US3919989A - Fuel injection pumping apparatus - Google Patents
Fuel injection pumping apparatus Download PDFInfo
- Publication number
- US3919989A US3919989A US468509A US46850974A US3919989A US 3919989 A US3919989 A US 3919989A US 468509 A US468509 A US 468509A US 46850974 A US46850974 A US 46850974A US 3919989 A US3919989 A US 3919989A
- Authority
- US
- United States
- Prior art keywords
- valve
- cylinder
- fuel
- displacement piston
- piston
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 106
- 238000002347 injection Methods 0.000 title claims abstract description 29
- 239000007924 injection Substances 0.000 title claims abstract description 29
- 238000005086 pumping Methods 0.000 title claims abstract description 14
- 238000006073 displacement reaction Methods 0.000 claims abstract description 72
- 239000013078 crystal Substances 0.000 claims abstract description 24
- 238000002485 combustion reaction Methods 0.000 claims abstract description 17
- 239000012530 fluid Substances 0.000 claims abstract description 11
- 239000007921 spray Substances 0.000 claims description 9
- 238000005553 drilling Methods 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M59/00—Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
- F02M59/02—Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
- F02M59/10—Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
- F02M59/105—Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive hydraulic drive
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M47/00—Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M2200/00—Details of fuel-injection apparatus, not otherwise provided for
- F02M2200/21—Fuel-injection apparatus with piezoelectric or magnetostrictive elements
Definitions
- a fuel injection pumping apparatus for supplying fuel to an internal combustion engine includes a displacement piston which is contained in a cylinder. Fluid under pressure is supplied to one end of the cylinder from an accumulator to effect displacement of the piston to force fuel from the other end of the cylinder through an outlet.
- first and second valves are provided to control the application of fluid under pressure from the accumulator. The valves are operated by a stack of piezo-electric crystals.
- This invention relates tofuel injection pumping apparatus for supplying fuel to an internal combustion engine.
- the object of the invention is to provide such an apparatus in a simple and convenient form.
- FIG. 1 shows one example of a fuel injection pumping apparatus in accordance with the invention
- FIG. 2 shows a further example.
- FIG. 3 shows an alternative form of control valve
- FIG. 4 shows a modification to the control valves shown in FIGS. 1 and 2.
- an accumulator to which fuel is supplied under pressure by means of a pump 11.
- the fuel is stored in the accumulator at a pressure sufficient as will be explained, to displace fuel into the combustion space of an associated engine.
- a displacement member 12 which is slidable within a cylinder 13.
- One end of the cylinder is enlarged to form a chamber 14, and at this end of the cylinder there is provided a seating with which a shaped portion of the valve member 12 cooperates. In the closed position of the valve member fuel flow through spray orifices 15 into a combustion space of the associated engine is prevented.
- the other end of the cylinder 13 communicates with a passage 16 which opens into a valve chamber 17.
- the first valve includes a valve element 18, which at one end is provided with a head 19 co-operating with a seating defined about the wall of the valve chamber 17.
- the valve member 18 is loaded by means of a coiled compression spring 20 into contact with the seating, and also the space surrounding the spring 20 communicates with the accumulator 10.
- the accumulator In the open position of the first valve as shown, the accumulator is in communication with the passage 16 so' that the displacement piston 12 is urged into contact with its seating.
- the valve member 18 is provided with a transverse drilling communicating with the passage 16 and the transverse drilling communicates with an axial drilling extending to the end of the valve member remote from the head 19. At this end of the valve member 18, the
- valve chamber 17 is enlarged, and the enlarged portion of the valve chamber communicates by way of a passage 21 with a drain.
- a second valve is provided and this comprises a valve member 22 which is shaped to co-operate with the end of the valve member 18 out of which breaks the axial drilling.
- the valve member 22 when it is in contact with the valve 'member 18 prevents flow of fuel through the axial drilling and along the passage 21.
- the valve member 22 is urged into contact with the valve member 18 by means of an actuator piston 23, and the position of this piston is determined by a stack 24 of piezo-electric crystals.
- the stack of crystals is connected to the piston 23 by means of a lever 25.
- the supply of electrical energy to the stack of crystals is by way of a control circuit 26a which receives a 7 control signal from the associated engine, and also from a sensing coil 27 positioned at the end of the cylinder l3 remote from the chamber 14.
- the chamber 14 communicates by way of a non-return valve 28 with a source of fuel at a low pressure.
- the stack of crystals is de-energised thereby allowing the head of the valve member 18 to move on to' its seating under the action of the spring 20.
- the first valve is closed and the connection between the accumulator l0 and a passage 16 is broken.
- the second valve is opened because the valve member 22 is allowed to move away from the valve member 18.
- fuel is supplied to the chamber 14 past the nonreturn valve 28 and the displacement piston 12 is moved by the pressure of fuel in the chamber 11 towards the other end of the cylinder 13.
- fuel is displaced through the axial drilling, and flows to drain by way of the passage 21.
- the extent of movement of the displacement piston is sensed by the sensing coil 27 and at a predetermined position, the control circuit 26a partially energises the stack of crystals 24. When this occurs, the valve member 22 is moved into engagement with the valve member 18 and the second valve is effectively closed. The movement of the displacement piston is therefore halted.
- the stack 24 of crystals acts against a piston 26 which is located within a cylinder in communication with a further cylinder containing a piston 27a which acts against a spring loaded plate 28 bearing against the valve member 22.
- Fuel is supplied via non-return valve 29 to keep the space between piston 26 and 27a full of fuel.
- the displacement piston is indicated at 30, and as in the example of FIG. 1, one end of the cylinder containing the displacement piston communicates with a low pressure fuel supply passage 31 by way of a valve 32. In this case, however, the valve 32 is pressure actuated as will be explained.
- the other end of the cylinder containing the displacement piston communicates with the passage 16, and the sensing coil 27 is provided as in the previous example.
- fuel displaced from the one end of the cylinder containing the displacement piston passes by way of a passage 33 to an injection valve 34.
- This valve is of conventional form, that is to say it has a stepped external periphery, and the pressure of fuel supplied to the passage 33 acts against the step to lift the valve member 34 from a seating, thereby to allow flow of fuel through orifices 35 into the cornbustion space of the associated engine.
- a push piece 36 located intermediate the displacement piston and the valve member 34 is a push piece 36 and the end of the cylinder which contains the wider portion of the valve member 34 communicates with the passage 31.
- the valve 32 controls the flow of fuel from the passage 31 to said one end of the cylinder containing the displacement piston 30, and it is maintained in a closed position during delivery of fuel to the engine by the fact that accumulator pressure is applied to the wider end of the valve member constituting the valve 32.
- the piston 27a When the stack 24 of crystals is de-energised, the piston 27a is moved by the action of the spring loaded plate, and as a result, the valve members 22 and 18 move to their alternative positions. In this position of course, the first valve constituted by the valve member 18 is closed so that accumulator pressure is no longer applied to the valve member of the valve 32, and the displacement piston 30. In addition, the second valve is open, and fuel can therefore flow through the passage 31 past the valve 32 to effect movement of the displacement piston, and the displaced fuel from the other end of the cylinder containing the displacement piston flows by way of the passage 16, the axial drilling in the valve member 18 and the passage 21 to drain.
- the extent of movement of the displacement piston 30 is determined as in the previous example, by a signal derived from the sensing coil 27 which passes to the control circuit 26a, and partially energises the stack 24 of crystals. Such energisation produces pressurisation of the liquid between the pistons 26 and 27a and closure of the second valve. This arrests movement of the displacement piston which has now assumed a position removed from the pusher member 36 due to the effect of a relatively light spring disposed between the pusher member 36 and the displacement piston.
- the first valve is opened and accumulator pressure is applied to the valve member of the valve 32 thereby closing the valve and also to the displacement piston 30.
- the example of FIG. 2 has the advantage that flow of fuel through the orifices can only occur when it is required, whereas in the example of FIG. 1, by virtue of the supply of fuel to the chamber 14 from a low pressuresource, a small amount of fuel could be displaced through the orifices 15, if the pressure conditions within the combustion chamber were suitable.
- FIG. 3 there is shown an alternative valve arrangement which can be used in the examples of FIG. 1 or FIG. 2.
- the stack 24 of crystals operates a piston 26 as in the example of FIG. 2, and the pressure of fuel delivered by the piston 26 is applied to a piston 37 which actuates the second valve, the latter being constituted by a valve member 38 having a head 39 which is movable onto a seating to prevent flow of fuel from the passage 16 to member 40 having a head 41 movable onto a seating to prevent the flow of fuel from the accumulator 10 to the passage 16.
- the head 41 is connected to a slidable closure plug 42 which provides for pressure balancing of the valve member 40.
- the valve member is additionally provided with a spring 43 acting to urge the head onto the seating.
- the head 41 of the first valve is lifted from its seating to allow flow of fuel from the accumulator 10 to the passage 16.
- the valve member 39 is held in contact with its seating to prevent flow of fuel from the passage 16 to the passage 21.
- the head 41 is in contact with its seating so that no fuel flows from the accumulator to the passage 16.
- the head 39 is lifted from its seating and the passage 16 communicates with the passage 21.
- FIG. 4 shows a modified form of the control valve which is shown in FIGS. 1 and 2.
- the valve member 18 when in the closed position is acted upon by the spring 20 and also by the accumulator pressure.
- the valve member 45 which corresponds to the valve member 18, is coupled to a piston member 46 by means of a flexible link.
- the piston member is subjected to the accumulator pressure and therefore balances the accumulator pressure acting on' the valve member.
- a further difference lies in the fact that the valve member is fluted so that the fuel passing to the displacement piston flows via the fluted portion.
- the ribs of the fluted portion also serve to guide the movement of the valve member.
- valve member 47 A further difference lies in the construction of the second valve member 47. This is now provided with a central passage 48 communicating with the drain and the two valve members'are movable into engagement to prevent flow of fuel through the passage. Moreover, the valve member is fluid pressure actuated, the valve member replacing the piston member 27a of FIG. 2 for this purpose.
- a fuel injection pumping apparatus for supplying fuel to internal combustion engines and comprising an accumulator in which fuel is stored at high pressure, a cylinder, a displacement piston contained within said cylinder, an outlet communicating with one end of said cylinder, valve means for controlling flow of fuel from a low pressure source to said one end of the cylinder, a first valve positioned intermediate the accumulator and the other end of said cylinder and operable to allow fuel under pressure from the accumulator to act on one end of said displacement piston thereby to cause movement of said piston to displace fuel through said outlet, a second valve through which said other end of the cylinder can be connected to a drain, actuating means for actuating said first and second valves whereby said displacement piston is moved to said one end of the cylinder to displace fuel through the outlet by opening the first valve and closing the second valve, said piston being moved away from said one end of the cylinder by closing the first valve and opening the second valve, sensing means for sensing the extent of movement of the displacement piston away from said one end of the cylinder, and control means
- An apparatus as claimed in claim 1 including an injection valve for controlling the flow of fuel through a spray orifice, said injection valve being mounted within a cylinder and having a narrower end shaped for co-operation with a seating, the narrower end of the injection valve defining with the cylinder in which it is mounted a chamber communicating with said outlet, the wider end of the injection valve communicating with a source of fluid at a pressure lower than the accumulator pressure whereby when said first and second valves are operated the fuel under pressure delivered through said outlet will lift the valve member from its seating to allow flow of fuel through said spray orifice.
- An apparatus as claimed in claim 3 including a push member disposed between the displacement piston and said injection valve whereby the injection valve is urged into contact with the seating to terminate the flow of fuel through the spray orifice at a predetermined position of the displacement piston.
- valve means is responsive to the accumulator pressure applied to said displacement piston, said valve means being closed when accumulator pressure is applied to the displacement piston.
- control means comprises an electronic control circuit.
- sensing means comprises a sensing coil, said sensing coil being positioned about the path of movement of the displacement piston.
- valve members forming said first and second valves are disposed in end to end relationship.
- a fuel injection pumping apparatus for supplying fuel to internal combustion engines and comprising an accumulator in which fuel is stored at high pressure, a cylinder, a displacement piston contained within said cylinder, an outlet communicating with one end of said cylinder, valve means for controlling the flow of fuel from a low pressure source to said one end of the cylinder, a first valve positioned intermediate the accumulator and the other end of said cylinder and operable to allow fuel under pressure from the accumulator to act on one end of said displacement piston thereby to cause movement of said piston to displace fuel through said outlet, a second valve through which said other end of the cylinder can be connected to a drain, actuating means for actuating said first and second valves whereby said displacement piston is moved to said one end of the cylinder to displace fuel through the outlet by opening the first valve and closing the second valve, said piston being moved away from said one end of the cylinder by closing the first valve and opening the second valve, a sensing coil positioned about the path of movement of the displacement piston, said sensing coil providing a signal indicative
- a fuel injection pumping apparatus for supplying fuel to internal combustion engines and comprising an accumulator in which fuel is stored at high pressure, a cylinder, a displacement piston contained within said cylinder, an outlet communicating with one end of said cylinder, valve means for controlling flow of fuel from a low pressure source to said one end of the cylinder, a first valve including a first slidable valve member, said first valve being positioned intermediate the accumulator and the other end of said cylinder and operable to allow fuel under pressure from the accumulator to act on one end of said displacement piston thereby to cause movement of said piston to displace fuel through said outlet, a second valve including a second valve member through which said other end of the cyliner can be connected to a drain, actuating means for actuating said first and second valve members whereby said displacement piston is moved to said one end of the cylinder to displace fuel through the outlet by opening the first valve and closing the second valve, said piston being moved away from said one end of the cylinder by closing the first valve and opening the second valve, sensing means
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Fuel-Injection Apparatus (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB2271773A GB1470166A (en) | 1973-05-12 | 1973-05-12 | Fuel injection pumping apparatus |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3919989A true US3919989A (en) | 1975-11-18 |
Family
ID=10183977
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US468509A Expired - Lifetime US3919989A (en) | 1973-05-12 | 1974-05-09 | Fuel injection pumping apparatus |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US3919989A (enExample) |
| JP (1) | JPS5014922A (enExample) |
| DE (1) | DE2422775A1 (enExample) |
| FR (1) | FR2228953B1 (enExample) |
| GB (1) | GB1470166A (enExample) |
| IT (1) | IT1011420B (enExample) |
Cited By (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3983855A (en) * | 1973-07-12 | 1976-10-05 | C.A.V. Limited | Fuel injection system |
| US4002415A (en) * | 1974-08-13 | 1977-01-11 | C.A.V. Limited | Distributor type fuel injection pumps |
| US4060347A (en) * | 1975-09-16 | 1977-11-29 | Cav Limited | Liquid fuel pumping apparatus |
| US4082481A (en) * | 1976-02-24 | 1978-04-04 | Cav Limited | Fuel injection pumping apparatus |
| US4091784A (en) * | 1975-09-19 | 1978-05-30 | Lucas Industries Limited | Fuel injection systems for internal combustion engines |
| US4244342A (en) * | 1977-12-09 | 1981-01-13 | Lucas Industries Limited | Fuel injection system |
| US4247044A (en) * | 1979-12-26 | 1981-01-27 | General Motors Corporation | Compression operated injector |
| US4300509A (en) * | 1980-10-06 | 1981-11-17 | Ford Motor Company | Fuel injection and control systems |
| US4306680A (en) * | 1980-05-12 | 1981-12-22 | General Motors Corporation | Compression operated injector |
| US4404943A (en) * | 1981-01-27 | 1983-09-20 | Lucas Industries Limited | Fuel system for internal combustion engines |
| US4593658A (en) * | 1984-05-01 | 1986-06-10 | Moloney Paul J | Valve operating mechanism for internal combustion and like-valved engines |
| EP0907017A1 (de) * | 1997-10-02 | 1999-04-07 | Robert Bosch Gmbh | Ventil zum Steuern von Flüssigkeiten |
| US6142747A (en) * | 1998-03-13 | 2000-11-07 | Robert Bosch Gmbh | Fuel pump assembly |
| WO2001023752A1 (de) * | 1999-09-30 | 2001-04-05 | Robert Bosch Gmbh | Hochdruckpumpe |
| US6422211B1 (en) * | 1998-12-29 | 2002-07-23 | Robert Bosch Gmbh | Fuel injection device for internal combustion engines |
| US6464202B1 (en) * | 1999-09-30 | 2002-10-15 | Robert Bosch Gmbh | Valve for controlling liquids |
| US6595436B2 (en) | 2001-05-08 | 2003-07-22 | Cummins Engine Company, Inc. | Proportional needle control injector |
| EP1353058A3 (de) * | 2002-04-11 | 2004-01-21 | VEMAC GmbH & Co.KG | Vergaser für Ottomotor mit einstellbarer Brennstoffdüse |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CH607624A5 (en) * | 1976-05-14 | 1978-09-29 | Walter Spengler | Printer with electrostatic printing ink transfer onto a dielectric substrate |
| JP2671342B2 (ja) * | 1988-01-14 | 1997-10-29 | 富士ゼロックス株式会社 | 静電印刷装置 |
| JP2947516B2 (ja) * | 1988-02-12 | 1999-09-13 | 東芝機械株式会社 | オフセット輪転印刷機 |
| DE19540155C2 (de) * | 1995-10-27 | 2000-07-13 | Daimler Chrysler Ag | Servoventil für eine Einspritzdüse |
| DE19908418C1 (de) * | 1999-02-26 | 2000-10-26 | Siemens Ag | Steuerventil zum Einsatz in einem Speichereinspritzsystem für einen Dieselmotor |
| DE10146756C1 (de) * | 2001-09-22 | 2003-04-24 | Orange Gmbh | Kraftstoffinjektor |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1440913A (en) * | 1919-02-04 | 1923-01-02 | James T Dickson | Injection mechanism for internal-combustion engines |
| US3465732A (en) * | 1967-10-19 | 1969-09-09 | Physics Int Co | Piezoelectric control valve |
| US3516395A (en) * | 1967-02-22 | 1970-06-23 | Sopromi Soc Proc Modern Inject | Fuel injection system for internal combustion engines |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3501099A (en) * | 1967-09-27 | 1970-03-17 | Physics Int Co | Electromechanical actuator having an active element of electroexpansive material |
| DE2012202A1 (de) * | 1970-03-14 | 1971-10-07 | Robert Bosch Gmbh, 7000 Stuttgart | Pumpe Düse zur Kraftstoffeinspritzung für Brennkraftmaschinen |
-
1973
- 1973-05-12 GB GB2271773A patent/GB1470166A/en not_active Expired
-
1974
- 1974-05-09 US US468509A patent/US3919989A/en not_active Expired - Lifetime
- 1974-05-10 DE DE2422775A patent/DE2422775A1/de not_active Ceased
- 1974-05-10 IT IT50904/74A patent/IT1011420B/it active
- 1974-05-10 FR FR7416166A patent/FR2228953B1/fr not_active Expired
- 1974-05-11 JP JP49051799A patent/JPS5014922A/ja active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1440913A (en) * | 1919-02-04 | 1923-01-02 | James T Dickson | Injection mechanism for internal-combustion engines |
| US3516395A (en) * | 1967-02-22 | 1970-06-23 | Sopromi Soc Proc Modern Inject | Fuel injection system for internal combustion engines |
| US3465732A (en) * | 1967-10-19 | 1969-09-09 | Physics Int Co | Piezoelectric control valve |
Cited By (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3983855A (en) * | 1973-07-12 | 1976-10-05 | C.A.V. Limited | Fuel injection system |
| US4002415A (en) * | 1974-08-13 | 1977-01-11 | C.A.V. Limited | Distributor type fuel injection pumps |
| US4060347A (en) * | 1975-09-16 | 1977-11-29 | Cav Limited | Liquid fuel pumping apparatus |
| US4091784A (en) * | 1975-09-19 | 1978-05-30 | Lucas Industries Limited | Fuel injection systems for internal combustion engines |
| US4082481A (en) * | 1976-02-24 | 1978-04-04 | Cav Limited | Fuel injection pumping apparatus |
| US4244342A (en) * | 1977-12-09 | 1981-01-13 | Lucas Industries Limited | Fuel injection system |
| US4247044A (en) * | 1979-12-26 | 1981-01-27 | General Motors Corporation | Compression operated injector |
| US4306680A (en) * | 1980-05-12 | 1981-12-22 | General Motors Corporation | Compression operated injector |
| US4300509A (en) * | 1980-10-06 | 1981-11-17 | Ford Motor Company | Fuel injection and control systems |
| US4404943A (en) * | 1981-01-27 | 1983-09-20 | Lucas Industries Limited | Fuel system for internal combustion engines |
| US4593658A (en) * | 1984-05-01 | 1986-06-10 | Moloney Paul J | Valve operating mechanism for internal combustion and like-valved engines |
| EP0907017A1 (de) * | 1997-10-02 | 1999-04-07 | Robert Bosch Gmbh | Ventil zum Steuern von Flüssigkeiten |
| US6155532A (en) * | 1997-10-02 | 2000-12-05 | Robert Bosch Gmbh | Valve for controlling fluids |
| US6142747A (en) * | 1998-03-13 | 2000-11-07 | Robert Bosch Gmbh | Fuel pump assembly |
| US6422211B1 (en) * | 1998-12-29 | 2002-07-23 | Robert Bosch Gmbh | Fuel injection device for internal combustion engines |
| WO2001023752A1 (de) * | 1999-09-30 | 2001-04-05 | Robert Bosch Gmbh | Hochdruckpumpe |
| US6464202B1 (en) * | 1999-09-30 | 2002-10-15 | Robert Bosch Gmbh | Valve for controlling liquids |
| US6595436B2 (en) | 2001-05-08 | 2003-07-22 | Cummins Engine Company, Inc. | Proportional needle control injector |
| EP1353058A3 (de) * | 2002-04-11 | 2004-01-21 | VEMAC GmbH & Co.KG | Vergaser für Ottomotor mit einstellbarer Brennstoffdüse |
Also Published As
| Publication number | Publication date |
|---|---|
| FR2228953A1 (enExample) | 1974-12-06 |
| GB1470166A (en) | 1977-04-14 |
| JPS5014922A (enExample) | 1975-02-17 |
| FR2228953B1 (enExample) | 1977-03-11 |
| IT1011420B (it) | 1977-01-20 |
| DE2422775A1 (de) | 1974-11-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3919989A (en) | Fuel injection pumping apparatus | |
| US6021760A (en) | Fuel injection device for internal combustion engines | |
| US4728074A (en) | Piezoelectric flow control valve | |
| US5118076A (en) | Control valve | |
| US4069800A (en) | Fuel injection apparatus | |
| US4813601A (en) | Piezoelectric control valve for controlling fuel injection valve in internal-combustion engines | |
| US6067955A (en) | Fuel injection device for internal combustion engines | |
| JP3145108B2 (ja) | 電磁弁、特に燃料噴射ポンプ用の電磁弁 | |
| US5113812A (en) | Valve control apparatus with magnet valve for internal combustion engines | |
| US4687136A (en) | Gas injection valve for gas engine | |
| US7156368B2 (en) | Solenoid actuated flow controller valve | |
| US3983855A (en) | Fuel injection system | |
| US5577667A (en) | Fuel injection valve | |
| US6783086B1 (en) | Two-stage magnet valve of compact design for an injector of an injection system for internal combustion engines | |
| US4073277A (en) | Fuel injection pump for internal combustion engines | |
| US4167373A (en) | Fuel injection pumping apparatus | |
| US4019481A (en) | Fuel injection systems | |
| US4497298A (en) | Diesel fuel injection pump with solenoid controlled low-bounce valve | |
| US1890702A (en) | Fuel injection device for internal combustion engines | |
| US4082481A (en) | Fuel injection pumping apparatus | |
| US1701089A (en) | Control of fuel-injection mechanism for internal-combustion engines | |
| US4467963A (en) | Single dump single solenoid fuel injector | |
| US5282574A (en) | Hydraulic flow shutoff device for a unit fuel pump/injector | |
| US4763873A (en) | Fluid control valves | |
| US5647540A (en) | Fuel injection nozzle |