output from the switching regulator. Alternatively, the end of resistor 52 connected to the collector of transistor 18 may be connected to the circuit input, or in other words, to the junction connection of resistors 32 and 34. Connected also to capacitor 54 is the series connection of resistor 56 and diac 58, which, in turn, is connected to the base of transistor 16. Voltage builds up on capacitor 54 as shown at V,., on FIG. 7 until it reaches the threshold level necessary to fire diac 58. When this occurs, a current I discharges therethrough to be applied to the base of transistor 16. This causes turn on of the switching circuit, as explained above, and an output V,,. The illustration of I through capaci tor 54 is drawn negative-going for convenience, but to correspond to the waveform related to FIG. 7, may be thought of as a negative build up with a positive spike to initiate turn on.
After turn on, there is a current flow I through inductor 60 connected in series with lamp 80. The build up of I is exponential as shown in FIG. 8.
The turn-off circuit includes programmable unijunction transistor 62 connected to the output of the switching circuit through resistor 64. The output for the unijunction is connected to the base of npn transistor 74 and the gate of the unijunction is connected to a parallel combination of resistor 66 and capacitor 68. Capacitor 68 is a small capacitor and provides a small delay to prevent premature firing of the unijunction. A capacitor 70 connected at the output of the regulator is charged by the voltage resulting from the current flow through resistor 72, connected to supply current to inductor 60. Resistor 67 is connected in series with resistor 66 and, together with resistor 66, is connected in parallel with resistor 72. When the gate voltage threshold for unijunction 62 is reached, a discharge path is provided through resistor 64, unijunction 62 the emitter-base junction of transistor 74, and capacitor 70. Diode 76 prevents discharge of capacitor 70 through the resistor 72 charging path. Turn on of transistor 74 provides a path for the drawing of the current from the base of the Darlington pair or the current of transistor 24 and of reverse biasing the baseemitter junction of the Darlington, as explained above.
Diode 78 is connected across inductor 60 and lamp 80 and acts as a flyback or free-wheeling diode for providing a conducting path for the current in inductor 60.
FIG. 8 illustrates the good regulation properties of the circuit. For purposes hereof, effective current is defined as either being the average current or the rms current. The term does not mean either instantaneous current or peak current. A duty cycle regulation of substantially constant effective current is achieved by the circuits herein used in a lamp ballast application. The dotted line assumes the build up of 1,, through the lamp at nominal line voltage. The current build up and decay times are as previously explained. Charge up time of I, through the switch is determined by the value of wherein V is the output voltage from the switching regulator, V, is the voltage across lamp 80 and L is the value of the inductance of inductor 60. V is nearly equal to the input voltage (only less the small voltage drops across resistor 34, resistor 72, diode 28 and the collector-to-emitter junctions of the Darlington when fully saturated). A higher V causes a more rapid build up of I and a lower V causes a slower build up of I The decay is always the same slope, viz., the slope caused by the time constants of the inductance of inductor 60 and the resistances of lamp 62 and diode 78. (Lamp 80 is nearly pure resistance at high frequencies.) However, the minimum value-of I is not always the same. Therefore, the curve in solid line of FIG. 7 corresponding to a lower applied voltage, terminates at a lower value than for the dotted curve. (That is, the build-up of the turn-on charge on capacitor 54 is longer 9 than for the nominal input voltage and therefore 1,, has time to reach a lower value.) The area under the curves, however, are essentially equal and therefore the regulation is kept relatively constant.
In like manner, a higher-than-nominal line voltage would cause 1,, to build up faster and would also cause it to have a shorter down side. But, the area would remain relatively constant to provide good regulation.
Illustrated in FIGS. 9-18 are several alternate component variations that may be employed in the circuit of FIG. 6. For convenience of illustration, FIG. 9 is the basic turn-on circuit comprising resistors 52 and 56, capacitor 54 and diac 58, exactly as they are shown in FIG. 6. Further for convenience, the connection to resistor 52 is marked as reference point C, the point between resistor 56 and diac 58 is marked as reference point A, the connection to capacitor 54 is marked as reference point E, and the connection to diac 58 is marked as reference point B.
First, it is permissible that resistor 56 and diac 58 be reversed without effecting operation. This reversal of position is also permissible with all of the devices of FIGS. l2l8, as hereafter explained.
The devices illustrated in FIGS. l2l8 may be substituted between reference points A and B of FIG. 9 for diac 58. FIG. 12 illustrates a silicon bilateral switch (588 FIG. 13 illustrates a 4-layer diode; FIG. 14 illustrates a silicon unilateral switch (SUS); FIG. 15 illustrates a programmable unijunction transistor (PUT) with two resistors; and FIG. 16 illustrates a silicon controlled rectifier (SCR) with two resistors.
FIG. 17 and FIG. 18 illustrate additional device arrangements that can be connected between points A and B, FIG. 17 is a PUT device with connecting terminals suitable for connection, to any of the devices illustrated in FIGS. 12-16. Also a Zener diode may be similarly connected. FIG. 18 is an SCR device with connecting terminals suitable for connection to any of the devices illustrated in FIGS. 12-16. Also, a Zener diode may be similarly connected.
FIG. 10 illustrates a circuit which is the basic turnoff circuit of FIG. 6, deleting only small capacitor 68. In addition, a zener diode may be substituted for resistor 67, if desired. FIG. 11 shows a suitable turn-off alternative device variation in which 885 82 is connected between resistor 64 and npn transistor 74. That is SBS 82 is the active element operating as a latching device in place of unijunction transistor 62. In addition, the resistors connected to the gate of the unijunction transistor are not present.
For convenience of reference, the connection to resistor 64 has been marked as reference point E, the point between resistor 64 and 58$ 82 has been marked as reference point D, the base of transistor 74 has been marked as reference point F, and the collector of transistor 74 has been marked as reference point B. Points B and E coincide with points similarly marked in FIG. 6.
Again, the devices illustrated in FIGS. l2l8 may be substituted between reference points D and F, as illustrated. Moreover. in the case of FIGS. 16 and 17, the open terminal connections are suitable for accepting any of the devices shown in FIGS. 12-16.
FIG. 19 illustrates yet another alternate variation of turning off the basic switching circuit. In this case, PUT device 84 is connected so that its cathode is connected to the base of transistor 86 and the collector of transistor 86 is connected to the emitter of transistor 12. As
10 illustrated the gate of PUT 84 is connected to resistor 11 or resistor 10. Further, the various devices illustrated in FIGS. l2l8 may be substituted for PUT device 84.
FIG. 20 illustrates a turnon circuit variation. Note that in this circuit the base of transistor 16-18 is connected to diode 88, which allows good npn turn-off and permits whatever device is connected across terminals XY to be turned off at the same time transistor 16-18 is turned off. Any of the varioils turn-on devices illustrated in FIGS. 9 and l2l8 may be connected to the terminals XY.
FIG. 21 illustrates yet another turn-on circuit variation. This circuit is identical with FIG. 20 except that it includes terminals M*N to which a constant current source may be placed at the same time a turn-on device is placed at terminals XY. Alternatively a constant current source may be placed at XY if the turn-on device is placed at terminals MN. FIGS. 22-25 illustrate various conventional constant current sources that may be used in conjunction with FIGS. 21, 26 and 27. FIGS. 22 and 23 illustrate junction field effect transistors and FIGS. 24 and 25 illustrate conventional transistors, each in combination with a Zener diode, for accomplishing constant current operation.
FIG. 26 illustrates the addition to the previous circuits of an inductor and series resistor 92 connected from the base to the emitter of transistor l618. Note also that no diode 88 is used in this circuit. Turn on operation is the same as before. Turn-off operation is aided by the presence of inductor 90 across the emitter-base junction of transistor l'618 independent of other turn-off circuits. That is, the LR connection shunting the base-emitter of transistor l618 reverse biases transistor 16-18 during turn off independent of the connection across terminals XY.
FIG. 27 illustrates the alternative of including an element for aiding turn-off in a turn-on device. In this embodiment, the components are the same as in FIG. 21 with the addition of resistor 94 from diode 88 to the emitter of transistor 16-18 and bypass diode 89 located across terminals M-N. When an inductor is placed across either the X-Y terminals or the M-N terminals, and a turn-on device is placed at the alternate set of terminals, a sinusoidal current pulse would flow into the base and out of the emitter. At the end of the sinusoidal pulse, the charge on capacitor 56 reverse biases the base-emitter junction, the reverse bias current flowing from capacitor 56, through resistor 94, through diode 88 and diode 89. This operation has a tendency to turnoff transistor 16-18 independent of other turn-off circuits.
In order to square up the leading edge of a sinusoidal pulse, a shunting resistor across any of the inductors previously mentioned may be used.
As an additional alternative, resistor 52 in any of the above circuits may be replaced with a constant current source.
Illustrated in FIG. 28 is a method for improving the speed of turn-off of the switching circuit by the addition of diodes. For instance, diode 96 placed in parallel with resistor 20 to enhance the base-emitter reverse biasing of transistor 18. Diodes 98 and 100 may be employed with or without diode 96 to form a Baker clamp (R. H. Baker, Maximum Efficiency Switching Circuits, MIT Lincoln Laboratory Report, TR-I I0, 1956), keeping the Darlington pair out of saturation and reducing the amount of base storage charge. It
1 1 should be noted that slightly higher losses result during the period that the switch is turned on, but the time and switching on-off losses are much reduced.
Although several alternative circuits have been described. additional method of sensing turn-on and turnoff conditions are available. For example, tunnel diodes may be used, Schmitt triggering may be used, a pulse transformer coupled to the base emitters of the transistors may be used and current transformer terminals may be used.
1 Now referring to FIG. 29, a method is shown of reducing switching frequency during lamp warm up. In this event, capacitor 54 is shorted until current 1,, through inductor 60 decreases below a set level during the off condition of transistor 16-18. This switch operation is performed by connecting an npn transistor 102 so that its base is connected to resistor 72 through resistor 104 and its emitter is connected to inductor 60 while its collector is connected to capacitor 54. An FET may be used in place of the npn transistor 102.
Turn-off gain can be reduced for very high 1 and the Darlington pair kept saturated by employing the circuit shown in FIG. 30. In this circuit. a series resistor 106 and diode 108 are shown connected in parallel around resistor 32. The Darlington pair is kept saturated by increasing the 1 /1 ratio with these two additional components. Whenever the voltage drop across resistor 32, and hence resistor 106 and diode 108, is equal to or less than 0.7 volts, the current gain is approximately equal to the ratio of the values of resistor 32 and 34. When the voltage across resistor 32 is much greater than 0.7 volts, the current gain approaches (with higher load currents) where the resistance values of resistors 34, 32 and 106 are respectively designated R1, R2 and R3.
Encapsulating components comprising the heart of basic circuits is common. Such encapsulation provides a package that may be presized, preassembled and pretested for inserting in a plurality of circuit applications. This is particularly advantageous for versatile circuits having a wide range of uses or for high volume circuit assembly. An appreciation of the advantages of such encapsulation may be further realized when it is considered that such circuits can be even manufactured to a great extent simultaneously using a common semi-conductor chip or slice as a substrate for some or all of the components in the assembly. Further, through photoengraving or similar techniques, the interconnecting wiring of the components may also be made as a manufacturing step in the making of the solid state assembly. For example, complementary transistors 112 and 114, identical to transistors 12 and 14 shown in FIGS. 1 and 2, may be packaged in a common capsule as shown in FIG. 31. Four terminals to the capsule provide for external connections. The collector of pnp transistor 112 is connected to terminal 300 and to the base of transistor 114. The emitter-of npn transistor 114 is connected to terminal 303. The collector of transistor 114 is connected to terminal 302 and the base of transistor 112. The emitter of transistor 112 is connected to terminal 301'. As is apparent, the transistors may be connected with appropriate resistors into either the circuit shown in FIG. 1 or in the circuit shown in 12 FIG. 2, or with the addition of a diode, into the circuit shown in FIG. 3.
FIG. 32 shows an encapsulated, high speed, switching circuit in accordance with the present invention. Again, this embodiment has four terminals 300, 301, 302 and 303 for external connections. Terminal 300 is connected to the collector of pnp transistor 200 and to the base of npn transistor 204. Terminal 301 is connected to the emitter of pnp transistor 200. Terminal 302 is connected to the anode of diode 202 and the cathode of the diode is connected to the base of transistor 200 and to the collector of transistor 204. Terminal '303 is connected to the emitter of npn transistor 204.
Transistor 204 is chosen such that it will exhibit a high gain over a wide range of applied operating currents.
In operation for high speed switching in accordance with the present invention, terminal 301 and 302 may be connected through external resistors to an external positive power source. When a positive voltage with respect to terminal 303 appears on terminal 300, the base-emitter junction of transistor 204 is forward biased, and current flows from the power source through diode 202, into the collector of transistor 204, and out the emitter of transistor 204. At this time, voltage on the collector of transistor 204 decreases, causing the base-emitter junction of transistor 200 to be forward biased. Therefore current begins to flow into the emitter and out of the collector of transistor 200.
Since the voltage drop across diode 202 very nearly approximates the base-to-emitter voltage drop of transistor 200, the ratio of the currents flowing in the collector of transistor 204 and the collector of transistor 200 is very nearly approximated by the ratio of the external resistors to which terminals 301 and 302 are connected.
Essentially all the current flowing in the collector of transistor 200 flows into the base of transistor 204. Therefore the ratio of collector current in transistor 204' to the base current in transistor 204, i.e., the forced gain of transistor 204, is determined by the ratio of the external resistors connected to terminals 301 and 302, and the ratio is not dependent on the value of the beta of transistor 204, as was the case in the prior art.
When "a negative voltage appears on terminal 300 with respect to terminal 303, the base-emitter junction of transistor204 is reversed biased, and the transistor cuts the current off, i.e., collector and emitter currents cease to flow. The voltage on the collector of transistor 204 increases and the voltage across diode 202 and the external resistance connected to terminal 302 goes to zero. during which time transistor 200 is reverse biased by the external voltage across the external resistance connected to terminal 301. Therefore, transistor 200 also turns off and the switching circuit returns to what might be termed its off condition.
The encapsulated device of FIG. 33 is an improvemerit-in the high speed switching circuit of FIG. 32. This improvement is accomplished by the inclusion of resistors 206, 208 and 210. One end of resistor 208 is connected to the base of transistor 200 and the other end of resistor 208 is connected to the emitter of transistor 200. One end of resistor 210 is connected to the base of transistor 204 and the other end of resistor 210 is connected to the emitter of transistor 204. Both resis-' 13 of shunted transistor 200. Resistor 206 is connected in parallel with diode 204 to reduce the forward recovery time of diode 202 so that the base-emitter junction of pnp transistor 200 will not remain forward biased when turn off is desirable.
The switching circuit of FIG. 33 operatesin exactly the same manner as the circuit in FIG. 32, with the exception that the leakage currents are now better controlled, and that the forward recovery time of diode 202 is now reduced.
FIG. 34 shows high speed switching device 500, which has five terminals 300, 301, 302, 303 and 304. The device 500 is very similar to the device of FIG. 33 except that Darlington transistor 212 is substituted for transistor 204. Note that the collector of the Darlington, the base of the Darlington, and the emitter of the Darlington are substituted directly for the collector. base and emitter of transistor 204, respectively. Darlington transistor 212 is such that it is provided with in ternal shunt resistors across each base-emitter junction of the two transistors. This switching circuit operates in a manner identical to that described in FIG. 32. The utilization of Darlington transistor 212 is an improve ment over transistor 204 in that a Darlington configuration inherently exhibits a high gain over a wide range of operating currents, which is important in the application in FIG. 34. Note further that connection terminals 301 and 302 may be internally or externally connected together if the ratio of the emitter current to base-emitter voltage of transistor 200 is matched with the ratio of current through diode 202 to the voltage thereacross.
FIG. 35 shows an encapsulated turn-off circuit in accordance with the present invention and is identified as device 501, having terminals 320, 321, 322 and 323. Device 501 is connected thusly: terminal 320 is connected to a first end of resistor 230, to a first end of resistor 232, to a first end of capacitor 236, and to a first end of resistor 238; terminal 321 is connected to the second end of resistor 238 and to the cathode of diode 240; terminal 322 is connected to the collector of transistor 226; terminal 323 is connected to the anode of diode 240 to the second end of capacitor 236, toa first end of resistor 234, and to the emitter of transistor 226; the second end of resistor 234 is connected to the second end of resistor 232 and to the gate of programmable unijunction transistor (PUT) 228; the cathode of PUT 228 is connected to the base of npn transistor 226;
and the anode of PUT 228 is connected to the second end of resistor 230. Alternatively, resistor 234 may be replaced by a zener diode or anyof the devices shown in FIGS. 12-18 discussed above.
In operation, terminal 321 is preferably connected to ground, a negative voltage source may be applied to terminal 323, and a dc current flows into terminal 320, The dc current flowing into terminal 320 flows into the first end of resistor 238 to ground creating a voltage drop across resistor 238. This voltage drop plus the negative voltage of the source connected to terminal 323 equals the voltage across capacitor 236. When the voltage across capacitor 236 is such that the anode-togate voltage of PUT 228 exceeds 0.5 volts (determined by resistors 230, 232 and 234), current flows from the anode to the cathode of PUT 228. This provides a forward bias for the base-emitter junction of npn transistor 226. This forward bias turns on transistor 226, thereby allowing the current from capacitor 236 to flow through resistor 230 and through the emitter of transistor 226. At this time. current is also flowing in the collector of transistor 226 in a direction inward from terminal 322 into device 501. When the charge on the capacitor is reduced to such a level that the voltage between the anode of PUT 228 and the gate of PUT 228 is less than 0.5 volts, PUT 228 turns off. Therefore. the forward bias to the base of transistor 226 is removed, and transistor 226 turns off.
It is noted that the expression from the voltage across capacitor 236 is given by the formulas:
Vc negative source voltage l,,R when a negative voltage applied to terminal 323 is present, and
azm 0 23N V240 when no negative voltage is present.
If the negative source voltage is increased (i.e., made more negative), the amount of current I,, that flows before PUT 228 starts to conduct decreases.
It should be noted that any of the encapsulated switching circuits shown in FIGS. 32-34 may be encapsulated together with the tum-off circuit of FIG. 35 in the same capsule or package.
FIG. 36 illustrates a utilization of encapsulated devices 500 and 501 plus additional circuitry to achieve an effective ballast lamp dimmer circuit. FIG. 36 is connected as follows: a first end of inductor 244 is connected to the cathode of diode 242; the second end of inductor 244 is connected to a first terminal of ballast lamp 250; the second terminal of ballast lamp 250 is connected to the anode of diode 242, to a first end of resistor 216, and to a first end of resistor 214; the second end of resistor 214 is connected to terminal 302 of a device 500; the second end of resistor 216 is connected to terminal 301 of device 500; terminal 300 of device 500 is connected to terminal 322 of a device 501 and to a first end of diac 224; terminal 303 of device 5001s connected to terminal 320 of device 501 and to a first end of capacitor 220; the second end of capacitor 220 is connected to a first end of resistor 222; second end of resistor 222 is, in turn, connected to the second end of diac 224; terminal 321 of device 501 is connected to ground; terminal 323 is connected to a negative dimmer control voltage source 225; and the ends of resistor 252 are connected respectively to terminal 304 of device 500 and the junction of the second end of capacitor 220 and the first end of resistor 222.
When an external dc power is applied to the junction of the cathode of diode 242 and the first end of inductor 244, current flows through lamp 250, through resistor 214, and through resistor 252, thereby increasing the voltage on capacitor 220. When the voltage on capacitor 200 is such that the forward breakover voltage of diac 224 is exceeded, current flows through diac 228 into terminal 300 of device 500. This current flowing into terminal 300 forward biases the Darlington transistor 212 included in device 500 (i.e.. the switch of device 500 is turned on). Current from the lamp then flows through resistor 214, through the on switch of device 500, out terminal 300 of device 500, into terminal 320 of device 501, through resistor 238 included in device 501, and out terminal 321 of device 501 to ground.
Recalling the description of encapsulated device 501 from FIG. 35, when the voltage of capacitor 236 of device 501 is such that the anode to-gate voltage of PUT 228 exceeds 0.5 volts, the PUT is turned on, thereby providing a forward bias to the base-emitter junction of transistor 226. This forward bias causes current to flow in the collector of transistor 226 in a direction from terminal 300 to terminal 322. This current flow reverse biases the base-emitter junction of Darlington transistor 212 included in device 500, thereby attempting to turn off Darlington 212.
The circuit of FIG. 36 has some control disadvantages, however, when the external dimmer control voltage connected to terminal 323 of device 501 exceeds approximately 1.5 volts. It is conceivable that in that instance, once PUT 228 and transistor 226 are turned on, they will have sufficient voltage across them to maintain an on" condition. Therefore, a constant turn-off current is provided to Darlington transistor 212.
If a greater control range of dimmer voltage is desired, the circuit of FIG. 37 may be utilized. The circuit of FIG. 37 is connected as follows: a first end of inductor 244 is connected to the cathode of diode 242; the second end of inductor 244 is connected to the first terminal of ballast lamp 250; the second terminal of ballast lamp 250 is connected to the anode of diode 242 and to first ends of resistor 214 and 216; the second end of resistor 216 is connected to terminal 301 of device 500; the second end of resistor 214 is connected to terminal 302 of device 500:, terminal 300 of device 500 is connected to a first end of diac 224 and to the collector of transistor 226; terminal 303 of device 500 is connected to a first end of capacitor 220 and the emitter of pnp transistor 254, a first end of capacitor 276 and a first end of resistor 238; terminal 304 of device 500 is connected to a first end of resistor 252; the second end of resistor 252 is connected to the second end of capacitor 220 and the first end of resistor 222; the second end of resistor 222 is connected to the second end of diac 224; the base of transistor 226 is connected to the cathode of PUT 228; the collector of transistor 254 is connected to first ends of resistors 232 and 230; the second end of resistor 230 is connected to the anode of PUT 228; the second end of resistor 232 is connected to the first end of resistor 234 and to the gate of PUT 228; the emitter of transistor 226 is connected to the second end of resistor 234, the second end of capacitor 236, and the anodes of diodes 240 and 256; the cathode of diode 240 is connected to the first end of resistor 246 and the second end of resistor 238, the first end of capacitor 248 and to ground; the second end of resistor from anode to cathode. At this time, the base-to-emitter junction of transistor 226 is forward biased, thereby causing current to flow in the collector of transistor 226 in a direction outward from terminal 300 of device 500. The current flow in the collector of transistor 226 causes a reverse bias to be placed on the base-to-emitter junction of Darlington transistor 212 of device 500, thereby attempting to turn it off.
The flow of current through Darlington transistor 212 decreases as the transistor is turning off. Therefore, the current flowing through resistor 238 begins to decrease. An analysis of the voltage loop formed by capacitor 236, resistor 238 and diode 240 shows that diode 240 is reversed biased shortly after the turn-off 246 is connected to the base of transistor 254; and the cathode of diode 256 is connected to the second end of capacitor 248 into the external dimmer control voltage source 225.
Alternative to the above, a zener diode, such as zener diode 262 in FIG. 38, may be substituted for resistor 234.
The switch of device 500 is turned on in the same manner as for FIG. 36 by capacitor 220, resistor 222 and diac 224, as described above. The difference in the operation of the circuits of FIG. 36 and FIG. 37 is in the turn-off means employed. For purposes of description of FIG. 37, it is assumed that the switch of device 500 has been turned on, i.e., current is flowing from terminal 302 and 303 through the switch of device 500.
This current causes a voltage to appear at the first end of resistor 238, and the voltage on capacitor 236 increases. The base-emitter junction of transistor 254 is forward biased when the voltage on resistor 238 exceeds its base-to-emitter voltage, and capacitor 236 continues to charge until the anodeto-gate voltage of PUT 228 is greater than 0.5 volts. At this time, PUT 228 is turned on, and current flows into PUT 228 pulse current is applied to the Darlington. Therefore, the voltage stored in capacitor 236 must necessarily discharge through transistor 254, through resistor 230, through PUT 228 and through transistor 226. When the voltage across resistor 238 has decreased to such a voltage level that the base-to-emitter of transistor 254 is no longer forward biased, transistor 254 turns off, thereby preventing any further current flow through it. PUT 228 then turns off since the anode-cathode current goes to Zero. Lastly, transistor 226 turns off, causing the collector current of transistor 226 to cease to flow. Hence, the length of time that the turn-off current is applied to Darlington transistor 212 of device 500 by the collector of transistor 226 is determined by the length of time it takes I9 X R to decrease below approximately 0.7 volt, approximately a base-emitter voltage drop of transistor 254. If very high speed switching elements are utilized in device 500, the length of time that the turn-off pulse is applied might be sufficient to insure a complete turn off. However if lower speed switching devices are utilized (which naturally decreases the cost of the devices), it is desirable to have a turn-off current supplied to device 500 for a longer period of time. Hence, the RC time constant or delay circuit provides good noise immunity of the turnoff circuit by providing some delay, and hence helps prevent false triggering because of a spurious change of voltage with respect to time.
An increase in the length of time the current flows in the collector of transistor 226 can be achieved by utilizing the circuit of FIG. 38 in place of the circuit connected to terminal 300 and 303 of device 500. FIG. 38 is connected as follows: terminal 301 of device 500 is connected to the emitter of transistor 254, a first end of resistor 258, a first end of capacitor 267, a first end of capacitor 236 and a first end of resistor 238; terminal 300 of device 500 is connected to the collector of transistor 226; the collector of transistor 254 is connected to a first end of resistor 230; the second end of resisistor 230 is connected to a first end of capacitor 336; the second end of capacitor 336 is connected to the gate of PUT 228 and to the first end of resistor 260; the cathode of PUT 228 is connected to the base of transistor 226 and to the first end of resistor 280; the second end of resistor 260 -is connected to the cathode of Zener diode 262 and to the second end of resistor 260; the emitter of transistor 226 is connected to the anode of Zener diode 262, to the second end of resistor 280, to the second end of capacitor 236, to the anode of diode 240 and to the anode of diode 256; the cathode of diode 240 is connected to the second end of resistor 238, to the cathode of diode 264, to the first end of capacitor 248, and to ground; the anode of diode 264 is connected to the second end of capacitor 267 and to 17 the first end of resistor 266; the second end of resistor 266 is connected to the second end of resistor 268 and to the base of transistor 254; and the cathode of diode 256 is connected to the second end of capacitor 248 into the external dimmer control voltage source 225.
For purposes of discussion of this turn-off circuit, it will once again be assumed that the transistor switch of device 500 has been turned on by the combination of capacitor 220, resistor 222 and diac 224. Therefore, current is flowing through the switch and out of tenninal 301 of device 500 to the first end of resistor 238. A voltage appears at the first end of resistor 238, and the voltages on capacitor 236 and 267 begin to increase. When the voltage appearing across capacitor 267 exceeds the base-to-emitter junction voltage of transistor 254, transistor 254 turns on.
As in the description of FIG. 37, the voltage on capacitor 236 increases until the anode-to-gate PUT 226 exceeds 0.5 volts.
Zener diode 262 is used to maintain a very precise voltage on the gate of PUT 228. This voltage appears when the voltage on capacitor 236 is such that it exceeds the reverse breakdown voltage of Zener diode 262 by the voltage drop across resistor 258. Capacitor 336 begins to discharge when the voltage between the anode and the gate of PUT 228 exceeds 0.5 volts. PUT 228 turns on, thereby forward biasing the base-emitter junction of transistor 226. As before, a collector currentbegins to flow in the collector of transistor 226, thereby providing a reverse bias to Darlington transistor 212 included in devicee 500.
The circuit operation is identical to that of FIG. 37, except that by utilizing capacitor 267 and resistor 268 and diode 264, the length of time that a forward bias is applied to the base-emitter junction of transistor 254 is increased, thereby insuring that a turn-off pulse that is sufficiently long in time will be applied to turn-off Darlington transistor 212 of device 500.
Now referring to FIG. 39, another embodiment of the electronic switching circuit of the present invention is illustrated. Electronic switch 510 includes a switching circuit, voltage sensing turn-on circuit and a current sensing turn-off circuit, such as illustrated and described for FIG. and FIG. 6.
FIG. 39 shows electronic switch 510 being used to supply ballast control to lamp 250. A dc power source (not shown) is connected to the input. Inductor 244,
which may be identical to inductor 60 of FIG. 6, is in series with switch 510 and diode 242, which may be identical to diode 78, and is connected from the output of switch 510 to the return power connection.
In order to prolong the life of ballast lamp 250, double-pole, double-throw (DPDT) relay 298 interchanges the terminals of the lamp so that the same terminal does not have the same polarity of direct current applied to it at all times. The rate of interchange may be determined by either an ac driven relay device 370, a dc driven relay or DPDT relay 298 may be operated manually at periodic intervals.
FIG. 40 illustrates a switching arrangement for applying ac current to a lamp load. Ballast lamp 450 is connected to capacitor 442, which, in turn, is connected to coil 440. Electronic switches 446 and 448 are connected together, the junction therebetween being con- 18 switch 446 is open, switch 448 is closed. Hence, operation is synchronous and complementary. These switches are driven by an electronic ac drive 370, similar (but of higher frequency) to that used in the FIG. 39 configuration. Together these components comprise electronic drive 444.
In operation of the FIG. 40 circuit. the switching of switches 446 and 448 so as to alternately provide current paths I and I to lamp 450 applies ac current to the lamp via LC oscillation.
Conventional ballast lamps require a relatively high voltage, on the order of several hundred volts, to sustain their operation. Utilizing an electronic switch 510, a low dc voltage may be used to operate the ballast lamp when utilized in conjunction with an autotransformer 332, such as shown in FIG. 41.
The circuit is connected thusly: the input of electronic switch 510 is connected to the dc power input; the output of electronic switch 510 is connected to the common winding of autotransformer 332; the second terminal of the primary of autotransformer 332 is connected to the return of the dc input; the anode of diode 42 is connected to the first terminal of ballast lamp 250; the second terminal of the secondary of autotransformer 332 is connected to the cathode of diode 242 and the first end of inductor 244; and the second end of inductor 244 is connected to the second terminal of ballast lamp 250.
The autotransformer has a turn ratio of N to I, wherein N signifies the number of turns in the secondary of the autotransformer for each turn in the primary thereof. The autotransformer ischosen so that the turns ratio N to 1 increases the dc input voltage to such a level as to maintain proper operation of the ballast lamp.
FIG. 42 shows a utilization of the basic electronic switch to provide starting voltage to a ballast lamp 250. Ordinarily, a starting voltage is established with additional electronics which creates a starter pulse. Utilizing the switch as shown in FIG. 42, however, this starting and continuous operation following starting can be accomplished using the same components without additional electronics.
Electron switch 510 as shown comprises the basic switching circuit described in FIGS. 32, 33 or 34, plus turn-off means and turn-on means, such as previously described for FIGS. 5 and 6. The output of this switch is connected to the cathode of diode 242 and to one terminal of the primary of transformer 292; the other terminal of the primary of transformer 292 is connected to one terminal of the secondary of transformer 292, a first end of capacitor 294 and a first end of resistor 290; the second terminal of the secondary of transformer 292 is connected to one terminal of ballast lamp 250; the second terminal of ballast lamp 250 is connected to the second end-of capacitor 294, the second end of resistor 290 and the anode of diode 242. In norma] operation, a positive voltage is supplied to the input of electronic switch 510 and the return of this positive voltage is applied to the anode of diode 242.
Initially, there is no charge on capacitor 294. When the turn-on means of electronic switch 510 closes the switch, the entire voltage of the power supply appears across the primary of transformer 292. The reason for this is that there is no voltage on capacitor 294 initially.
The voltage then occurring on the secondary of transformer 292 is N times the supply voltage, wherein N is the turns ratio of transformer 292. This secondary volt-

Claims (109)

1. A regulating ballast circuit for a high intensity discharge lamp, comprising dc voltage input means, switching circuit means connected to said input means including means exhibiting high gain over a wide range of operating currents and having a first load resistance, and variable current means regeneratively connected thereto having a second load resistance, the ratio of said first and second load resistances determining the turn-off current gain of said switching circuit, turn-on means connected to said switching circuit for generating a turn-on input thereto dependent in time on the level of output from said dc voltage means when said switching circuit is in the off condition, turn-off means connected to said switching circuit for generating a turn-off input thereto dependent in time on the instantaneous level of the operating current when said switching circuit is in the turned on condition, and inductor means for maintaining current through the lamp connected to said switching circuit, the effective current therethrough being approximately constant independent of the frequency of turn on and turn off of said switching circuit.
2. A regulating ballast circuit as set forth in claim 1, wherein said dc voltage input means includes pairs of rectifying diodes connected to input lines from a three phase ac power source.
3. A regulating ballast circuit as set forth in claim 1, wherein said high gain means of said switching circuit includes a Darlington pair of transistors.
4. A regulating ballast circuit as set forth in claim 3, wherein said variable current means includes a transistor, the base of which is connected to the series connection point between a diode and the collector circuit of said Darlington pair, said dc voltage input means being respectively connected through said first and second resistances to said transistor and to said Darlington pair, current flow through said transistor being limited by the current gain established by said first and second resistances.
5. A regulating ballast circuit as set forth in claim 4, wherein said diode has a forward voltage drop approximating the base-to-emitter drop of said transistor.
6. A regulating ballast circuit as set forth in claim 5, wherein said diode is shunted by a resistor to provide decreased charge storage time of said diode.
7. A regulating ballast circuit as set forth in claim 1, wherein said high gain means includes a first transistor having a first leakage current reduction resistor connected from the base to emitter thereof and said variable current means includes a second transistor having a second leakage current reduction resistor connected from the base to emitter thereof.
8. A regulating ballast circuit as set forth in claim 1, wherein said turn-on means includes a capacitor connected to said dc voltage input means and a threshold semi-conductor device connected to said switching circuit, such that a voltage build up of predetermined amount of said capacitor causes a current pulse through said threshold semi-conductor device to turn on said switching circuit.
9. A regulating ballast circuit as set forth in claim 8, wherein said semi-conductor device is a diac.
10. A regulating ballast circuit as set forth in claim 8, wherein said semi-conductor device is a silicon bi-lateral switch.
11. A regulating ballast circuit as set forth in claim 8, wherein said semi-conductor device is a silicon unilateral switch.
12. A regulating ballast circuit as set forth in claim 8, wherein said semi-conductor device is a 4-layer diode.
13. A regulating ballast circuit as set forth in claim 8, wherein said semi-conductor device includes a programmable unijunction transistor.
14. A regulating ballast circuit as set forth in claim 8, wherein said semi-conductor device includes a silicon controlled rectifier.
15. A regulating ballast circuit as set forth in claim 8, wherein said semi-conductor device includes a programmable unijunction transistor and a Zener diode.
16. A regulating ballast circuit as set forth in claim 8, wherein said semi-conductor device includes a silicon controlled rectifier and a Zener diode.
17. A regulating ballast circuit as set forth in claim 1, wherein said turn-off means includes a resistance means connected to supply operating current to said inductor and a charging capacitor and a delay circuit sensing the operating current from said switching circuit, and a semi-conductor device such that an operating current of a predetermined amplitude causes said semi-conductor device to conduct, the charge on said capacitor generates a turn-off pulse to said switching circuit.
18. A regulating ballast circuit as set forth in claim 17, wherein said semi-conductor device is a silicon bi-lateral switch.
19. A regulating ballast circuit as set forth in claim 17, wherein said semi-conductor device is a silicon unilateral switch.
20. A regulating ballast circuit as set forth in claim 17, wherein said semi-conductor device is a 4-layer diode.
21. A regulating ballast circuit as set forth in claim 17, wherein said semi-conductor device includes a gated semi-conductor, the operating current of predetermined amplitude actuating the gate thereof.
22. A regulating ballast circuit as set forth in claim 17, wherein said semi-conductor device includes a programmable unijunction transistor.
23. A regulating ballast circuit as set forth in claim 17, wherein said semi-conductor device includes a silicon controlled rectifier.
24. A regulating ballast circuit as set forth in claim 17, wherein said semi-conductor device includes a programmable unijunction transistor and a Zener diode.
25. A regulating ballast circuit as set forth in claim 17, wherein said semi-conductor device includes a silicon controlled rectifier and a Zener diode.
26. A regulating ballast circuit as set forth in claim 1, wherein said turn-off means is preset for turn-off at a preselected maximum operating current level and the turn-on means is preset for operation for a nominal output from said voltage means and said lamp such that the ratio of on-time to off-time determines duty cycle regulation of constant effective current through said lamp.
27. A regulating ballast circuit as set forth in claim 1, wherein said switching circuit, turn-on means and turn-off means comprise a two-terminal network, said input means connected to said first and second load resistances through a first terminal and said inductor being connected to said turn-off means through a second terminal.
28. A switching circuit for connection to a dc source, comprising: means exhibiting high gain over a wide range of applied operating currents, a first load resistance connected to said high gain means, and variable current means regeneratively connected to said high gain means having a second load resistance, and including compensating means for eliminating load current as a factor in determining turn-off current gain, the ratio of said first and second load resistances determining the turn-off current gain of said switching circuit.
29. A switching circuit as set forth in claim 28, wherein said high gain means includes a first transistor having a first leakage current reduction resistor connected from the base to emitter thereof and said variable current means includes a second transistor having a second leakage current reduction resistor connected from the base to emitter thereof.
30. High speed switching means for connection to a dc source, comprising a switching circuit, including means exhibiting high gain over a wide range of applied operating currents, a first load resistance connected to said high gain means, and variable current means regeneratively connected to said high gain means having a second load resistance, the ratio of said first and second lOad resistances determining the turn-off current gain of said switching circuit, and turn-on means connected to said switching circuit for generating a turn-on input thereto dependent in time on the level of output from the dc source when said switching circuit is in the off condition.
31. High speed switching means for connection to a dc source, comprising a switching circuit, including means exhibiting high gain over a wide range of applied operating currents, a first load resistance connected to said high gain means, and variable current means regeneratively connected to said high gain means having a second load resistance, the ratio of said first and second load resistances determining the turn-off current gain of said switching circuit, and turn-off mans connected to said switching circuit for generating a turn-off input thereto dependent in time on the instantaneous level of the operating current when said switching circuit is in the turned on condition.
32. High speed switching means for connection to a dc source, comprising a switching circuit, including means exhibiting high gain over a wide range of applied operating currents, a first load resistance connected to said high gain means, and variable current means regeneratively connected to said high gain means having a second load resistance, the ratio of said first and second load resistances determining the turn-off current gain of said switching circuit, turn-on means connected to said switching circuit for generating a turn-on input thereto dependent in time on the level of output from the dc source when said switching circuit is in the off condition, and turn-off means connected to said switching circuit for generating a turn-off input thereto dependent in time on the instantaneous level of the operating current when said switching circuit is in the turned on condition.
33. High speed switching means as set forth in claim 32, wherein said high gain means of said switching circuit includes a Darlington pair of transistors.
34. High speed switching means as set forth in claim 33, wherein said variable current means includes a transistor, the base of which is connected to the series connection point between a diode and the collector circuit of said Darlington pair, said dc source being respectively connected through said first and second resistances to said transistor and to said Darlington pair, current flow through said transistor being limited by the current gain established by said first and second resistances.
35. High speed switching means as set forth in claim 34, wherein said diode has a forward voltage drop approximating the base-to-emitter drop of said transistor.
36. High speed switching means as set forth in claim 35, wherein said diode is shunted by a resistor to provide decreased charged storage time of said diode.
37. High speed switching means as set forth in claim 32, wherein said high gain means includes a first transistor having a first leakage current reduction resistor connected from the base to emitter thereof and said variable current means includes a second transistor having a second leakage current reduction resistor connected from the base to emitter therof.
38. High speed switching means as set forth in claim 32, wherein said turn-on means includes a capacitor connected to the dc source and a threshold semi-conductor device connected to said switching circuit, such that a voltage build up of predetermined amount on said capacitor causes a current pulse through said threshold semi-conductor device to turn on said switching circuit.
39. High speed switching means as set forth in claim 38, wherein said semi-conductor device is a diac.
40. High speed switching means as set foth in claim 38, wherein said semi-conductor device is a silicon bi-lateral switch.
41. High speed switching means as set forth in claim 38, wherein said semi-conductor device is a 4-layer diode.
42. HIgh speed switching means as set forth in claim 38, wherein said semi-conductor device is a silicon unilateral switch.
43. High speed switching means as set forth in claim 38, wherein said semi-conductor device includes a programmable unijunction transistor.
44. High speed switching means as set forth in claim 38, wherein said semi-conductor device includes a silicon controlled rectifier.
45. High speed switching means as set forth in claim 32, wherein said turn-off means includes a resistance means connected to supply operating current to the output thereof and a charging capacitor and a delay circuit sensing the operating current from said switching circuit, and a gated semi-conductor device, such that when the gate causes said semi-conductor device to conduct, the charge on said capacitor generates a turn-off pulse to said switching circuit.
46. High speed switching means as set forth in claim 45, wherein said gated semi-conductor device includes a programmable unijunction transistor.
47. A regulating ballast circuit as set forth in claim 45, wherein said gated semi-conductor device includes a silicon controlled rectifier.
48. High speed switching means as set forth in claim 32, wherein said turn-off means includes a resistance means to supply operating current to the output and a capacitor chargeably connected to said resistance means, and semi-conductor means, a voltage build-up predetermined amount on said capacitor causing said semi-conductor means to conduct, generating a turn-off pulse to said switching circuit.
49. High speed switching means as set forth in claim 48, wherein said semi-conductor means includes a silicon bi-lateral switch.
50. High speed switching means as set forth in claim 48, wherein said semi-conductor means includes a 4-layer diode.
51. High speed switching means as set forth in claim 48, wherein said semi-conductor means includes a silicon unilateral switch.
52. High speed switching means as set forth in claim 32, wherein said turn-on means includes constant current source means.
53. High speed switching means as set forth in claim 52, wherein said constant current source means includes a field effect transistor.
54. High speed switching means as set forth in claim 52, wherein said constant current source means includes an npn transistor and a Zener diode.
55. High speed switching means as set forth in claim 52, wherein said constant current source means includes a pnp transistor and a Zener diode.
56. High speed switching means as set forth in claim 32, wherein said turn-on means includes a diode for reverse biasing said high gain means during turn-off.
57. High speed switching means as set forth in claim 32, wherein said turn-on means includes inductor means for reverse biasing said high gain means during turn off.
58. An encapsulated high-speed switching circuit, comprising: first transistor means exhibiting high gain over a wide range of applied operating currents, second transistor means, complementary to said first transistor means, connected at a first common connection to said first transistor means as a variable current source and having a second terminal suitable for connecting to a second load resistor, the ratio of said first and second load resistors determining the turn-off current gain of said switching circuit, a diode connected to the base of said second transistor means and having a first terminal suitable for connecting to a first load resistance, said diode having a forward voltage drop approximating the base-to-emitter drop of said second transistor means, a second common connection between said first and second transistor means connected to a third terminal, said first transistor means connected to a fourth terminal, said third and fourth terminals providing connections for applying turn-on and turn-off signals to said high speed switching circuit.
59. An encapsulated high speed switching circuit as set fortH in claim 58, wherein the values of said first and second resistors are zero, the voltage across said diode and across the base-emitter junction of said second transistor being equal, so that the ratio of the currents through said diode and into the emitter of said second transistor determines the turn-off current gain of the circuit.
60. The encapsulated high speed switching circuit as set forth in claim 58, wherein said high gain transistor means includes a Darlington pair of transistors.
61. The encapsulated high speed switching circuit as set forth in claim 58, wherein said first transistor means includes an npn transistor and said second transistor means includes a pnp transistor.
62. The encapsulated high speed switching circuit as set forth in claim 58, wherein said diode is shunted by a first resistor to provide decreased charged storage time of said diode.
63. The encapsulated high speed switching circuit as set forth in claim 62, wherein said first transistor means includes a first leakage current reduction resistor connected from the base-to-emitter of a transistor included therein and said second transistor means includes a second leakage current reduction resistor connected from the base-to-emitter of a transistor included therein.
64. An encapsulated high speed switching circuit as set forth in claim 58, wherein said first and second resistors are connected together and including a third terminal connected to the junction therebetween, and wherein the values of said first and second resistors are zero, the voltage across said diode and across the base-emitter junction of said second transistor being equal, so that the ratio of the currents through said diode and into the emitter of said second transistor determines the turn-off current gain of the circuit.
65. An encapsulated high speed switching circuit, comprising: first transistor means exhibiting high gain over a wide range of applied operating currents, second transistor means, complementary to said first transistor means, connected at a first common connection to said first transistor means as a variable current source, a diode connected to the base of said second transistor means, a first load resistance connected to said diode, a second load resistor connected to said second transistor means, the ratio of said first and second load resistors determining the turn-off current gain of said switching circuit, said diode having a forward voltage drop approximating the base-to-emitter drop of said second transistor means, a second common connection between said first and second transistor means connected to a first terminal, said first transistor means connected to a second terminal, said first and second terminal providing connections for applying turn-on and turn-off signals to said high speed switching circuit.
66. A regulating ballast circuit for a high intensity discharge lamp, comprising dc voltage input means, switching circuit means connected to said input means including means exhibiting high gain over a wide range of operating currents and having a first load resistance, and variable current means regeneratively connected thereto having a second load resistance, the ratio of said first and second load resistances determining the turn-off current gain of said switching circuit, turn-on means connected to said switching circuit means for generating a turn-on input thereto dependent in time on the level of output from said dc voltage means when said switching circuit means is in the off condition, turn-off means connected to said switching circuit means for generating a turn-off input thereto dependent in time on the instantaneous level of the operating current when said switching circuit means is in the turned on condition, and high frequency switching means for applying ac current to the lamp, including inductor means connected to said switching circuit means, and relay switching means for providing current through said lamp in a first direction and then in the opposite direction.
67. A regulating ballast as set forth in claim 66, wherein said relay switching means connects said inductor in series with said lamp first one side of said lamp and then on the other side of said lamp.
68. A regulating ballast as set forth in claim 67, and including a flyback diode to provide a conductive path for current through said inductor when said switching circuit means is turned off.
69. A regulating ballast circuit for a high intensity discharge lamp, comprising inductor meanas for maintaining operating current through the lamp, a flyback diode connected across the lamp and said inductor means, a terminal for connecting to a standard dc voltage source for applying dc current through the combination of the lamp and said inductor means, switching circuit means connected in the return path of the series combination of the lamp and said inductor means, including means exhibiting high gain over a wide range of operating currents and having a first load resistance, and variable current means regeneratively connected thereto having a second load resistance, the ratio of said first and second load resistances determining the turn-off current gain of said switching circuit, turn-on means connected to said switching circuit for generating a turn-on input thereto dependent in time on the level of output from said standard dc voltage source when said switching circuit is in the off condition, and turn-off means connected to said switching circuit for generating a turn-off input thereto dependent in time on the instantaneous level of the operating current when said switching circuit is in the turned on condition.
70. A regulating ballast circuit as set forth in claim 69, wherein said external means is a dc variable control voltage source.
71. A regulating ballast circuit as set forth in claim 69, wherein said turn-off means includes a resistance means and a charging capacitor connected to said external means for sensing the operating current from said switching circuit, and a gated semi-conductor device connected to said resistance means and said capacitor such that when the gate causes semi-conductor device to conduct, the charge on said capacitor generates a turnoff pulse to said switching circuit.
72. A regulating ballast circuit as set forth in claim 71, wherein said turn-off means includes a time constant delay means for providing noise immunity and for preventing a false turn-off input because of the presence of an extraneous voltage with respect to time.
73. A regulating ballast circuit for a high intensity discharge lamp, comprising dc voltage input means, switching circuit means connected to said input means including means exhibiting high gain over a wide range of operating currents and having a first load resistance, and variable current means regeneratively connected thereto having a second load resistance, the ratio of said first and second load resistances determining the turn-off current gain of said switching circuit, turn-on means connected to said switching circuit for generating a turn-on input thereto dependent in time on the level of output from said dc voltage means when said switching circuit is in the off condition, turn-off mans connected to said switching circuit for generating a turn-off input thereto dependent in time on the instantaneous level of the operating current when said switching circuit is in the turned on condition, inductor means for maintaining current through the lamp connected to said switching circuit, the effective current therethrough being approximately constant independent of the frequency of turn on and turn off of said switching circuit, and double-pole, double-throw relay means connecting said inductor means to the lamp so that the terminals of the lamp may have polarity reversals applied thereto.
74. A regulating bAllast circuit as set forth in claim 73, wherein said relay means includes ac drive means for causing polarity reversals at a periodic rate.
75. A regulating ballast circuit for a high intensity discharge lamp, comprising dc voltage input means, LC circuit means connected to the lamp, polarity reversing electronic switching means connected to said LC circuit means and to said lamp for supplying alternately directed current paths therefrom through the lamp, and ac drive means connected to said polarity reversing means for causing ac current to the lamp via periodic switching of said LC circuit means.
76. A regulating ballast as set forth in claim 75, wherein said polarity reversing electronic switching means comprises synchronous complementary switches, each of said complementary switches including electronic closure means exhibiting high gain over a wide range of operating currents and having a first load resistance, variable current means regeneratively connected to said electronic closure means having a second load resistance, the ratio of said first and second load resistances determining the turn-off current gain of said switching circuit, turn-on means connected to said electronic closure means for generating a turn-on input thereto dependent in time on the level of output from said dc voltage means when said electronic closure is in the off condition, and turn-off means connected to said electronic closure means for generating a turn-off input thereto dependent in time on the instantaneous level of the operating current when said electronic closure means is in the turned on condition.
77. A regulating ballast circuit for a high intensity discharge lamp, comprising dc voltage input means, switching circuit means connected to said input means including means exhibiting high gain over a wide range of operating currents and having a first load resistance, and variable current means regeneratively connected thereto having a second load resistance, the ratio of said first and second load resistances determining the turn-off current gain of said switching circuit, turn-on means connected to said switching circuit means for generating a turn-on input thereto depending in time on the level of output from said dc voltage means when said switching circuit means is in the off condition, turn-off means connected to said switching circuit means for generating a turn-off input thereto dependent in time on the instantaneous level of the operating current when said switching circuit means is in the on condition, an autotransformer connected to said switching circuit means for stepping up the voltage therefrom, and inductor means for maintaining current through the lamp connected to said autotransformer, the effective current therethrough being approximately constant independent of the frequency of turn-on and turn-off of said switching circuit.
78. A regulating ballast circuit as set forth in claim 77, and including a flyback diode connected across the lamp and said inductor.
79. A regulating ballast circuit for a high intensity discharge lamp, comprising dc voltage input means, switching circuit means connected to said input means including means exhibiting high gain over a wide range of operating currents and having a first load resistance, and variable current means regeneratively connected thereto having a second load resistance, the ratio of said first and second load resistances determining the turn-off current gain of said switching circuit, turn-on means connected to said switching circuit for generating a turn-on input thereto dependent in time on the level of output from said dc voltage means when said switching circuit is in the off condition, turn-off means connected to said switching circuit for generating a turn-off input thereto dependent in time on the instantaneous level of the operating current when said switching circuit is In the turned on condition, a transformer connected to a first terminal of the lamp, and a capacitor connected between a common connection of the primary and secondary of said transformer and the second terminal of the lamp, the starting voltage on said lamp being the stepped up full voltage supplied to said transformer, a full charge on said capacitor converting the primary and secondary of said transformer into a series choke for providing operating voltage across said lamp.
80. A regulating ballast circuit for a high intensity discharge lamp, comprising dc voltage input means, switching circuit means connected to said input means including means exhibiting high gain over a wide range of operating currents and having a first load resistance, and variable current means regeneratively connected thereto having a second load resistance, the ratio of said first and second load resistances determining the turn-off current gain of said switching circuit, turn-on means connected to said switching circuit for generating a turn-on input thereto dependent in time on the level of output from said dc voltage means when said switching circuit is in the off condition, turn-off means connected to said switching circuit for generating a turn-off input thereto dependent in time on the instantaneous level of the operating current when said switching circuit is in the turned on condition, inductor means for maintaining current through the lamp connected to said switching circuit, the effective current therethrough being approximately constant independent of frequency of turn on and turn off of said switching circuit, and said switching circuit means including a high power transistor and a low power drive circuit, such that a low voltage of predetermined value controls the operation of said high power transistor in said switching means.
81. A regulating ballast as set forth in claim 80, wherein said low power drive circuit includes diode means for changing said variable current means into substantially constant current means.
82. A regulating ballast circuit for a high intensity discharge lamp, comprising dc voltage input means, switching circuit means connected to said input means including means exhibiting high gain over a wide range of operating currents and having a first load resistance, and variable current means regeneratively connected thereto having a second load resistance, the ratio of said first and second load resistances determining the turn-off current gain of said switching circuit, turn-on means connected to said switching circuit for generating a turn-on input thereto dependent in time on the level of output from said dc voltage means when said switching circuit is in the off condition, turn-off means connected to said switching circuit for generating a turn-off input thereto dependent in time on the instantaneous level of the operating current when said switching circuit is in the turned on condition, inductor means for maintaining current through the lamp connected to said switching circuit, the effective current therethrough being approximately constant independent of frequency of turn on and turn off of said switching circuit, and said turn-off means including a resistance means connected to supply operating current to said inductor means and a charging capacitor and Zener diode operative as low power sensing means for sensing the operating current from said switching circuit such that the exceeding of the reverse breakdown voltage of said Zener diode generates a turn-off pulse to said switching circuit.
83. A high speed electronic circuit breaker, comprising dc voltage input means, switching circuit means connected to said input means including means exhibiting high gain over a wide range of operating currents and having a first load resistance, and variable current means regeneratively connected thereto having a second load resistance, tHe ratio of said first and second load resistances determining the turn-off current gain of said switching circuit, turn-off means connected to said switching circuit for generating a turn-off input thereto dependent in time on the instantaneous level of the operating current when said switching circuit is in the turned on condition, and manual turn-on means connected to said switching circuit.
84. A high speed electronic circuit breaker, comprising dc voltage input means, switching circuit means connected to said input means including means exhibiting high gain over a wide range of operating currents and having a first load resistance, and variable current means regeneratively connected thereto having a second load resistance, the ratio of said first and second load resistances determining the turn-off current gain of said switching circuit, turn-on means connected to said switching circuit for generating a turn-on input thereto dependent in time on the level of output from said dc voltage means when said switching circuit is in the off condition, and turn-off means connected to said switching circuit for generating a turn-off input thereto dependent in time on the instantaneous level of the operating current when said switching circuit is in the turned on condition.
85. A circuit breaker as set forth in claim 84, wherein said turn-off means is preset for turn-off at a preselected maximum operating current level and the turn-on means is preset for operation for a nominal output from said voltage means.
86. A circuit breaker as set forth in claim 84, wherein said switching circuit, turn-on means and turn-off means comprise a two-terminal network, said first and second load resistances connected to a first terminal and said turn-off means connected to a second terminal, said input means and a load being connected in series with said first and second terminals.
87. A regulating ballast circuit as set forth in claim 84, wherein said high gain means includes a first transistor having a first leakage current reduction resistor connected from the base to emitter thereof and said variable current means includes a second transistor having a second leakage current reduction resistor connected from the base to emitter thereof.
88. A circuit breaker as set forth in claim 84, wherein said high gain means of said switching circuit includes a Darlington pair of transistors.
89. A circuit breaker as set forth in claim 88, wherein said variable current means includes a transistor, the base of which is connected to the series connection point between a diode the the collector circuit of said Darlington pair, said dc voltage input means being respectively connected through said first and second resistances to said transistor and to said Darlington pair, current flow through said transistor being limited by the current gain established by said first and second resistances.
90. A circuit breaker as set forth in claim 89, wherein said diode has a forward voltage drop approximating the base-to-emitter drop of said transistor.
91. A circuit breaker as set forth in claim 90, wherein said diode is shunted by a resistor to provide decreased charge storage time of said diode.
92. A circuit breaker as set forth in claim 84, wherein said turn-on means includes a capacitor connected to said dc voltage input means and a threshold semi-conductor device connected to said switching circuit, such that a predetermined voltage build up on said capacitor causes a current pulse through said semi-conductor device to turn on said switching circuit.
93. A circuit breaker as set forth in claim 92, wherein said semi-conductor device is a diac.
94. A circuit breaker as set forth in claim 84, wherein said turn-off means includes a resistance means operably connected to supply operating current to an external load and a charging capacitor and a delay circuit sensing the operating current from said switching circuit, and a gated semi-cOnductor device such that when the gate causes said semi-conductor device to conduct, the charge on said capacitor generates a turn-off pulse to said switching circuit.
95. A circuit breaker as set forth in claim 94, wherein said gated semi-conductor device includes a programmable unijunction transistor.
96. A circuit breaker as set forth in claim 94, wherein said turn-off means includes a resistor operating as a current sensing device, and an operational amplifier with its differential inputs connected across said resistor and its output connected to the gate of said gated semi-conductor device, an excess voltage drop across said resistor causing turn-off operation.
97. A circuit breaker as set forth in claim 96, and including an additional floating dc supply for providing additional voltage for turn-off operation.
98. A circuit breaker as set forth in claim 94, wherein said turn-off means includes a sensor connected to monitor an external signal, and trigger means operated by said sensor and connected to the gate of said gated semi-conductor device, the presence of an external signal causing turn-off operation.
99. A circuit breaker as set forth in claim 98, and including a floating dc supply for providing a dc voltage for aiding the turn-off operation.
100. A circuit breaker as set forth in claim 98, and including isolating means between said sensor and said trigger means.
101. A circuit breaker as set forth in claim 84, wherein said dc voltage input means is a multiple phase ac input means reduced to a common dc voltage through diode connections.
102. A high speed circuit breaker for an ac circuit including an ac source and a load, comprising bridge means connected to the ac circuit and having ac and dc terminals, the ac source and load connected to said ac terminals, switching circuit means connected to said dc terminals including means exhibiting high gain over a wide range of operating currents and having a first load resistance, and variable current means regeneratively connected thereto having a second load resistance, the ratio of said first and second load resistances determining the turn-off current gain of said switching circuit, turn-on means connected to said switching circuit for generating a turn-on input thereto dependent in time on the level of output from said dc voltage means when said switching circuit is in the off condition, and turn-off means connected to said switching circuit for generating a turn-off input thereto dependent in time on the instantaneous level of the operating current when said switching circuit is in the turned on condition.
103. A high speed circuit breaker for an ac circuit including an ac source and a load, comprising bridge means connected to the ac circuit and having ac and dc terminals, the ac source and load connected to said ac terminals, switching circuit means connected to said dc terminals including means exhibiting high gain over a wide range of operating currents and having a first load resistance, and variable current means regeneratively connected thereto having a second load resistance, the ratio of said first and second load resistances determining the turn-off current gain of said switching circuit, turn-off means connected to said switching circuit for generating a turn-off input thereto dependent in time on the instantaneous level of the operating current when said switching circuit is in the turned on condition, and manual turn-on means connected to said switching circuit.
104. A bi-stable switching circuit for operating a light emitting diode, comprising high current means exhibiting high gain over a wide range of operating currents, a light emitting diode connected as a load to said high current means and to an external bias voltage, a constant current means regeneratively connected to said high current means having a load resistance connected to said external Bias voltage, the ratio of the current through said light emitting diode and said load resistance determining the turn-off gain of the switching circuit, and said constant current means including a Zener diode connected to said high gain means, such that an external pulse applied thereto greater than the turn-on voltage of said high current means causing sustained conduction of said high current means, said Zener diode and said light emitting diode until the application of an opposite polarity external pulse causes nonconduction.
105. A switching circuit as described in claim 104, wherein said high current means includes an npn transistor and said constant current means includes a pnp transistor, said npn transistor having its base connected to the collector of said pnp transistor and the cathode of said Zener diode, the collector of said npn transistor being connected to the base of said pnp transistor and said light emitting diode, said external pulse being applied to the base of said npn transistor.
106. A switching circuit as described in claim 105, and including interface means connected to the cathode of said Zener diode to convert digital logic square wave pulses to spike pulses.
107. A bi-stable switching circuit for operating a light emitting diode, comprising high current means exhibiting high gain over a wide range of operating currents, a constant current means regeneratively connected to said high current means having a load resistance connected to an external bias voltage, a Zener diode connected to said constant current means and to said external bias voltage, and a light emitting diode connected to said high current means, the ratio of current through said light emitting diode and said load resistance determining the turn-off gain of the switching circuit, an external pulse applied to said constant current means greater than the turn-on voltage thereof causing sustained conduction of said constant current means, said light emitting diode and said Zener diode until the application of an opposite polarity pulse causes non-conduction.
108. A switching circuit as described in claim 107, wherein said high current means includes a pnp transistor and said constant current means includes a npn transistor, said pnp transistor having its base connected to the collector of said npn transistor and the anode of said Zener diode, the collector of said npn transistor being connected to the base of said npn transistor and the anode of said light emitting diode, said external pulses being applied to the base of said npn transistor.
109. A switching circuit as described in claim 108, and including an interface means connected to the anode of said light emitting diode to convert digital logic square wave pulses to spike pulses.
US489527A 1974-01-15 1974-07-18 Solid state switching circuit Expired - Lifetime US3921035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US489527A US3921035A (en) 1974-01-15 1974-07-18 Solid state switching circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US43383474A 1974-01-15 1974-01-15
US489527A US3921035A (en) 1974-01-15 1974-07-18 Solid state switching circuit

Publications (1)

Publication Number Publication Date
US3921035A true US3921035A (en) 1975-11-18

Family

ID=27029992

Family Applications (1)

Application Number Title Priority Date Filing Date
US489527A Expired - Lifetime US3921035A (en) 1974-01-15 1974-07-18 Solid state switching circuit

Country Status (1)

Country Link
US (1) US3921035A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2342579A1 (en) * 1976-02-28 1977-09-23 Itt CONTINUOUSLY VARIABLE CONTINUOUS ELECTRICAL VOLTAGE GENERATOR
US4329595A (en) * 1979-12-07 1982-05-11 The United States Of America As Represented By The United States Department Of Energy AC Resonant charger with charge rate unrelated to primary power frequency
US4614897A (en) * 1984-05-11 1986-09-30 Rca Corporation Switching circuit
GB2202347A (en) * 1987-03-17 1988-09-21 Gen Electric Current interruption operating circuit for a gaseous discharge lamp
US4999547A (en) * 1986-09-25 1991-03-12 Innovative Controls, Incorporated Ballast for high pressure sodium lamps having constant line and lamp wattage
US5068577A (en) * 1990-11-19 1991-11-26 Integrated Systems Engineering, Inc. Constant current drive system for fluorescent tubes
WO1995001084A1 (en) * 1993-06-17 1995-01-05 Southpower Limited Soft switching circuitry
EP0748147A2 (en) * 1995-06-05 1996-12-11 Francisco Javier Velasco Valcke Electronic ballast for fluorescent lamps
US5962984A (en) * 1998-01-12 1999-10-05 Morris W. Mashburn, III High intensity lighting circuit
US6007173A (en) * 1996-09-26 1999-12-28 Xerox Corporation Ink status system for a liquid ink printer
US6144539A (en) * 1999-01-06 2000-11-07 Osram Sylvania Inc. Arrangement for protecting low-voltage control circuitry from externally applied high voltages, and dimming ballast employing such an arrangement
US20030016191A1 (en) * 2001-03-22 2003-01-23 Canon Kabushiki Kaisha Driving circuit of active matrix type light-emitting element
WO2005101514A3 (en) * 2004-04-13 2006-03-30 Gelcore Led matrix current control
US20060151842A1 (en) * 2005-01-12 2006-07-13 Kapoor Ashok K Apparatus and method for reducing gate leakage in deep sub-micron MOS transistors using semi-rectifying contacts
US20070069306A1 (en) * 2004-07-07 2007-03-29 Kapoor Ashok K Apparatus and Method for Improving Drive-Strength and Leakage of Deep Submicron MOS Transistors
US20070229145A1 (en) * 2005-01-04 2007-10-04 Kapoor Ashok K Method and Apparatus for Dynamic Threshold Voltage Control of MOS Transistors in Dynamic Logic Circuits
US20070247213A1 (en) * 2004-07-07 2007-10-25 Kapoor Ashok K Apparatus and Method for Improving Drive-Strength and Leakage of Deep Submicron MOS Transistors
US20080233685A1 (en) * 2004-07-07 2008-09-25 Ashok Kumar Kapoor Method of manufacture of an apparatus for increasing stability of mos memory cells
US20090174464A1 (en) * 2004-07-07 2009-07-09 Ashok Kumar Kapoor Apparatus and method for improved leakage current of silicon on insulator transistors using a forward biased diode
US20090206380A1 (en) * 2006-09-19 2009-08-20 Robert Strain Apparatus and method for using a well current source to effect a dynamic threshold voltage of a mos transistor
US20100014324A1 (en) * 2008-07-21 2010-01-21 System General Corp. Offline synchronous rectifying circuit with sense transistor for resonant switching power converter
US20130049705A1 (en) * 2010-10-13 2013-02-28 Shindengen Electric Manufacturing Co., Ltd. Regulator, battery charging apparatus and battery charging system
US20150137690A1 (en) * 2012-06-14 2015-05-21 Jiun-Chau Tzeng Power supply module for energy saving lamp
US10398004B1 (en) * 2018-07-06 2019-08-27 Elb Electronics, Inc. LED fluorescent lamp emulator circuitry

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3626277A (en) * 1970-07-27 1971-12-07 Emerson Electric Co Current regulator suitable for mercury lamp ballast

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3626277A (en) * 1970-07-27 1971-12-07 Emerson Electric Co Current regulator suitable for mercury lamp ballast

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2342579A1 (en) * 1976-02-28 1977-09-23 Itt CONTINUOUSLY VARIABLE CONTINUOUS ELECTRICAL VOLTAGE GENERATOR
US4329595A (en) * 1979-12-07 1982-05-11 The United States Of America As Represented By The United States Department Of Energy AC Resonant charger with charge rate unrelated to primary power frequency
US4614897A (en) * 1984-05-11 1986-09-30 Rca Corporation Switching circuit
US4999547A (en) * 1986-09-25 1991-03-12 Innovative Controls, Incorporated Ballast for high pressure sodium lamps having constant line and lamp wattage
GB2202347A (en) * 1987-03-17 1988-09-21 Gen Electric Current interruption operating circuit for a gaseous discharge lamp
US5068577A (en) * 1990-11-19 1991-11-26 Integrated Systems Engineering, Inc. Constant current drive system for fluorescent tubes
WO1995001084A1 (en) * 1993-06-17 1995-01-05 Southpower Limited Soft switching circuitry
AU673612B2 (en) * 1993-06-17 1996-11-14 Southpower Limited Soft switching circuitry
EP0748147A2 (en) * 1995-06-05 1996-12-11 Francisco Javier Velasco Valcke Electronic ballast for fluorescent lamps
EP0748147A3 (en) * 1995-06-05 1998-01-28 Francisco Javier Velasco Valcke Electronic ballast for fluorescent lamps
US6007173A (en) * 1996-09-26 1999-12-28 Xerox Corporation Ink status system for a liquid ink printer
US5962984A (en) * 1998-01-12 1999-10-05 Morris W. Mashburn, III High intensity lighting circuit
US6144539A (en) * 1999-01-06 2000-11-07 Osram Sylvania Inc. Arrangement for protecting low-voltage control circuitry from externally applied high voltages, and dimming ballast employing such an arrangement
US20030016191A1 (en) * 2001-03-22 2003-01-23 Canon Kabushiki Kaisha Driving circuit of active matrix type light-emitting element
US6992663B2 (en) * 2001-03-22 2006-01-31 Canon Kabushiki Kaisha Driving circuit of active matrix type light-emitting element
WO2005101514A3 (en) * 2004-04-13 2006-03-30 Gelcore Led matrix current control
US7233258B1 (en) * 2004-04-13 2007-06-19 Gelcore Llc LED matrix current control
US20080232157A1 (en) * 2004-07-07 2008-09-25 Ashok Kumar Kapoor Random access memories with an increased stability of the mos memory cell
US7691702B2 (en) 2004-07-07 2010-04-06 Semi Solutions, Llc Method of manufacture of an apparatus for increasing stability of MOS memory cells
US8247840B2 (en) 2004-07-07 2012-08-21 Semi Solutions, Llc Apparatus and method for improved leakage current of silicon on insulator transistors using a forward biased diode
US20070247213A1 (en) * 2004-07-07 2007-10-25 Kapoor Ashok K Apparatus and Method for Improving Drive-Strength and Leakage of Deep Submicron MOS Transistors
US20080233685A1 (en) * 2004-07-07 2008-09-25 Ashok Kumar Kapoor Method of manufacture of an apparatus for increasing stability of mos memory cells
US20070069306A1 (en) * 2004-07-07 2007-03-29 Kapoor Ashok K Apparatus and Method for Improving Drive-Strength and Leakage of Deep Submicron MOS Transistors
US20090174464A1 (en) * 2004-07-07 2009-07-09 Ashok Kumar Kapoor Apparatus and method for improved leakage current of silicon on insulator transistors using a forward biased diode
US9147459B2 (en) 2004-07-07 2015-09-29 SemiSolutions, LLC Dynamic random access memories with an increased stability of the MOS memory cells
US7586155B2 (en) 2004-07-07 2009-09-08 Semi Solutions Llc. Apparatus and method for improving drive-strength and leakage of deep submicron MOS transistors
US9135977B2 (en) 2004-07-07 2015-09-15 SemiSolutions, LLC Random access memories with an increased stability of the MOS memory cell
US20100134182A1 (en) * 2004-07-07 2010-06-03 Ashok Kumar Kapoor Apparatus and Method for Improving Drive-Strength and Leakage of Deep Submicron MOS Transistors
US20100046312A1 (en) * 2004-07-07 2010-02-25 Ashok Kumar Kapoor Dynamic and Non-Volatile Random Access Memories with an Increased Stability of the MOS Memory Cells
US7683433B2 (en) * 2004-07-07 2010-03-23 Semi Solution, Llc Apparatus and method for improving drive-strength and leakage of deep submicron MOS transistors
US8048732B2 (en) * 2004-07-07 2011-11-01 Semi Solutions, Llc Method for reducing leakage current and increasing drive current in a metal-oxide semiconductor (MOS) transistor
US7898297B2 (en) 2005-01-04 2011-03-01 Semi Solution, Llc Method and apparatus for dynamic threshold voltage control of MOS transistors in dynamic logic circuits
US20070229145A1 (en) * 2005-01-04 2007-10-04 Kapoor Ashok K Method and Apparatus for Dynamic Threshold Voltage Control of MOS Transistors in Dynamic Logic Circuits
US7651905B2 (en) 2005-01-12 2010-01-26 Semi Solutions, Llc Apparatus and method for reducing gate leakage in deep sub-micron MOS transistors using semi-rectifying contacts
US20060151842A1 (en) * 2005-01-12 2006-07-13 Kapoor Ashok K Apparatus and method for reducing gate leakage in deep sub-micron MOS transistors using semi-rectifying contacts
US7863689B2 (en) 2006-09-19 2011-01-04 Semi Solutions, Llc. Apparatus for using a well current source to effect a dynamic threshold voltage of a MOS transistor
US20090206380A1 (en) * 2006-09-19 2009-08-20 Robert Strain Apparatus and method for using a well current source to effect a dynamic threshold voltage of a mos transistor
US7911813B2 (en) * 2008-07-21 2011-03-22 System General Corp. Offline synchronous rectifying circuit with sense transistor for resonant switching power converter
US20100014324A1 (en) * 2008-07-21 2010-01-21 System General Corp. Offline synchronous rectifying circuit with sense transistor for resonant switching power converter
US20130049705A1 (en) * 2010-10-13 2013-02-28 Shindengen Electric Manufacturing Co., Ltd. Regulator, battery charging apparatus and battery charging system
US20130169218A1 (en) * 2010-10-13 2013-07-04 Shindengen Electric Manufacturing Co., Ltd. Regulator, Battery Charging Apparatus and Battery Charging System
CN103283134A (en) * 2010-10-13 2013-09-04 新电元工业株式会社 Regulator, battery charging apparatus, and battery charging system
US20150137690A1 (en) * 2012-06-14 2015-05-21 Jiun-Chau Tzeng Power supply module for energy saving lamp
US10398004B1 (en) * 2018-07-06 2019-08-27 Elb Electronics, Inc. LED fluorescent lamp emulator circuitry
US10470272B1 (en) * 2018-07-06 2019-11-05 Elb Electronics, Inc. LED fluorescent lamp emulator circuitry
US11265988B2 (en) * 2018-07-06 2022-03-01 Elb Electronics, Inc. LED fluorescent lamp emulator circuitry

Similar Documents

Publication Publication Date Title
US3921035A (en) Solid state switching circuit
US3265930A (en) Current level switching apparatus for operating electric discharge lamps
US4414492A (en) Electronic ballast system
US4184128A (en) High efficiency push-pull inverters
US3681654A (en) Light-regulating power supply circuit for gaseous discharge lamp
US4613934A (en) Power supply for gas discharge devices
US3222572A (en) Apparatus for operating electric discharge devices
JPS5916719B2 (en) discharge lamp starting device
KR840009024A (en) Control circuit for gas discharge lamp
US3691404A (en) Variable duty cycle control circuit
US4051411A (en) Discharge lamp operating circuit
US4614897A (en) Switching circuit
US4514679A (en) Secondary switch controller circuit for power supply
US3801867A (en) Direct current energization of gaseous discharge
US4441087A (en) High efficiency inverter & ballast circuits
CA1091290A (en) Discharge lamp operating circuit
US4092564A (en) Discharge lamp operating circuit
US4858099A (en) Resonant inverter
US4492881A (en) Stored charge inverter circuit
US3343104A (en) Gate turn-off device driving a power switching semiconductor device
US4947079A (en) Notch cutting circuit with minimal power dissipation
EP0063168A1 (en) High pressure discharge lamp apparatus
CN1085695A (en) The drive circuit of flyback converter with switching transistors in bridge arrangement
CA1115339A (en) Discharge lamp operating circuit
US3585404A (en) Solid state electronic ac switching device

Legal Events

Date Code Title Description
AS Assignment

Owner name: WIDE-LITE INTERNATIONAL CORPORATION, P.O. BOX 606,

Free format text: ASSIGNS THE ENTIRE INTEREST. SUBJECT TO AGREEMENT DATED JUNE 30,1983;ASSIGNOR:ESQUIRE, INC.;REEL/FRAME:004190/0815

Effective date: 19830916