US3920528A - Bright acid zinc plating method and electrolyte - Google Patents

Bright acid zinc plating method and electrolyte Download PDF

Info

Publication number
US3920528A
US3920528A US409694A US40969473A US3920528A US 3920528 A US3920528 A US 3920528A US 409694 A US409694 A US 409694A US 40969473 A US40969473 A US 40969473A US 3920528 A US3920528 A US 3920528A
Authority
US
United States
Prior art keywords
electrolyte
zinc
brightener
acid
set forth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US409694A
Inventor
Gunter Voss
Helga Hoffmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Pharma AG
Original Assignee
Schering AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schering AG filed Critical Schering AG
Priority to US409694A priority Critical patent/US3920528A/en
Application granted granted Critical
Publication of US3920528A publication Critical patent/US3920528A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc

Definitions

  • ABSTRACT Bright zinc electrodeposits are obtained at high current densities from aqueous, acid electrolytes containing zinc ions, inert alkali metal salts of strong mineral acids for improving conductivity, and a brightener which includes a small amount of an acid having a carboxyl group or a sulfo group attached directly or through a lower alkylene, vinyl, carbonyl, or phenylene group to the heterocyclic ring of pyridine, quinoline, isoquinoline, pyrrol, piperidine, pyrrolidine, or pyrrolidone.
  • the electrolytes are free from significant amounts of complexing agents that would impede precipitation of the zinc ions at weakly alkaline pH so that the electrolytes do not present a waste disposal problem.
  • Acid zinc baths are much less toxic than conventional alkaline zinc plating electrolytes and preferred for this reason where the disposal of waste electrolyte presents an environmental problem.
  • the knownacid zinc plating baths do not produce bright electrodeposits unless they contain, complexing agents for zinc.
  • complexing agents impede the removal of zinc ions from waste electrolyte by precipitation in the weakly alkaline-pH range, and high concentrations of ammonium salts which may replace stronger complexing agents, are themselves toxic to aquatic life and are not readily removed from waste electrolyte.
  • Another important object of the invention is the provision of zinc plating baths from which bright zinc can be deposited at high current densities with good adhesion to all common conductive substrates.
  • the invention provides an acid zinc plating electrolyte of the type including a source of zinc ions, an inert salt for improving the conductivity of the electrolyte, and a brightener.
  • the brightener comprises an effective amount, normally between 0.01 and l grams per liter, of a brightening agent of the formula wherein is the heterocyclic ring of pyridine, quinoline, isoquinoline, pyrrol, piperidine, pyrrolidine, or pyrrolidone,
  • X is hydrogen, carboxyl, lower alkyl, or vinyl
  • Y is hydrogen, hydroxyl, methyl, or methoxy
  • ' Z is hydrogen or methyl
  • a secondary brightener conventional in itself, such as a compound having a carbonyl group directly attached to an aromatic ring, as exemplified by acetophenone, benzalacetone, benzoylacetone, 3-acetylcoumarin, 3-acetylpyridine, and m-hydroxybenzaldehyde.
  • the secondary brighteners are employed in concentrations which are preferably determined experimentally for each primary brightening agent of the invention. Usually, the concentration of the secondary brightener is between 0.01 to 2.0 g/liter. and the ratio of the primary brightening agent to the secondary brightener is between 1:] and 10:].
  • the preferred source of zinc ions is zinc chloride in a concentration of 30 to 150 g/liter which furnishes l5 to 75 g/liter zinc ions.
  • Boric acid or other weak acids in small amounts have been found to contribute to the performance of the electrolytes of the invention, but not to be critically necessary.
  • Wetting agents are preferably employed as is conventional in this art, and should be non-foaming, but are otherwise not critical as to their specific properties or chemical composition. Their concentration is also noncritical, but normally between 0.1 and 30 g/lite'rs, a concentration of l" to l0 g/liter wetting agent being preferred under most conditions.
  • the electrolytes of the invention are operated at pHv values between 3 and 7, and preferably between 4.5 and 5.5, and at ambient temperature (15 to 35C). a temperature of 20 to 30C being readily maintained in all but tropical climates without heat exchanges.
  • the electrolyte is preferably agitated although cathode rod agitation is also effective. Bright deposits can be obtained over most of the cathode current density range between 0.1 and 20 amps/dm
  • the electrolytes of the invention are suitable for plating in tanks with stationary cathodes, in plating conveyors, and for barrel plating of small objects in bulk.
  • Adhesion to conventionally prepared metallic and other substrates is good, and the electrolytes are particularly useful for plating on cast iron.
  • EXAMPLE 1 Ductile zinc electrodeposits of uniform, good brightness were obtained at ambient'temperature (15 35C) over a current density range from 0.04 to 10 amps/dm from an agitated electrolyte of the following composition:
  • the wetting agent employed was a mixture of anionic surfactants mainly consisting of hydroxyalkyl sulfates and amphoteric, ethoxylated surfactants.
  • the pH value of the electrolyte was kept at 5.0.
  • EXAMPLE 3 Reasonably bright zinc electrodeposits were obtained at current densities ofO to 3 amps/dm from an electrolyte of the following composition:
  • EXAMPLE 4 Fully bright zinc electrodeposits were formed at current densities up to at least 15 amps/dm from an electrolyte consisting of:
  • Zinc chloride I g/liter Potassium chloride 210 Boric acid g 20 Potassium 2.4-dihydroxybenzoate 6.0 Wetting agent (as in Ex. I) 4.0 Benzalacetone 0.2 Pyridine-S-carboxylic acid 0.2
  • Zinc chloride may be replaced by other water soluble zinc salts which furnish the necessary concentration of zinc ions, such as zinc sulfate, zinc acetate, or zinc fluorborate, a zinc ion concentration of to 75 g/liter being generally effective.
  • potassium chloride may be replaced by other neutral and inert alkali metal salts of strong mineral acids such as potassium sulfate and the corresponding sodium salts for improving the conductivity of the electrolyte, as is common practice.
  • the necessary concentrations range from about 50 g/liter to saturation at the operating temperature, an upper limit of 250 g/liter being generally set by practical considerations.
  • Boric acid in the electrolyte may be replaced or supplemented by equally small amounts of carboxylic acids such as acetic acid, benzoic acid, or salicylic acid, and may be omitted if desired.
  • carboxylic acids such as acetic acid, benzoic acid, or salicylic acid
  • the chemical nature of the wetting agent oragents employed is not critical. As is known in this art, it is desirable to reduce the surface tension of the electrolyte and to prevent the adhesion of hydrogen bubblesto the cathode surface.
  • the wetting agent should not cause formation of foam on the electrolyte since the foam may trap hydrogen and oxygen and cause accidents.
  • n l, 2, or 3
  • X is hydrogen, carboxyl, lower alkyl, or vinyl
  • Y is hydrogen, hydroxyl, methyl, or methoxy
  • Z is hydrogen or methyl the electrolyte being substantially free from complexing agents capable of impeding precipitation of said zinc ions from said electrolyte when the electrolyte is made weakly alkaline.
  • said brightener further comprising an effective amount of a sec- 6 ondary brightener selected from the group consisting of acetophenone, benzalacetone, benzoylacetone, 3-acetyl-coumarin, 3-acetylpyridine, and m-hydroxybenzaldehyde.
  • a sec- 6 ondary brightener selected from the group consisting of acetophenone, benzalacetone, benzoylacetone, 3-acetyl-coumarin, 3-acetylpyridine, and m-hydroxybenzaldehyde.
  • the amount of said secondary brightener being between 0.0l and 2.0 grams per liter.
  • the amount of said brightening agent being between 0.1 and L0 gram per liter.
  • a method of producing a bright electrodeposit of zinc on a conductive substrate which comprises making said substrate the cathode in an aqueous electrolyte at pH 3.0 to 7.0 and a temperature of 15 to 35C, said electolyte containing 15 to grams per liter zinc ions, at least 50 grams per liter of an inert alkali metal salt of a strong mineral acid, and an effective amount ofa brightening agent of the formula ing agents capable of impeding precipitation of said zinc ions from said electrolyte when the electrolyte is made weakly alkaline.
  • concentration of said brightening agent is between 0.01 and 10 grams per liter.
  • said electrolyte further contains an amount of a secondary brightener sufficient to enhance the brightening effect of said brightening agent, said secondary brightener being a member of the group consisting of acetophenone, benzalacetone, benzolyacetone, 3-acetyl-coumarin, 3-acetylpyridine, and m-hydroxybenzaldehyde.
  • a method as set forth inclaim 8 wherein the amount of said secondary brightener in said electrolyte is between 0.01 and 2.0 grams per liter, and the weight ratio of said brightening agent to said secondary brightener is between 1:1 and 10:1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

Bright zinc electrodeposits are obtained at high current densities from aqueous, acid electrolytes containing zinc ions, inert alkali metal salts of strong mineral acids for improving conductivity, and a brightener which includes a small amount of an acid having a carboxyl group or a sulfo group attached directly or through a lower alkylene, vinyl, carbonyl, or phenylene group to the heterocyclic ring of pyridine, quinoline, isoquinoline, pyrrol, piperidine, pyrrolidine, or pyrrolidone. The electrolytes are free from significant amounts of complexing agents that would impede precipitation of the zinc ions at weakly alkaline pH so that the electrolytes do not present a waste disposal problem.

Description

[United States Patent [191 Voss et .al.
[ Nov. 18, 1975 "[5 BRIGHT ACID ZINC PLATING METHOD AND ELECTROLYTE [75] Inventors: Gunter Voss; Helga Hoffmann, both of Berlin, Germany [731' Assignee: Schering AG, Berlin, Germany 22 Filed: o1."25, 1973 21 Appl. No.: 409,694
Primary ExaminerG. L, Kaplan Attorney, Agent, or Firm.loseph F. Padlon [57], ABSTRACT Bright zinc electrodeposits are obtained at high current densities from aqueous, acid electrolytes containing zinc ions, inert alkali metal salts of strong mineral acids for improving conductivity, and a brightener which includes a small amount of an acid having a carboxyl group or a sulfo group attached directly or through a lower alkylene, vinyl, carbonyl, or phenylene group to the heterocyclic ring of pyridine, quinoline, isoquinoline, pyrrol, piperidine, pyrrolidine, or pyrrolidone. The electrolytes are free from significant amounts of complexing agents that would impede precipitation of the zinc ions at weakly alkaline pH so that the electrolytes do not present a waste disposal problem.
9 Claims, No Drawings I I This invention ,zinc, and particularly to a method of plating bright zinc BRIGHT ACID ZINC PLATING METHOD AND ELECTROLYTE relates to the electrodeposition of coatings on conductive substrates from acid electrolytes and to electrolytes for use in the method.
Acid zinc baths are much less toxic than conventional alkaline zinc plating electrolytes and preferred for this reason where the disposal of waste electrolyte presents an environmental problem. However, the knownacid zinc plating baths do not produce bright electrodeposits unless they contain, complexing agents for zinc. Such complexing agents impede the removal of zinc ions from waste electrolyte by precipitation in the weakly alkaline-pH range, and high concentrations of ammonium salts which may replace stronger complexing agents, are themselves toxic to aquatic life and are not readily removed from waste electrolyte.
It is an object of the invention to permit the production of bright zinc electrodeposits from electrolytes which can be released'safely into sewers or streams after precipitation :of their zinc content as zinc hydroxide in a simple manner.
Another important object of the invention is the provision of zinc plating baths from which bright zinc can be deposited at high current densities with good adhesion to all common conductive substrates.
With these objects and others in view, the invention provides an acid zinc plating electrolyte of the type including a source of zinc ions, an inert salt for improving the conductivity of the electrolyte, and a brightener. According to the invention, the brightener comprises an effective amount, normally between 0.01 and l grams per liter, of a brightening agent of the formula wherein is the heterocyclic ring of pyridine, quinoline, isoquinoline, pyrrol, piperidine, pyrrolidine, or pyrrolidone,
X is hydrogen, carboxyl, lower alkyl, or vinyl,
Y is hydrogen, hydroxyl, methyl, or methoxy, and
' Z is hydrogen or methyl.
While electrolytes containing only the heterocyclic acids mentioned above produce zinc electrodeposits of good brightness, particularly in concentrations of 0. l to 1.0 g per liter, even greater brightness and a good levelling effect can be achieved by the use of a secondary brightener, conventional in itself, such as a compound having a carbonyl group directly attached to an aromatic ring, as exemplified by acetophenone, benzalacetone, benzoylacetone, 3-acetylcoumarin, 3-acetylpyridine, and m-hydroxybenzaldehyde.
The secondary brighteners are employed in concentrations which are preferably determined experimentally for each primary brightening agent of the invention. Usually, the concentration of the secondary brightener is between 0.01 to 2.0 g/liter. and the ratio of the primary brightening agent to the secondary brightener is between 1:] and 10:].
The preferred source of zinc ions is zinc chloride in a concentration of 30 to 150 g/liter which furnishes l5 to 75 g/liter zinc ions. Boric acid or other weak acids in small amounts have been found to contribute to the performance of the electrolytes of the invention, but not to be critically necessary.
Wetting agents are preferably employed as is conventional in this art, and should be non-foaming, but are otherwise not critical as to their specific properties or chemical composition. Their concentration is also noncritical, but normally between 0.1 and 30 g/lite'rs, a concentration of l" to l0 g/liter wetting agent being preferred under most conditions.
The electrolytes of the invention are operated at pHv values between 3 and 7, and preferably between 4.5 and 5.5, and at ambient temperature (15 to 35C). a temperature of 20 to 30C being readily maintained in all but tropical climates without heat exchanges. The electrolyte is preferably agitated although cathode rod agitation is also effective. Bright deposits can be obtained over most of the cathode current density range between 0.1 and 20 amps/dm The electrolytes of the invention are suitable for plating in tanks with stationary cathodes, in plating conveyors, and for barrel plating of small objects in bulk.
Adhesion to conventionally prepared metallic and other substrates is good, and the electrolytes are particularly useful for plating on cast iron.
The following Examples are further illustrative of the invention.
EXAMPLE 1 Ductile zinc electrodeposits of uniform, good brightness were obtained at ambient'temperature (15 35C) over a current density range from 0.04 to 10 amps/dm from an agitated electrolyte of the following composition:
Zinc chloride g/liter Potassium chloride 2l0 Boric acid 20 Potassium benzoate 2.0 Wetting agent 3.0 Pyridine-3-acetic acid 0.4
The wetting agent employed was a mixture of anionic surfactants mainly consisting of hydroxyalkyl sulfates and amphoteric, ethoxylated surfactants. The pH value of the electrolyte was kept at 5.0. A
Brightness was maintained over all practical deposit thickness values.
EXAMPLE 2 Mirror-bright zinc electrodeposits were obtained at ambient temperature at cathode current densities of 0.] to 8 amps/dm from an electrolyte consistingof:
Zinc chloride 70 g/liter Potassium chloride 210 Boric acid 20 Benzoyl acetone 0.2 Wetting agent (as in Ex. I 4.0 Pyridine-3-sulfonic acid 0.3
EXAMPLE 3 Reasonably bright zinc electrodeposits were obtained at current densities ofO to 3 amps/dm from an electrolyte of the following composition:
Zinc chloride 34 g/liter Potassium chloride l4) Boric acid 20 Potassium henzoate 8 I Wetting agent (as in Ex. 1) 4.0 Benzalacetone 0.2
When ,0.l g/liter pyridine-3-carboxylic acid was added to the electrolyte brightness was improved substantially, and the fully'bright range was extended to 8 amps/dm without loss of brightness at very low cathode current densities.
EXAMPLE 4 Fully bright zinc electrodeposits were formed at current densities up to at least 15 amps/dm from an electrolyte consisting of:
Zinc chloride I g/liter Potassium chloride 210 Boric acid g 20 Potassium 2.4-dihydroxybenzoate 6.0 Wetting agent (as in Ex. I) 4.0 Benzalacetone 0.2 Pyridine-S-carboxylic acid 0.2
Brightness was not impaired when the zinc deposit was made several thousandths of an inch thick.
EXAMPLE An electrolyte of the composition:
*Zinc chloride 90 g/liter Potassium chloride 350 Boric acid Potassium salicylate 7.5 Wetting agent (as in Ex. I 4.0 Benzoylacetone 0.3
EXAMPLE 6 g/liler Zinc chloride Potassium chloride 210 Boric acid 20 Wetting'agcnt (as in Ex. 1) 5.0 3-Acetylpyridine 0.5
When the current density was raised to 5.5 ampsldm zinc was deposited as a greyish-black powder which adhered poorly to a properly prepared steel cathode.
When 0.4 g/liter pyridine-3-sulfonic acid was added to the electrolyte, fully bright zinc electrodeposits showing excellent adhesion were produced at cathode current densities of i5 amps/dm and even more, producing a zinc coating at a growth rate of 4 microns per minute.
Pyridine-3-acetie acid, pyridine-3-sulfonic acid, and pyridine-3-carboxylic acid were employed in the six Examples for illustration of best modes of carrying out this invention, and are preferred brighteners of the invention at this time because they are readily available at low cost. However, substantially identical results were obtained by equal weights of any one or mixtures of the following acids:
Pyridine-2,6-dicarboxylic acid Pyridine-3,4-dicarboxylic acid Pyridine-3,S-dicarboxylic acid Pyridine-4-carboxylic acid Pyridine-3-propionic acid Pyridine-2,3-dicarboxylic acid 4-Hydroxy-pyridine-2,6-dicarboxylic acid 2-Methylpyridine-5-carboxylic acid 4-Methylpyridine-3-carboxylic acid 4-Ethylpyridine-3-carboxylic acid 2,4-Dimethylnicotinic acid 2,6-Dimethylnicotinic acid 2,3,4-Trimethylpyridine-5-carboxylic acid I 2-Vinylnicotinic acid B-3-Pyridylacrylic acid 2B-Pyridyl-benzoic acid Pyridine-3-carbonylacetic acid a-6-Methyl-pyridyl(3) -acrylic acid -Hydroxynicotinic acid 4-Hydroxy-2,6-dimethyl-nicotinic acid 4-Hydroxypyridine-3-carboxylic acid Quinoline-3-carboxylic acid Quinoline-4-carboxylic acid Piperidine-Z-carboxylic acid Piperidine-4-carboxylic acid L-Pyrrolidone-2-carboxylic acid L-Pyrrolidine-Z-carboxylic acid lsoquinoline-4-carboxylic acid Pyrrol-a-carboxylic acid I The preferred conventional brighteners which enhance the effect of the compounds of this invention are aromatic carbonyl compounds, but not necessarily benzol acetone, benzalacet'one, or acetyl pyridine exemplified above. Acetophenone, 3-acetylcoumarin, and mhydroxybenzald'ehyde are equally effective and merely representative of this class of compounds.
Zinc chloride may be replaced by other water soluble zinc salts which furnish the necessary concentration of zinc ions, such as zinc sulfate, zinc acetate, or zinc fluorborate, a zinc ion concentration of to 75 g/liter being generally effective.
Similarly, potassium chloride may be replaced by other neutral and inert alkali metal salts of strong mineral acids such as potassium sulfate and the corresponding sodium salts for improving the conductivity of the electrolyte, as is common practice. The necessary concentrations range from about 50 g/liter to saturation at the operating temperature, an upper limit of 250 g/liter being generally set by practical considerations.
Boric acid in the electrolyte may be replaced or supplemented by equally small amounts of carboxylic acids such as acetic acid, benzoic acid, or salicylic acid, and may be omitted if desired.
The chemical nature of the wetting agent oragents employed is not critical. As is known in this art, it is desirable to reduce the surface tension of the electrolyte and to prevent the adhesion of hydrogen bubblesto the cathode surface. The wetting agent should not cause formation of foam on the electrolyte since the foam may trap hydrogen and oxygen and cause accidents.
It should be understood, therefore, that the foregoing disclosure relates only to preferred embodiments of the invention, and that it is intended to cover all changes and modifications of the examples of the invention herein chosen for the purpose of the disclosure which do not constitute departures from the spirit and scope of the invention set forth in the appended claims.
A What is claimed is:
1. In an acid zinc electroplating electrolyte including a source of zinc ions, an inert salt for improving the conductivity of the electrolyte, and a brightener, the improvement in the brightener which consists essentially of an effective amount of a brightening agent of the formula I wherein is the heterocyclic ring of pyridine, quinoline, isoquinoline, pyrrol, pipe ridine, pyrrolidine, or pyrrolidone,
n is l, 2, or 3,
X is hydrogen, carboxyl, lower alkyl, or vinyl,
Y is hydrogen, hydroxyl, methyl, or methoxy, and
Z is hydrogen or methyl the electrolyte being substantially free from complexing agents capable of impeding precipitation of said zinc ions from said electrolyte when the electrolyte is made weakly alkaline.
2. in an electrolyte as set forth in claim 1, said brightener further comprising an effective amount of a sec- 6 ondary brightener selected from the group consisting of acetophenone, benzalacetone, benzoylacetone, 3-acetyl-coumarin, 3-acetylpyridine, and m-hydroxybenzaldehyde.
3. In an electrolyte as set forth in claim 2, the amount of said secondary brightener being between 0.0l and 2.0 grams per liter.
4. In an electrolyte as set forth in claim 1, the amount of said brightening agent being between 0.01 and 10 grams per liter.
5. In an electrolyte as set forth in claim 1, the amount of said brightening agent being between 0.1 and L0 gram per liter.
6. A method of producing a bright electrodeposit of zinc on a conductive substrate which comprises making said substrate the cathode in an aqueous electrolyte at pH 3.0 to 7.0 and a temperature of 15 to 35C, said electolyte containing 15 to grams per liter zinc ions, at least 50 grams per liter of an inert alkali metal salt of a strong mineral acid, and an effective amount ofa brightening agent of the formula ing agents capable of impeding precipitation of said zinc ions from said electrolyte when the electrolyte is made weakly alkaline.
7. A method as set forth in claim 6, wherein the concentration of said brightening agent is between 0.01 and 10 grams per liter.
8. A method as set forth in claim 7, wherein said electrolyte further contains an amount of a secondary brightener sufficient to enhance the brightening effect of said brightening agent, said secondary brightener being a member of the group consisting of acetophenone, benzalacetone, benzolyacetone, 3-acetyl-coumarin, 3-acetylpyridine, and m-hydroxybenzaldehyde.
9. A method as set forth inclaim 8, wherein the amount of said secondary brightener in said electrolyte is between 0.01 and 2.0 grams per liter, and the weight ratio of said brightening agent to said secondary brightener is between 1:1 and 10:1.

Claims (9)

1. IN AN ACID ZINC ELECTROPLATING ELECTROLYTE INCLUDING A SOURCE OF ZINC IONS, AN INERT SALT FOR IMPROVING THE CONDUCTIVITY OF THE ELECTROLYTE, AND A BRIGHTENER, THE IMPROVEMENT IN THE BRIGHTENER WHICH CONSISTS ESSENTIALLY OF AN EFFECTIVE AMOUNT OF A BRIGHTENING AGENT OF THE FORMULA
2. In an electrolyte as set forth in claim 1, said brightener further comprising an effective amount of a secondary brightener selected from the group consisting of acetophenone, benzalacetone, benzoylacetone, 3-acetyl-coumarin, 3-acetylpyridine, and m-hydroxybenzaldehyde.
3. In an electrolyte as set forth in claim 2, the amount of said secondary brightener being between 0.01 and 2.0 grams per liter.
4. In an electrolyte as set forth in claim 1, the amount of said brightening agent being between 0.01 and 10 grams per liter.
5. In an electrolyte as set forth in claim 1, the amount of said brightening agent being between 0.1 and 1.0 gram per liter.
6. A method of producing a bright electrodeposit of zinc on a conductive substrate which comprises making said substrate the cathode in an aqueous electrolyte at pH 3.0 to 7.0 and a temperature of 15* to 35*C, said electolyte containing 15 to 75 grams per liter zinc ions, at least 50 grams per liter of an inert alkali metal salt of a strong mineral acid, aNd an effective amount of a brightening agent of the formula
7. A method as set forth in claim 6, wherein the concentration of said brightening agent is between 0.01 and 10 grams per liter.
8. A method as set forth in claim 7, wherein said electrolyte further contains an amount of a secondary brightener sufficient to enhance the brightening effect of said brightening agent, said secondary brightener being a member of the group consisting of acetophenone, benzalacetone, benzolyacetone, 3-acetyl-coumarin, 3-acetylpyridine, and m-hydroxybenzaldehyde.
9. A method as set forth in claim 8, wherein the amount of said secondary brightener in said electrolyte is between 0.01 and 2.0 grams per liter, and the weight ratio of said brightening agent to said secondary brightener is between 1:1 and 10:1.
US409694A 1973-10-25 1973-10-25 Bright acid zinc plating method and electrolyte Expired - Lifetime US3920528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US409694A US3920528A (en) 1973-10-25 1973-10-25 Bright acid zinc plating method and electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US409694A US3920528A (en) 1973-10-25 1973-10-25 Bright acid zinc plating method and electrolyte

Publications (1)

Publication Number Publication Date
US3920528A true US3920528A (en) 1975-11-18

Family

ID=23621599

Family Applications (1)

Application Number Title Priority Date Filing Date
US409694A Expired - Lifetime US3920528A (en) 1973-10-25 1973-10-25 Bright acid zinc plating method and electrolyte

Country Status (1)

Country Link
US (1) US3920528A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4070256A (en) * 1975-06-16 1978-01-24 Minnesota Mining And Manufacturing Company Acid zinc electroplating bath and process
US4075066A (en) * 1977-01-27 1978-02-21 R. O. Hull & Company, Inc. Electroplating zinc, ammonia-free acid zinc plating bath therefor and additive composition therefor
US4170526A (en) * 1978-01-16 1979-10-09 Oxy Metal Industries Corporation Electroplating bath and process
EP1300488A2 (en) * 2001-10-02 2003-04-09 Shipley Co. L.L.C. Plating path and method for depositing a metal layer on a substrate
CN110965086A (en) * 2019-11-21 2020-04-07 武汉奥邦表面技术有限公司 Acidic zinc plating impurity removing agent and application thereof
CN111621819A (en) * 2020-07-13 2020-09-04 广州三孚新材料科技股份有限公司 Cyanide-free silver plating brightener and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3766024A (en) * 1971-11-16 1973-10-16 Nippon Kokan Kk Acidic bath for electroplating zinc
US3769184A (en) * 1972-05-23 1973-10-30 Du Pont Acid zinc electroplating
US3778359A (en) * 1972-03-08 1973-12-11 F Popescu Zinc electroplating baths and process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3766024A (en) * 1971-11-16 1973-10-16 Nippon Kokan Kk Acidic bath for electroplating zinc
US3778359A (en) * 1972-03-08 1973-12-11 F Popescu Zinc electroplating baths and process
US3769184A (en) * 1972-05-23 1973-10-30 Du Pont Acid zinc electroplating

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4070256A (en) * 1975-06-16 1978-01-24 Minnesota Mining And Manufacturing Company Acid zinc electroplating bath and process
US4075066A (en) * 1977-01-27 1978-02-21 R. O. Hull & Company, Inc. Electroplating zinc, ammonia-free acid zinc plating bath therefor and additive composition therefor
US4170526A (en) * 1978-01-16 1979-10-09 Oxy Metal Industries Corporation Electroplating bath and process
EP1300488A2 (en) * 2001-10-02 2003-04-09 Shipley Co. L.L.C. Plating path and method for depositing a metal layer on a substrate
EP1300488A3 (en) * 2001-10-02 2005-03-02 Shipley Co. L.L.C. Plating path and method for depositing a metal layer on a substrate
CN110965086A (en) * 2019-11-21 2020-04-07 武汉奥邦表面技术有限公司 Acidic zinc plating impurity removing agent and application thereof
CN111621819A (en) * 2020-07-13 2020-09-04 广州三孚新材料科技股份有限公司 Cyanide-free silver plating brightener and preparation method thereof
CN111621819B (en) * 2020-07-13 2021-04-20 广州三孚新材料科技股份有限公司 Cyanide-free silver plating brightener and preparation method thereof

Similar Documents

Publication Publication Date Title
CA2342219C (en) Aqueous alkaline cyanide-free bath for the galvanic deposition of zinc or zinc alloy coatings
US4488942A (en) Zinc and zinc alloy electroplating bath and process
US4384930A (en) Electroplating baths, additives therefor and methods for the electrodeposition of metals
WO2003071001A1 (en) Electroplating solution containing organic acid complexing agent
US4425198A (en) Brightening composition for zinc alloy electroplating bath and its method of use
US4036709A (en) Electroplating nickel, cobalt, nickel-cobalt alloys and binary or ternary alloys of nickel, cobalt and iron
GB2062009A (en) Electroplacting Bath and Process
US3920528A (en) Bright acid zinc plating method and electrolyte
US4543166A (en) Zinc-alloy electrolyte and process
US3812566A (en) Composite nickel iron electroplate and method of making said electroplate
US4767507A (en) Gold electroplating bath
KR102399444B1 (en) Zinc-nickel-iron ternary alloys and alkaline electrolytes for plating these alloys
JPS60169588A (en) Acidic zinc plating bath, acidic zinc alloy plating bath and process
GB2179676A (en) Zinc alloy electroplating
US3821095A (en) Zinc electroplating process and electrolyte therefor
US4170526A (en) Electroplating bath and process
US3919056A (en) Zinc plating process and electrolytes therefor
US4252619A (en) Brightener for zinc electroplating solutions and process
US4543167A (en) Control of anode gas evolution in trivalent chromium plating bath
US4466865A (en) Trivalent chromium electroplating process
EP0225422A1 (en) Alkaline baths and methods for electrodeposition of palladium and palladium alloys
US4521282A (en) Cyanide-free copper electrolyte and process
CA1081650A (en) Additive for improved electroplating process
CA1180677A (en) Bath and process for high speed nickel electroplating
US4366036A (en) Additive and alkaline zinc electroplating bath and process using same