US3919750A - Method of making photoflash lamp ignition mount structure with shaped bead - Google Patents

Method of making photoflash lamp ignition mount structure with shaped bead Download PDF

Info

Publication number
US3919750A
US3919750A US524605A US52460574A US3919750A US 3919750 A US3919750 A US 3919750A US 524605 A US524605 A US 524605A US 52460574 A US52460574 A US 52460574A US 3919750 A US3919750 A US 3919750A
Authority
US
United States
Prior art keywords
wires
bead
lead
pair
filament
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US524605A
Inventor
John P Saunders
Burleigh H Leach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GTE Sylvania Inc
Original Assignee
GTE Sylvania Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US444343A external-priority patent/US3897196A/en
Application filed by GTE Sylvania Inc filed Critical GTE Sylvania Inc
Priority to US524605A priority Critical patent/US3919750A/en
Application granted granted Critical
Publication of US3919750A publication Critical patent/US3919750A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K5/00Light sources using charges of combustible material, e.g. illuminating flash devices
    • F21K5/02Light sources using charges of combustible material, e.g. illuminating flash devices ignited in a non-disrupting container, e.g. photo-flash bulb
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/18Mountings or supports for the incandescent body

Definitions

  • Photoflash lamps generate an actinic light output by the burning of an energetic fuel, such as finely shredded zirconium, hafnium or aluminum metal foil, in a combustion supporting atmosphere, such as oxygen.
  • the ignition means comprises a pair of lead-in wires sealed through one end of the tubular glass envelope and supported in a spaced side-by-side relation by a glass bead fused about the wires.
  • a tungsten filament is mounted across the inner ends of the two lead-in wires with the ends of the wires at their junctions with the filament being coated with a primer material, such as a powdered zirconium mixture.
  • the filament glows to incandescence, causing the primer material to ignite, which in turn ignites the finely shredded metallic combustible in the lamp to produce a predetermined quantity of light output.
  • Certain other lamp types additionally employ a glass sleeve disposed about a portion of one of the lead-in wires as an insulating shield extending from the glass bead toward the filament for preventing post-ignition short circuits across the lead-in wires.
  • a glass sleeve disposed about a portion of one of the lead-in wires as an insulating shield extending from the glass bead toward the filament for preventing post-ignition short circuits across the lead-in wires.
  • the lead wires are initially provided in the form of a hairpin with the closed end facing downward.
  • the glass bead is then melted and fused about the lead wires 'to retain the spacing therebetween; this is a conventional beading operation.
  • the closed end of the hairpin is trimed off, in the normal manner.
  • the mount structure is then rotated 180, and a glass'tube is placed over one of the lead wires so that it rests on the head. The end of the dant's part.
  • one of the principal objects of this invention is to provide an electrically ignitable photoflash lamp having improved means for preventing post-ignition short circuits across the lead-in wires.
  • a further object is to provide an improved and more economical method of manufacturing an ignition mount structure for a photoflash lamp which maintains a suitable isolation between the lead-in wires to prevent post-ignition short circuits.
  • FIG. 1 is an elevational view, partly in section, of photoflash lamp having an ignition mount structure in accordance with the invention
  • FIG. 2 is an enlarged diagram illustrating the shaped bead employed in the mount structure of FIG. 1 and the manner in which the bead prevents post-ignition short circuits;
  • FIGS. 3-5 are sequential representations of the steps of a method in accordance with the invention which may be employed for making the mount structure of FIG. 1.
  • an electrically ignitable photoflash lamp comprising an hermetically sealed, light-transmitting envelope 10 of glass tubing having a press 12 defining one end thereof and an exhaust tip 14 defining the other end thereof.
  • a quantity of filamentary combustible material 16 such as shredded zirconium or hafnium foil, is located within the lamp envelope.
  • the envelope is also provided with a filling of combustion-supporting gas, such as oxygen, at a pressure of several atmospheres.
  • the ignition mount structure comprises a pair of lead-in wires 18 and 20 extending through and sealed into the press 12.
  • a filament 22 spans the inner ends of the lead-in wires, and beads of primer 24 and 26 are located on the inner ends of the lead-in wires 18 and 20, respectively, at their junctions with the filament.
  • the lead-in wires are supported in a spaced side-by-side relation by a glass bead 28 fused about the wires.
  • the glass bead is uniquely shaped by a distortion of its midportion 30 between the lead-in wires to protrude toward the filament 22.
  • the filament 22 glows to incandescence, causing the primer material 24, 26 to ignite, which in turn ignites the finely shred ded metallic combustible material 16 in the lamp to produce the desired flash of light output.
  • the intense heat of this combustion process causes the top portion of the lead-in wires 18 and 20 to melt away down to the top surface of the glass bead 28.
  • the upwardly protruding portion 30 of the glass bead serves to isolate the molten portions 32 of the two lead-in wires so that a short circuit conductive path is not inadverently effected by a chance fusion of the two melting wires subsequent to flashing.
  • FIGS. 3-5 illustrate a method of making the mount structure of FIG. 1, in accordance with the invention, which has been found to result in a highly reliable flashlamp structure with protection against post-ignition shorting, while at the same time being particularly suited to automated assembly and providing a significantly more convenient and economical mode of manufacture.
  • the method comprises: providing a pair of lead-in wires 18 and 20 closed at one end 21 in the form of a hairpin; next, placing a glass bead 28 between the lead-in wires and fusing the bead to the wires to retain a spacing therebetween, as illustrated in FIG.
  • a blade 34 is inserted between the pair of wires from the open end and pushed downwardly against the midpoint of the fused bead to stretch and displace the midportion 30 so that it protrudes toward the closed end 21 of the hairpin", as illustrated in FIG. 4.
  • the closed end 21 of the lead-in wires 18 and'20 is trimmed off as illustrated by FIG. 5, and the filament 22 is attached across the wires near the trimmed ends thereof, whereby the stretched midportion 30 of the bead 28 protrudes toward the filament (as in FIG. 1).
  • FIGS. 3-5 all take place with the mount structure held in an inverted position. No 180 rotations of the mount are required.
  • the cost of the glass tube, previously employed on mount structures with post-ignition short protection, has been eliminated.
  • the process also eliminates the previously required bead feeder, bead loader, wire gatherer, two turn-over devices, extra burner to melt the glass tube, tube detectorsand mount ejector.
  • the unstretched bead 28' had an initial height dimension of about 0.080 inch, and the stretching operation to produce the protruding midportion 30 extended the height to about 0.]65 inch.
  • the bead was stretched to approximately double its initial height.
  • the height of the stretched bead 4 is preferably at least about twice the height of the bead portions fused about the lead-in wires.
  • bead 28 may be formed of other meltable insulating materials in lieu of glass, and the original and stretched dimensions of the bead may vary for different lamp parameters.
  • step of stretching said bead is performed by inserting a blade between said pair of wires from the open end thereof and pushing said blade against the midportion of said bead to thereby displace the midportion of said fused glass bead to protrude toward the closed end of said pair of lead-in wires.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

A photoflash lamp having an hermetically sealed envelope containing a pair of filament-supporting lead-in wires spaced apart by a glass bead which has been stretched toward the filament to prevent post-ignition short circuits by isolating the melting lead-in wires.

Description

United States Patent Saunders et al.
METHOD OF MAKING PHOTOFLASH LAMP IGNITION MOUNT STRUCTURE WITH SHAPED BEAD Inventors: John P. Saunders, Beverly; Burleigh H. Leach, Hamilton, both of Mass.
Assignee: GTE Sylvania Incorporated,
Danvers, Mass.
Filed: Nov. 18, 1974 Appl. No.: 524,605
Related US. Application Data Division of Ser. No. 444,343. Feb. 21 I974, Pat. No. 3.897, 196.
vs. c1 29/2s.1s; 29/25.13 1m. c1. non 9/18 Field of Search 29/25.11, 25.13, 25.14,
[ Nov. 18, 1975 [56] References Cited UNITED STATES PATENTS 2,729,960 1/1956 Anderson 431/95 2,794,699 6/l957 Eber... 316/19 3,564,681 2/1971 Ayres 29/25.l3 3,816,054 6/1974 Baldrige, Jr. et al. 431/95 Primary Examiner-Roy Lake Assistant Examiner-James W. Davie Attorney, Agent, or FirmEdward J. Coleman [57] ABSTRACT A photoflash lamp having an hermetically sealed envelope containing a pair of filament-supporting lead-in wires spaced apart by a glasshead which has been stretched toward the filament to prevent post-ignition short circuits by isolating the melting lead-in wires.
5 Claims, 5 Drawing Figures Lead W i re UM Patent Nov. 18, 1975 0 3 Lead W i re Laud Wire Melted BACKGROUND OF THE INVENTION This invention relates to the manufacture of photoflash lamps and, more particularly, to flashlamps containing filament lead-in wires and means for preventing post-ignition short circuits therebetween.
Photoflash lamps generate an actinic light output by the burning of an energetic fuel, such as finely shredded zirconium, hafnium or aluminum metal foil, in a combustion supporting atmosphere, such as oxygen. In some of the tubular electrically ignitable photoflash lamps presently manufactured, the ignition means comprises a pair of lead-in wires sealed through one end of the tubular glass envelope and supported in a spaced side-by-side relation by a glass bead fused about the wires. A tungsten filament is mounted across the inner ends of the two lead-in wires with the ends of the wires at their junctions with the filament being coated with a primer material, such as a powdered zirconium mixture. When battery power is applied to the external projecting portions of the two lead-in wires, the filament glows to incandescence, causing the primer material to ignite, which in turn ignites the finely shredded metallic combustible in the lamp to produce a predetermined quantity of light output.
Certain other lamp types additionally employ a glass sleeve disposed about a portion of one of the lead-in wires as an insulating shield extending from the glass bead toward the filament for preventing post-ignition short circuits across the lead-in wires. Such a feature is required for the proper operation of certain flash sequencing circuitry for controlling linear arrays of flash lamps. For example, in one presently marketed photoflash array application, if a short circuit occurs between the melted lead-in wires in the first (or subsequent) lamp of the array to be flashed by the sequencing circuitry, the entire array of lamps is rendered useless.
Although reliably providing the desired lead-wire isolating function, however, the use of a glass insulating sleeve significantly increases both the manufacturing and materials cost of the lamp unit. For example, according to a present manufacturing method for processing the ignition mount structure, the lead wires are initially provided in the form of a hairpin with the closed end facing downward. The glass bead is then melted and fused about the lead wires 'to retain the spacing therebetween; this is a conventional beading operation. Next. the closed end of the hairpin is trimed off, in the normal manner. The mount structure is then rotated 180, and a glass'tube is placed over one of the lead wires so that it rests on the head. The end of the dant's part.
SUMMARY OF THE INVENTION In view of the foregoing, one of the principal objects of this invention is to provide an electrically ignitable photoflash lamp having improved means for preventing post-ignition short circuits across the lead-in wires.
A further object is to provide an improved and more economical method of manufacturing an ignition mount structure for a photoflash lamp which maintains a suitable isolation between the lead-in wires to prevent post-ignition short circuits.
These and other objects, advantages and features are attained, in accordance with the principles of this invention, by fusing an insulating bead to the lead wires, as at present, but then while the bead is still in a plastic state, stretching the midportion of the bead. In this manner, the insulating bead of the finished mount structure is shaped between the lead-in wires to protrude toward the filament, thereby providing at minimum cost a reliable means for preventing post-ignition short circuits between the lead-in wires.
BRIEF DESCRIPTION OF THE DRAWINGS This invention will be more fully described hereinafter in conjunction with the accompanying enlarged scale drawings, in which:
FIG. 1 is an elevational view, partly in section, of photoflash lamp having an ignition mount structure in accordance with the invention;
FIG. 2 is an enlarged diagram illustrating the shaped bead employed in the mount structure of FIG. 1 and the manner in which the bead prevents post-ignition short circuits; and
FIGS. 3-5 are sequential representations of the steps of a method in accordance with the invention which may be employed for making the mount structure of FIG. 1.
DESCRIPTION OF PREFERRED EMBODIMENT Referring to FIG. 1 an electrically ignitable photoflash lamp is shown comprising an hermetically sealed, light-transmitting envelope 10 of glass tubing having a press 12 defining one end thereof and an exhaust tip 14 defining the other end thereof. A quantity of filamentary combustible material 16, such as shredded zirconium or hafnium foil, is located within the lamp envelope. The envelope is also provided with a filling of combustion-supporting gas, such as oxygen, at a pressure of several atmospheres. I
The ignition mount structure comprises a pair of lead-in wires 18 and 20 extending through and sealed into the press 12. A filament 22 spans the inner ends of the lead-in wires, and beads of primer 24 and 26 are located on the inner ends of the lead-in wires 18 and 20, respectively, at their junctions with the filament. The lead-in wires are supported in a spaced side-by-side relation by a glass bead 28 fused about the wires. In accordance with the invention, the glass bead is uniquely shaped by a distortion of its midportion 30 between the lead-in wires to protrude toward the filament 22.
When battery current is applied to the external projecting portions of the two lead-in wires the filament 22 glows to incandescence, causing the primer material 24, 26 to ignite, which in turn ignites the finely shred ded metallic combustible material 16 in the lamp to produce the desired flash of light output. The intense heat of this combustion process causes the top portion of the lead-in wires 18 and 20 to melt away down to the top surface of the glass bead 28. As illustrated by the diagram of FIG. 2, however, the upwardly protruding portion 30 of the glass bead serves to isolate the molten portions 32 of the two lead-in wires so that a short circuit conductive path is not inadverently effected by a chance fusion of the two melting wires subsequent to flashing.
FIGS. 3-5 illustrate a method of making the mount structure of FIG. 1, in accordance with the invention, which has been found to result in a highly reliable flashlamp structure with protection against post-ignition shorting, while at the same time being particularly suited to automated assembly and providing a significantly more convenient and economical mode of manufacture. Basically, the method comprises: providing a pair of lead-in wires 18 and 20 closed at one end 21 in the form of a hairpin; next, placing a glass bead 28 between the lead-in wires and fusing the bead to the wires to retain a spacing therebetween, as illustrated in FIG. 3; then, while the bead is still in a plastic state from the fusing step, a blade 34 is inserted between the pair of wires from the open end and pushed downwardly against the midpoint of the fused bead to stretch and displace the midportion 30 so that it protrudes toward the closed end 21 of the hairpin", as illustrated in FIG. 4. Thereafter, the closed end 21 of the lead-in wires 18 and'20 is trimmed off as illustrated by FIG. 5, and the filament 22 is attached across the wires near the trimmed ends thereof, whereby the stretched midportion 30 of the bead 28 protrudes toward the filament (as in FIG. 1).
It will be noted that the process steps illustrated by FIGS. 3-5 all take place with the mount structure held in an inverted position. No 180 rotations of the mount are required. The cost of the glass tube, previously employed on mount structures with post-ignition short protection, has been eliminated. The process also eliminates the previously required bead feeder, bead loader, wire gatherer, two turn-over devices, extra burner to melt the glass tube, tube detectorsand mount ejector.
In one specific embodiment of the mount structure of FIGS. 1-5, the unstretched bead 28' had an initial height dimension of about 0.080 inch, and the stretching operation to produce the protruding midportion 30 extended the height to about 0.]65 inch. Hence, the bead was stretched to approximately double its initial height. In other words, the height of the stretched bead 4 is preferably at least about twice the height of the bead portions fused about the lead-in wires. Such a stretched bead ignition structure has proved to be extremely reliable in preventing post-ignition short circuits, as several thousand lamps of this type have been test flashed without a post-ignition short failure.
Although the invention has been described with respect to specific embodiments, it will be appreciated that modifications and changes may be made by those skilled in the art without departing from the true spirit and scope of the invention. For example, bead 28 may be formed of other meltable insulating materials in lieu of glass, and the original and stretched dimensions of the bead may vary for different lamp parameters.
What we claim is: 1. The method of making an ignition mount structure for a photoflash lamp, said method comprising:
providing a pair of lead-in wires closed at one end in the form of a hairpin;
placing a bead of meltable insulating material between said lead-in wires and fusing said bead to said wires to retain a spacing between said pair of wires; I
and while said bead is still in a plastic state from said fusing step, stretching the midportion of said bead between said pair of lead-in wires to protrude toward the closed end thereof to provide a raised barrier between locations where the lead-in wires pass through the bead for preventing post-ignition short circuits between said wires.
2. The method of claim 1 wherein said bead of insultaing material is a glass bead.
3. The method of claim 2 wherein said step of stretching said bead is performed by inserting a blade between said pair of wires from the open end thereof and pushing said blade against the midportion of said bead to thereby displace the midportion of said fused glass bead to protrude toward the closed end of said pair of lead-in wires.
4. The method of claim 3 including the further step of trimming off the closed end of said pair of lead-in wires subsequent to said stretching step.
5. The method of claim 4 including the further step of attaching a filament across said pair of wires near the trimmed ends thereof whereby the stretched midportion of said bead protrudes toward said filament.

Claims (5)

1. The method of making an ignition mount structure for a photoflash lamp, said method comprising: providing a pair of lead-in wires closed at one end in the form of a hairpin; placing a bead of meltable insulating material between said lead-in wires and fusing said bead to said wires to retain a spacing between said pair of wires; and while said bead is still in a plastic state from said fusing step, stretching the midportion of said bead between said pair of lead-in wires to protrude toward the closed end thereof to provide a raised barrier between locations where the lead-in wires pass through the bead for preventing post-ignition short circuits between said wires.
2. The method of claim 1 wherein said bead of insultaing material is a glass bead.
3. The method of claim 2 wherein said step of stretching said bead is performed by inserting a blade between said pair of wires from the open end thereof and pushing said blade against the midportion of said bead to thereby displace the midportion of said fused glass bead to protrude toward the closed end of said pair of lead-in wires.
4. The method of claim 3 including the further step of trimming off the closed end of said pair of lead-in wires subsequent to said stretching step.
5. The method of claim 4 including the further step of attaching a filament across said pair of wires near the trimmed ends thereof whereby the stretched midportion of said bead protrudes toward said filament.
US524605A 1974-02-21 1974-11-18 Method of making photoflash lamp ignition mount structure with shaped bead Expired - Lifetime US3919750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US524605A US3919750A (en) 1974-02-21 1974-11-18 Method of making photoflash lamp ignition mount structure with shaped bead

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US444343A US3897196A (en) 1974-02-21 1974-02-21 Photoflash lamp with sealed bead
US524605A US3919750A (en) 1974-02-21 1974-11-18 Method of making photoflash lamp ignition mount structure with shaped bead

Publications (1)

Publication Number Publication Date
US3919750A true US3919750A (en) 1975-11-18

Family

ID=27033875

Family Applications (1)

Application Number Title Priority Date Filing Date
US524605A Expired - Lifetime US3919750A (en) 1974-02-21 1974-11-18 Method of making photoflash lamp ignition mount structure with shaped bead

Country Status (1)

Country Link
US (1) US3919750A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4155736A (en) * 1976-12-01 1979-05-22 General Electric Company Method of making a non-shorting photoflash lamp
EP0373632A2 (en) * 1988-12-16 1990-06-20 Gte Products Corporation Lamp filament support construction
US20050194879A1 (en) * 2003-12-09 2005-09-08 Harison Toshiba Lighting Corporation Electric bulb and a method for manufacturing thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2729960A (en) * 1952-01-02 1956-01-10 Gen Electric Flash lamp
US2794699A (en) * 1952-12-13 1957-06-04 Westinghouse Electric Corp Manufacture of small lamps
US3564681A (en) * 1967-04-12 1971-02-23 Gen Electric Method of manufacturing electric incandescent lamp and mount structure therefor
US3816054A (en) * 1973-05-02 1974-06-11 Gen Electric Photoflash lamp having non-shorting construction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2729960A (en) * 1952-01-02 1956-01-10 Gen Electric Flash lamp
US2794699A (en) * 1952-12-13 1957-06-04 Westinghouse Electric Corp Manufacture of small lamps
US3564681A (en) * 1967-04-12 1971-02-23 Gen Electric Method of manufacturing electric incandescent lamp and mount structure therefor
US3816054A (en) * 1973-05-02 1974-06-11 Gen Electric Photoflash lamp having non-shorting construction

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4155736A (en) * 1976-12-01 1979-05-22 General Electric Company Method of making a non-shorting photoflash lamp
EP0373632A2 (en) * 1988-12-16 1990-06-20 Gte Products Corporation Lamp filament support construction
EP0373632A3 (en) * 1988-12-16 1991-04-17 Gte Products Corporation Lamp filament support construction
US20050194879A1 (en) * 2003-12-09 2005-09-08 Harison Toshiba Lighting Corporation Electric bulb and a method for manufacturing thereof
US20090253334A1 (en) * 2003-12-09 2009-10-08 Harison Toshiba Lighting Corporation Method for Manufacturing an Electric Bulb

Similar Documents

Publication Publication Date Title
US2972937A (en) Flash apparatus
US3884615A (en) Flash Lamp Mount Construction
US3816054A (en) Photoflash lamp having non-shorting construction
US3897196A (en) Photoflash lamp with sealed bead
US3919750A (en) Method of making photoflash lamp ignition mount structure with shaped bead
US3873260A (en) Photoflash lamp
US3459488A (en) Flashbulb and attachment for camera
US3873261A (en) Photoflash lamp
US3303674A (en) Flash lamp
US3666394A (en) Multiflash lamp unit
US4105480A (en) Flashlamp composition
US3556699A (en) Discharge ignition type photoflash lamp
US4097220A (en) Flash lamp array having shorting lamps
US3959860A (en) Method of making non-shorting photoflash lamp
US3627459A (en) Flashbulb
US3598511A (en) Flashlamps
US3106080A (en) Flash apparatus
US3304144A (en) Flash lamp manufacture
US4369556A (en) Method of making a photoflash lamp having new lead seal structure
US2857752A (en) Flash lamp
US3930784A (en) Photoflash lamp having non-shorting construction
US3002367A (en) Photoflash lamp
US2264043A (en) Electric photoflash lamp
US3893797A (en) Photoflash lamp and method of coating same
US3584990A (en) Flashlamp