US3914405A - Cosmetic and toothpaste preparations - Google Patents

Cosmetic and toothpaste preparations Download PDF

Info

Publication number
US3914405A
US3914405A US361932A US36193273A US3914405A US 3914405 A US3914405 A US 3914405A US 361932 A US361932 A US 361932A US 36193273 A US36193273 A US 36193273A US 3914405 A US3914405 A US 3914405A
Authority
US
United States
Prior art keywords
parts
polymer
toothpaste
hair
methacrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US361932A
Inventor
Thomas H Shepherd
Francis E Gould
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Patent Development Corp
Original Assignee
National Patent Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Patent Development Corp filed Critical National Patent Development Corp
Priority to US361932A priority Critical patent/US3914405A/en
Application granted granted Critical
Publication of US3914405A publication Critical patent/US3914405A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • G02B1/043Contact lenses
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/70Fixation, conservation, or encapsulation of flavouring agents
    • A23L27/74Fixation, conservation, or encapsulation of flavouring agents with a synthetic polymer matrix or excipient, e.g. vinylic, acrylic polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/24Phosphorous; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8152Homopolymers or copolymers of esters, e.g. (meth)acrylic acid esters; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/56Compounds, absorbed onto or entrapped into a solid carrier, e.g. encapsulated perfumes, inclusion compounds, sustained release forms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/04Preparations containing skin colorants, e.g. pigments for lips
    • A61Q1/06Lipsticks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/10Preparations containing skin colorants, e.g. pigments for eyes, e.g. eyeliner, mascara
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/12Face or body powders for grooming, adorning or absorbing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q15/00Anti-perspirants or body deodorants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/005Antimicrobial preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/02Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings containing insect repellants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q3/00Manicure or pedicure preparations
    • A61Q3/02Nail coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/06Preparations for styling the hair, e.g. by temporary shaping or colouring

Definitions

  • a toothpaste composition is prepared containing a hydrophilic acrylate or methacrylate.
  • compositions for use on human hair and skin which'may, be easily applied, exhibit no detrimental effect on the skin and retain their stability for a resonable period of time.
  • lacquers for imparting a temporary set to the'hair.
  • lacquers include a water-insoluble film-forming ingredient,jit has been extremely difficult to remove them from the hair.
  • lacquers When his desired to change the hair style, it'sometimes becomes necessary to employ a special solvent or a powerful detergent composition, neither of which is readily'available inthe home.
  • Lacquers have generally been considered unsatisfactory for applicat ion to the hair for'this reasongA' number of watersoluble film-forming resinous materials have also been proposed for application to the hair in order to set it.
  • water-soluble materials have not been completely satisfactorybecause of the tendency for the resultant,- film to become tacky andfor the'hair to lose itsv li when exposed to conditions of high humidity.
  • An additional object is to overcome mascara to run when wet.
  • .furtherobject is to protectthe body against the drying effects of cosmetics comprising alcohol solutions-f1
  • Yet anotherobject is to overcome the greasiness present in various cosmetic creamsjs'ticks, and lotions.
  • An additional object is to'reduce the loss of flavors or essences from cosmetic compositions.
  • j 1 I A corollary object is to develop cosmetic compositions which release a flavor or'essence when wet.
  • An important object of the invention is to straighten kinky" or curly hair so that it can be manipulated as desired.
  • a related object is to set hair of any type.
  • Another object is to apply a film having one or more of the above characteristics in relation to hair, but which can be readily removed.
  • a still further object is to develop novel aerosol compositions useful for application to the body.
  • hydrophylic acrylate and methacrylate polymers in cosmetic compositions.
  • the hydrophylic polymer should not have substantial cross-linking (i.e. the cross-linking should not be sufficient to render the polymer'insoluble, in the solvent) while for powdered or creamy compositions cross-linked copolymers can be employed.
  • cosmetic is intended to embrace all types ofproducts which are to be applied in any manner directly to the person for the purpose of cleansing or embellishment, including altering the appearance.
  • Toilet soap and shaving soaps and creams are intended to be included in this definition as well as deodorants, depilatories, suntan and sunscreen preparations.
  • the hydrophylic monomer used to prepare the'hydrophylic polymer is preferably a hydroxyalkyl monoacrylate or methacrylate such as Z-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, diethylene glycol monoacrylate, diethylene glycol monomethacrylate, hydroxypropyl acrylates and methacrylates, e.g. 2- hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 3-hydroxypropyl acrylate, 3-hydroxypropyl methacrylate, tetraethylene glycol monomethacrylate, pentaethylene glycol monomethacrylate, dipropylene glycol monomethacrylate, dipropylene glycol monoacrylate.
  • a hydroxyalkyl monoacrylate or methacrylate such as Z-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, diethylene glycol monoacrylate, diethylene glycol monomethacrylate, hydroxypropyl acrylates and methacrylates
  • Acrylamide, methacrylamide, diacetone acrylamide, methylolacrylamide and methylol methacrylamide also are useful hydrophylic monomers.
  • the most preferred monomer is 2-hydroxyethyl methacrylate and the next most preferred monomer is 2-hydroxyethyl acrylate.
  • an ethylenically unsaturated acid to provid'e free acid groups.
  • Typical examples of such acids include acrylic acid, methacrylic acid, itaconic aci'd,ac'onitic acid, cinnamic acid, crotonic acid, citraconic acid, mea'sa'conic acid, maleic acid and fumaric acid.
  • L'ess preferably there can also be, used partial esters of polyba'sic acids such as mono 2-hydroxypropyl itaconate, mono 2- hydroxyethyl itaconate, mono 2-hydroxyethyl citracon ate, mono2-hydroxypropyl aconitate, mono 2- hydroxyethyl maleate, mono2-hydroxypropyl fumarate, monomethyl itaconate, monoethyl itaconate, mono Methyl Cellosolve ester of itaconic acid (Methyl Cellosolve is the monomethyl ether of diethylene glycol), mono Methyl Cellosolve ester of maleic acid.
  • polyba'sic acids such as mono 2-hydroxypropyl itaconate, mono 2- hydroxyethyl itaconate, mono 2-hydroxyethyl citracon ate, mono2-hydroxypropyl aconitate, mono 2- hydroxyethyl maleate, mono2-hydroxypropyl fumarate, monomethyl itaconate, mono
  • cross-linking agent is preferably present in an amount of 0.lto 2.5%, most preferably 0.1 to 1.0%, of the total monomers, although up to of cross-linking agent can be used.
  • cross-linking agents include ethylene glycol diacrylate, ethylene glycol dimethacrylate, l,2-butylene dimethacrylate, 1,3-butylene dimethacrylate, l,4-butylene dimethacrylate, propylene glycol diacrylate, propylene glycol dimethacrylate, diethylene glycol dimethacrylate, dipropylene glycol diacrylate, divinyl benzene, divinyl toluene, diallyl tartrate, allyl pyruvate, allyl malate, divinyl tartrate, triallyl melamine, N,N'-methylene-bis-acrylamide, glycerine trimethacrylate, diallyl maleate, divinyl ether, diallyl mono ethylene-glycol citrate, ethylene glycol vinyl allyl citrate, allyl vinyl'maleate, diallyl itaconate, ethylene glycol diester of itaconic acid, divinyl sulfone
  • cross-linked polymers are characterized by being insoluble in the solvents.
  • suitable crosslinked hydrophilic polymers are those in Wichterle U.S. Pat. No. 2,976,576, Wichterle US. Pat. No. 3,220,960, e'.g. examples II], V, VI, VII, and IX, Wichterle U.S. Pat. No.
  • the hydrophylic polymers of this invention possess unique properties which are capable of improving a wide range of cosmetic products.
  • they impart to such products a wide range of unusual and desirable properties and effects on the skin and hair, such as lubricity, emolliency, softening and smoothing, resistance to and protection against the drying effects of alcohol solutions, resistance to water and/or soap or detergents and water, freedom from tactile greasiness or oiliness due to mineraland/or vegetable oils, marked solvency and coupling effects for lanolin, lanolin isolates and derivatives either alone or in the presence of mineral and vegetable oils and freedom from tackiness or greasiness in preparations containing any of the above-mentioned materials.
  • the hydrophilic polymers are useful in creams, which essentially comprise an oleaginous base, either as an addition thereto or to replace, at least in part, oily fatty and/or waxy ingredients of the creams.
  • the polymers may partly replace the almond oil, mineral oil, lanolin, beeswax, paraffin wax, oleic acid, or spermaceti, and the like, which are conventionally used in creams, whether of the cleansing, emollient, or finishing types, and including cold cream, quick-liquefying cream, liquid cleanser cream, night cream, massage cream, vanishing cream, foundation cream, and various special creams.
  • An advantage of replacing at least part of such materials is that the soiling tendency of the creams is reduced, that is to say, the creams after being spread over the skin by the user are less apt to pick up or attact soil or foreign particles, similarly, the deposited creams transfer off the users skin less readily, as by contact with clothing, bed sheets, and the like.
  • This last advantage is of particular importance in other creams such as deodorants, including deodorizer and anti-perspirant creams, which are used under the arms and on the palms and soles and which are quite apt to come in contact with clothing and to soil it to such an extent that the garments are frequently ruined.
  • the lanolin, petrolatum, cresin, beeswax, cocoa butter, and/or stearic acid contents of emollient and vanishing creams,.and also of cream and paste rouges can be partly supplanted to reduce their soiling tendency, and more particularly to reduce their oily or greasy feel while yet retaining their power of free motion over the skin. Because they are lubricitous in a cream preparation without increasing its oleaginous character, crosslinked polymers are suitable for addition to creams to be applied to the oily skin.
  • the creams can be of any suitable type, such as a mixture of fats and oils, a jelly containing a physical barrier, an emulsion, or a soap base. These creams are of particular value for protecting the hands from injury, or from soiling, in carrying out many processes and procedures in industrial plants.
  • These creams containing physical barriers are particularly adapted to receive the hydrophylic polymers, which being available in various particle sizes,may form protective barriers on the skin of varying degrees of fineness and smoothness.
  • make up powders for the face may benefit from the presence of the polymers.
  • These powders usually comprise an opacifying agent (clay, titania, magnesia zinc oxide, etc.,) a slip material, (talc, metal stearates, etc.,), an adherent material (stearates, clay, etc.) and an absorbent (chalk, calcium carbonate, kaolin, etc.).
  • an opacifying agent clay, titania, magnesia zinc oxide, etc.,
  • slip material talc, metal stearates, etc.,
  • adherent material stearates, clay, etc.
  • an absorbent chalk, calcium carbonate, kaolin, etc.
  • the hydrophilic polymers are capable of replacing in whole or in part, metal salts and oxides like chalk, kaolin, magnesium carbonate, talc, titania, magnesium stearate, zinc oxide, zinc oxide, zinc stearate and the like;
  • An advantage of such a substitution is the reduced incidence of undesirable dermatological reactions.
  • magnesium carbonate a widely used ingredient, it is known that some persons are sensitive to the presence of trace amounts of elements like selenium, arsenic, or mercury which tend to be present in the magnesium carbonate owing to the difficulty of meant the capacity of thepolymeric powder to absorb oily, fatty, greasy, waxy and aqueous materials.
  • the polymers are of benefit to loose face powder compositions by virtu'eof their excellent adherence to-surfaces including the skin, by the degree to' which their particle size may be varied, and by the extent to which .theirfluffiness or bulk density may be changed. Therefore, they are useful in place of theadherent agents noted.
  • a complete, esthetically suitable face powder may be-made which will inherentlyhave a mat effect, and which may be used per se or serve as a base, with or without the-zcol'or and perfume,-to which only minor additions need be made to obtain desired-finished powders to suit different types of skin.
  • hydrophilic polymers can eliminate the need for the binder as they are inherently compressible in the dry; or wet state to any desireddegree.
  • the polymers are also useful in lipstick compositions and can'replaceone or more oleaginous ingredients in whole orv part, such as the fats and waxes, with the advantage or decreased .greasiness without'loss of lubricity, and improved consistency retention.
  • Fats and waxes which arecommonly used in lipstick composi-. tions include beeswax, carnauba wax, ceresin, lanolin, lard, mineral oil, petrolatum, etc.
  • Conventionally used lipstick flavors usually i comprising a volatile, waterimmiscible organic ester, may bebetter retained in the lipstick owing to the goodsorptive capacity of the polymers for. such compounds.
  • The. polymers form freeflowin'g, apparently dry mixes with flavors, and thus can facilitatelipstick manufactureby serving as a carrier for introducing these volatile compounds to the production batch and losses of the flavors may bereduced.
  • the polymers cansupplant conventional soaps like triethanolamine stearate, triethanolamine, oleate, etc., and thereby renderthe preparation less irritating to the. eyes.
  • the waxes frequently used, in these preparations, and also in roll-on mascara and cream mascara, can be at least partly replaced with advantages similar to those described in wax substitutions.
  • the hydrophylic polymers of this invention are also capable of imparting a cleaner effect to eyelashes, avoiding the thick, pasty, or crumbly look resulting from the use of some conventional preparations or the startling effect imparting by some enamel-like preparations.
  • the polymers permit a wider selection of colors to be employed and thus may avoid dependence on the conventional but somewhat dangerous use of silver nitrate with sodium thiosulfate.
  • Suitable colors include natural pigments, e.g. carbon, ochers, siennas, umbers, ultramarine, etc.
  • the polymers are of value to other cosmetics for use around the eye, as in eye shadow sticks,
  • water removable nail coating compositions can be prepared comprising simply a hydrophilic polymer of this invention, a coloring agent, and solvent.
  • the polymer provides the necessary adherence to the nails.
  • Such compositions are of value for application to the nails for a single occasion of short duration, after which the coatings are removable by simply washing the hands in water.
  • the polymers of this invention are also effective in hair preparations.
  • the present invention overcomes the disadvantages pointed out supra of previous hair preparations. Even though the hydrophylic polymers of the invention are insoluble in water, they are easily removed, e.g. with conventional shampoo. s
  • Hair sprays produced according to this invention comprise a soluble hydrophylic polymer such as previously described and a non-toxic organic solvent.
  • a propellant is also used.
  • the organic solvent there can be employedal cohols,.particularly lower aliphatic saturated alcohols e.g. ethyl alcohol, isopropyl alcohol, propyl alcohol, glycols, e.g.
  • ethylene glycol diethylene glycol, propylene glycol and clipropylene glycol glycerine,ethyle'ne glycol methyl ether, ethylene glycol ethyl ether, npropylene glycol monomethyl ether, n-propylene gly col monoethyl ether, isopropylene glycol monomethyl ether, isopropylene glycol monoethyl ether, ethyl acetate.
  • Mixtures of these solvents with minor amounts of water, e.g. up to 30% water, can be also employed.
  • Glycols and glycerine and similar polyhydric alcohols act as plasticizers for the hydrophylic polymer.
  • the amount of hydrophylic polymer will be about 0.5 to 10%, preferably 0.75 to by weight of the total hair spray composition.
  • Hair setting and hair Straightening compositions are also produced according to the invention using 0.5 to of the hydrophylic polymer in the solvent.
  • compositions not only provide the desired temporary set-holding characteristics and maintains the hair in the desired configuration until removed, but do so even when the hair is exposed to conditions of high humidity without the development of any appreciable surface track.
  • the hair thus treated despite its resistance to moisture, is remarkably free from any tendency to develop static electrical charges when combed or brushed under conditions of low humidity.
  • the treated hair is capable of being reset merely by use of water-dampened comb.
  • the film on the hair may readily be removed, despite its resistance to moisture, by a mild shampoo.
  • the hydrophylic polymers can be used not only in solution, but also in compositions having the form of stable gels, creams and the like without requiring the presence of an emulsifying agent. They can have the physical form of a jelly, paste, plastic mass, or the like and generally comprise the hydrophylic polymer in an amount of 2 to by weight of the total composition.
  • a thixotropic agent such as Carbopol 961 (sucrose acrylate having free acid groups).
  • the amount of solvent is usually 10% or more of the total hair preparation.
  • the solvent is normally not over 60% and is preferably to 40% of the total hair preparation by weight.
  • the propellant should be sufficient. to force the composition out of the container as a spray.
  • the propellant can vary considerably, but usually is about 25 to 85%, preferably 50 to 70%, of the total hair spray composition.
  • compressed gasses such as carbon dioxide, nitrous oxide and nitrogen, liquifled volatile hydrocarbons such as propane, n-butane, isobutane, 2-methyl butane and fluorinated compounds including perhalogenated compounds and fluorinated hydrocarbons such as dichlorodifluoromethane, trichlorofluoromethane, l ,2-dichlorotetrafluoroethane, octofluorocyclobutane, chlorodifluoromethane, l l
  • the propellant should contain a substantial amount of volatile material boiling at not over 20C., but there can also be present a significant amount of less volatile material boiling up to 50C., e.g. methylene chloride can be present as a substantial part of the propellant.
  • perfumes or other essences can be included in the formulations.
  • catalysts for carrying out the polymerization there is employed free radical catalyst in the range of 0.05 to l% of the polymerizable hydroxyalkyl ester, for example, the preferred amount of catalyst is 0.1 to 0.2% of the monomer.
  • Typical catalysts include t-butyl peroctoate, benzoyl peroxide, isopropyl percarbonate, methylethylketone peroxide, cumene hydroperoxide and dicumylperoxide.
  • Irradiation e.g., by ultra violet light or gamma rays, also can be employed to catalyze the polymerization. Polymerization can be done at 20 to 150 C., usually 40 to 90 C.
  • the method of polymerization is not critical and the monomers can be polymerized in water, by suspension poly-' merization, in organic solvent or without any solvent.
  • hydrophylic soluble thermoplastic polymers are preferably prepared by suspension polymerization of the hydrophylic monomers in a non-polar medium such as silicone oil, mineral oil, xylene, toluene, benzene or the like.
  • they can be polymerized while in solution in ethyl alcohol, methyl alcohol, propyl alcohol, isopropyl alcohol, formamide, dimethyl sulfoxide or other appropriate solvent.
  • the catalyst containing monomer is dispersed in the non-polar medium in the form of small droplets which are polymerized to form finely divided spheres or beads.
  • the beads are dissolved in the polar organic solvents, e.g., ethyl alcohol, isopropyl alcohol, ethyl alcohol-water (e.g. 95:5 or 70:30), glycols and glycol ethers for use as sprays, etc. or are mixed with other ingredients to make creams, powders or the like.
  • Suspension polymerization is preferably carried out at 50l05 C. until bead formation is completed.
  • the ratio of suspension oil to monomer can be varied widely, but preferably is from 5:1 to 20:1.
  • the catalyst to monomer ratio is preferably from 0.05 to 1.0 parts per 100 parts of monomer.
  • One method of incorporating the hydrophylic polymeric powders'with cosmetic ingredients or essences dissolved in an appropriate solvent is to place the mix ture on a mechanical roller so that the solution becomes intimatelymixed with the powder.
  • the mixture is dried by air evaporation or forced heat. Upon evaporation of the solvent the cosmetic ingredients and/or essences are retained by the powder.
  • EXAMPLE 1 Into a flask equipped with an agitator and a heating mantle was charged 1000 grams of silicone oil; polydimethyl silicone) 100 grams of 2-hydroxyethyl methacrylate and 0.33 grams of isopropyl percarbonate. The flask was placed under a nitrogen atmosphere and the contents were rapidly agitated and heated to 100 C. After 15 minutes at 100 C., the polymer slurry obtained was filtered hot to isolate the polymer. The polymer powder was reslurried in 300 ml. of xylene, filtered and dried. A 98% yield of 2 to 5 micron particle size powder was obtained.
  • EXAMPLE 2' EXAMPLE 3 Example 1 was repeated using xylene in place of the silicone oil. The amount of 2-hydroxyethyl methacrylate was increased from 100 grams to 300 grams and the quantity of isopropyl percarbonate was increased to 9 0.99 gram. An 85% yield of polymer beads was obtained.
  • Example 1 was repeated using mineral oil in place of the silicone oil, the amount of 2-hydroxyethyl methacrylate was increased from 100 grams to 200 grams and the quantity of isopropyl percarbonate was increased from 0.33 to 0.66 gram. A 98% yield of polymer beads ranging in diameter from 2 to 5 microns was obtained.
  • EXAMPLE 5 800 grams of ethylene glycol monomethyl ether, 180 grams of 2-hydroxyethyl methacrylate, 20 grams of acrylic acid and 2 grams of t-butyl peroctoate were charged into a flask. The solution was heated and stirred under a carbon dioxide atmosphere at 85 C. for 6 hours. The thermoplastic hydrophylic polymer formed was precipitated by pouring the reaction solution into liters of rapidly agitated water. The precipitated polymer was isolated by filtration and dried. The product of this example while thermoplastic and solvent soluble has the capability of curing to cross-linked solvent insoluble polymer by further heating, particularly if additional catalyst is added. In contrast, the polymers of examples 1, 3, and 4 are permanently thermoplastic and solvent soluble. The copolymers formed in examples 7-13 are all cross-linked.
  • EXAMPLE 6 The procedure of example 1 was repeated replacing the 2-hydroxyethyl methacrylate by 100 grams of 2- hydroxypropyl methacrylate to produce a thermoplastic solvent soluble hydrophylic finely divided bead polymer.
  • EXAMPLE 7 This example shows the preparation of a cross-linked polymer prepared with the aid of a foaming agent.
  • a foaming agent e.g. sodium bicarbonate, potassium bicarbonate, azodicarbonamide, benzene sulfonyl hydrazide, azo-bis-isobutyronitrile, etc. aids in preparing polymers which are in the form of a foam which is easily disintegrated to form a fine powder by means of a shearing action. Quantities of 0.5 to 10 grams of foaming agent per 100 grams of reactants are adequate.
  • EXAMPLE 8 100 grams of purified 2-hydroxyethyl methacrylate was mixed with 0.2 grams of ethylene glycol dimethacrylate and 1 gram of benzoyl peroxide. The mixture was -.sprayed via a nozzle which forms fine droplets into a chamber containing nitrogen at 150 C. After spraying EXAMPLE 9 An aqueous solution was prepared from acrylamide, 10% ethylene glycol monomethacrylate, 0.1%
  • EXAMPLE 10 A polymerization mixture was prepared from 15 parts methacrylamide, 80 parts ethylene glycol monomethacrylate, 0.4 parts ethylene glycol bismethacrylate and 5 parts of dibenzoyl peroxide. The mixture was rotated at 400 rpm. in a helium atmosphere at 80 C. for 6 hours to give a cross-linked copolymer. The polymer was then finely divided (below 100 mesh).
  • EXAMPLE 1 l 97 parts of ethylene glycol monomethacrylate, 0.25 part ethylene glycol bis-methacrylate, 0.25 part diethylene glycol bis-methacrylate, 2 parts ethylene glycol and 0.2 part diisopropyl percarbonate were rotated 80 minutes at 420 rpm. in a carbon dioxide'atmosphere at C. to produce a crosslinked hydrophylic copolymer. The polymer was then finely divided, i.e. to less than 100 mesh.
  • EXAMPLE l2 15 parts of a monomer mixture consisting of 99.7% ethylene glycol monomethacrylate and 0.3% ethylene glycol bis-methacrylate-as a cross-linking agent, 85 parts glycerol and 0.1 part diethyl percarbonate as a catalyst was heated at C. for 20 minutes to form a cross-linked hydrophylic polymer.
  • EXAMPLE 13 50 ml. of a mixture of 98% ethylene glycol monomethacrylate, 0.3% diethylene glycol bis-methacrylate and 1% ethylene glycol were mixed with 50 ml. formamide and an amount of azo-bis-isobutyronitrile corresponding to 0.2% of the combined monomers. Polymerization was performed at 75 C. for 50 minutes to give a cross-linked hydrophylic polymer.
  • EXAMPLE 14 30 grams of the solvent soluble, thermoplastic hydrophylic poly(2-hydroxyethyl methacrylate) prepared in example 1 was dissolved in ml. of methanol. To the solution was added 4.0 grams of peppermint oil. The viscous solution was coated on an impervious plate and allowed to dry to form a film 1.0 mil thick. The dry film was stripped from the plate and ground to form minute platelets. These were incorporated in an amount of about 1% in Crest-type toothpaste devoid of flavoring to provide prolonged release of the peppermint flavor on contact of the product with an aqueous medium, e.g. in the normal brushing of teeth.
  • the toothpaste formula was:
  • a hair setting composition was prepared from 1.90 parts of the poly 2-hydroxyethyl methacrylate prepared in example 1, 0.10 part of perfume (oil of orchids) and 28 parts of ethyl alcohol. This solution (50% of the total formulation) was packaged in a conventional aerosol pressure can container together with 45.5 parts (32% of the total formulation) of monofluorotrichloromethane and 24.5 parts (18% of the total) of methylene chloride.
  • the sprayed hair was natural looking, non-sticky, non-static and exhibited holding power for a relatively long period of time.
  • EXAMPLE 16 A 5% solution of the polymeric Z-hydroxyethyl methacrylate prepared in example 1 in 95% ethyl alcohol (95% alcohol, 5% water) was applied to kinky hair. The hair was relaxed and then rolled on rollers and held in tension until dried. When dry the hair was set and could be combed in conventional fashion.
  • the perma-- EXAMPLE 17 A more flexible wave can be obtained by incorporating 5 to 100%, based on the polymer, of glycerol, sorbitol, diethylene glycol, dipropylene glycol, ethylene glycol, propylene glycol or other liquid polyhydric alcohol as a plasticizer.
  • EXAMPLE 18 To impart greater sheen to the hair a small amount, e.g. 23%, of silicone oil can be added to the formulation. Thus the formulation of example 17 was modified by adding 3% of dimethyl polysiloxane oil based on the 2-hydroxyethyl methacrylate polymer to give a flexible permanent wave having a high sheen.
  • the hair straightener compositions can be brushed on the hair, poured on the hair or combed on the hair.
  • the preferred solvent is ethyl alcohol with or without minor amounts of water.
  • solvents such as isopropyl alcohol, monomethyl ether of ethylene glycol, monoethyl ether of ethylene glycol, normal or isopropylene glycol monomethyl ether, normal or isopropylene glycol monoethyl ether.
  • Hydrophylic Z-hydroxyethyl methacrylate polymer of example 10 parts 95% ethyl alcohol 144 parts Water 36 parts Carbopol 940 (sucrose acrylate polymer having free acrylic acid groups) 1 2 part Glycerine 1.4 part Solulan 98 (acetylated polyoxyethylated lanolin) 1.0 part Triton X-lOO (polyoxyethylene (l0)- nonylphenol condensate) 2.0 parts Essence (lavender oil) 0.6 part The polymer was dissolved in the alcohol-water mixture to form a solution.
  • diisopropanolamine there can also be used triethanolamine, diethanolamine or tripropanolamine as a gelling agent in this example.
  • EXAMPLE 2O Into a bottle equipped with an agitator and a heating mantle was charged 20 liters of 2-hydroxy ethyl methacrylate,- 50 liters of methanol, 30 liters of water and 10 grams of t-butyl peroctoate. The kettle was flushed with carbon dioxide and the contents were rapidly agitated and heated to C. After 8 hours at 75 C. the polymer, representing an polymeric conversion, was isolated. The polymer solution was precipitated from 500 liters of water, filtered and dried at room temperature.
  • Solution A Polymer produced according to example 20 30 pans ethanol 61.34 parts Water 75.02 parts Essence 0.5 part Solution B Mineral oil 30 parts Atlas olysorbate 80 2.96 pans Triton X 0.68 part Solution A is added slowly to solution B with rapid stirring for 5 minutes. A stable emulsion results which could' be applied'to the hands or face.
  • Polysorbate 80 is polyoxyethylene (20) sorbitan monooleate.
  • EXAMPLE 22 An insect repellant sun screen lotion was prepared with the following formulation:
  • Hydrophylic polymer of example I 1 part 95% ethanol 60 parts Water 38 parts 2-ethyl-1,3-hexandiol 0.5 part Z-ethoxyethyl-p-methoxy cinnamate 0.5 part EXAMPLE 23 100 parts of the hydrophylicpolymer prepared in example 1 containing 10 parts of essence (oil of orchids) was homogeneously mixed with 5 parts of hexachlorophene; 75 parts of the resulting mixture was'mixed with a conventional toilet soap (Ivory) to provide a compositsoap having a pleasant smell, antiseptic and increasedlubricity characteristics.
  • EXAMPLE 24 A sun screen aerosol was made from 1 part of the poly 2-hydroxyethyl methacrylate prepared in example 1,. 30 parts of 95% ethyl alcohol, 0.5 part pr 2-ethoxyethyl-p-methoxy cinnamate and 685 parts of dichlorotetrafluoroethane. The aerosol was sprayed from the container onto the body and acted as an efiective sun screen.
  • Theratio of polymer to talc can range from '10 to 90 parts of polymer to '9 -to 10 parts of talc orthe talc can be omitted.
  • EXAMPLE 27 20 parts of aluminum chlorohydrol, in-l00 parts of water, 10 parts of hydroxyethyl 'methacrylate containing 1 part of perfume (e .g. rose oil)'and 0.04 part of isopropyl percar'bon'ate were polyrnerize d' at 70 C. for
  • the solid obtained was ground to a powderless than 3 00 mesh and was useful as a deodorant by applying the same to the body.
  • EXAMPLE 28 I A nail enamel was prepared by making a solution of the polymer prepared in example 1 in alcohol together with a small amount of red dye. The resulting solution was applied to fingernails and allowed to dry.
  • EXAMPLE 29 A cleansing cream was prepared from a mixture of 5 parts almond oil, 15 parts lanolin, 5 parts of the hydrophylic Z-hydroxyethyl methacrylate polymer prepared in example I, 30 parts paraffin wax, 5 parts borax and 35 parts distilled water.
  • EXAMPLE 30 Another cleansing cream was prepared from 25 parts almond oil, 10 parts beeswax, 15 parts lanolin, 8 parts spermaceti, 12 parts of the hydrophylic cross-linked polymer of example 11 and 30 parts of rose water.
  • a cleansing cream was prepared from 7 parts beeswax, 30 parts mineral oil, 15 parts soyabean oil, 10 parts spermaceti, 1 part borax, 8 parts of the hydrophylic polymer prepared in example 6 and 29 parts of rose water.
  • EXAMPLE 32 EXAMPLE 33 A vanishing cream was prepared from 0.5 part cetyl alcohol, 5 parts glycerol, 4 parts lanolin, 3 parts mineral' oil, 20 parts stearic acid, 2 parts triethanola'min'e,
  • EXAMPLE 34 A quick-liquefying hand cream was made from 12 part cresin, 85 parts mineral oil and 3 parts of the hydrophylic polymer prepared in example 4.
  • EXAMPLE 35 A face powder was made from 10 parts precipitated chalk, 75 parts talc, 5 parts of the hydrophylic polymer of example 1, 5 parts zinc oxide and 5 parts zinc stear ate.
  • EXAMPLE 37 A loose face powder was prepared from 3 parts kaolin, parts talc, 1.5 parts magnesium stearate, 2 parts of D & C Red No. 2 (lake) 20% in talc, D & C Red 3 (lake) 10% tale, 1 part yellow iron oxide 20% inftalc and 1 part rose oil absorbed in 4.5 parts of the hydrophylic polymer of example 7.
  • EXAMPLE 38 A cake type face powder. was prepared from 10 parts kaolin, 5 parts zinc stearate, 10 parts zinc oxide, 3 parts magnesium carbonate, 61 parts talc (French), 1.4 parts of the hydrophylic polymer prepared in example 1 2 parts light mineral oil, 1 part cetyl alcohol, 0.3 part lanolin, 2.7 parts D & C Orange No.4 (lake), 10% in talc,
  • EXAMPLE 39 A baby powder was prepared from 80 parts talc, 9 parts zinc stearate, parts boric acid and 0.25 part perfume absorbed in 5.75 parts of the hydrophylic polymer prepared in example 1.
  • a lipstick was prepared from 12 parts beeswax, 3 parts of the hydrophilic polymer of example 1, 5 parts Carnauba wax, 20 parts cresin, 5 parts lanolin, 28 parts lard, 15 parts mineral oil, 2 parts of dibromo fluorescein and parts of lakes (a mixture of equal parts of D & C No. 9 and D & C Orange No. 4).
  • yethyl acrylate methoxyethyl methacrylate, ethox yethyl methacrylate, acrylamide, methacrylamide, acrylic acid, methacrylic acid, crotonic acid, vinylpyrrolidone, etc.
  • hydrophilic polymers such as polyvinylpyrrolidone and polyvinyl alcohol, e.g., in an amount of l to 50% by weight of the polymer made from the hydroxyalkyl acrylateor methacrylate.
  • Examples 4l-45 illustrate additional mascara preparations.
  • EXAMPLE 4 In a 1 liter flask there were placed 80 grams of hydroxyethyl methacrylate, 20 grams of butyl acrylate and 600 grams of ethanol. T-butyl-peroctoate (0.5 gram),was added and the solution was heated at 80C. for 16 hours under an inert atmosphere (nitrogen) to effect polymerization. The resulting polymer solution was diluted with an equal volume of water and was extracted three times with n-hexane. After extraction the polymer was precipitated by adding excess water to the polymer-water layer.'The polymer was isolated by filtration and dried at 45C. An 83% yield of polymer having an intrinsic viscosity of 0.38 in methyl Cellosolve was obtained. q
  • a portion of the polymer was dissolved in a solvent mixture of 50 wt.% ethanol, 40 wt.% water and 10 wt.% glycerol to provide a solution of wt.% polymer concentration.
  • This formulation was applied in the area of the eye and was found to be non-irritating. Moreover, after drying, it did not run when wet. it could be removed cleanly by moistening and rubbing.
  • EXAMPLE 43 To 600 grams of ethanol in a reaction flask there were added 50 grams of 2-hydroxyethyl methacrylate, 45 grams of ethoxyethyl acrylate and 5 grams of methacrylic acid. 0.15 grams of t-butyl peroctoate was added and the solution was subjected to polymerization in accordance with Example 41. The polymer was isolated from solution by precipitation with n-hexane. After drying, an 88% yield of polymer having an intrinsic viscosity in methyl Cellosolve of 0.45 was obtained.
  • This polymer was dissolved at an l8 wt.% solids level in a solvent mixture consisting of 45 wt.% ethanol, 20 wt.% diacetin and 35 wt.% water. Carbon black pigment was dispersed by ball-milling in the solution at a 5 wt.% level to provide a formulation which when applied to the eyelid and eyelashes was non-streaking with water but easily removed as a coherent film when wet.
  • EXAMPLE 44 To the formulation prepared in example 43 there was added 1 wt.% of fumed silica. This aided in maintaining pigmentdispersion and improved covering properties of the pigment withhout detracting from theeasy removal from around the eye and non-streaking qualities of the formulation.
  • EXAMPLE 45 A copolymer was prepared as in example 41 from a monomer mixture consisting of 60 wt.% hydroxyethyl methacrylate and 40 wt.% butyl acrylate. The polymer was formulated with the solvent mixture and pigment of example 41. The formulation when applied to the eyelid and eyelashes was soft, flexible and nonirritating and showed slightly greater water resistance than the formulation of example 41.
  • a toothpaste containing a flavoring agent comprising including in said toothpaste a hydrophilic polymer of an acrylate or methacrylate selected from the group consisting of hydrophilic polymers of hydroxy lower alkyl acrylates, hydroxy lower alkyl methacrylates, hydroxy lower alkoxy lower alkyl acrylates and hydroxy lower alkoxy lower alkyl methacrylates, said flavoring agent being contained in said vpolymer and being releasable upon contact with an aqueous medium.
  • a process of improving the external appearance of the human body comprising applying the toothpaste of claim 1 to the teeth.
  • a toothpaste according to claim 1 including stan; nickel pyrophosphate.
  • a toothpaste according to claim 1 wherein the polymer is a member of the group consisting of hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate and hydroxypropyl methacrylate.
  • a toothpaste according to claim 5 including a stannous pyrophosphate.
  • a toothpaste according to claim 1 consisting essentially of 1 part of hydrophilic polymer of hydroxyparts of calcium pyrophosphate, 1.20 parts of sodium ethyl methacrylate containing flavoring therein, 39 nous pyrophosphate and 25:77 parts of water.

Abstract

A toothpaste composition is prepared containing a hydrophilic acrylate or methacrylate.

Description

United States Patent [1 1 Shepherd et al.
[ 1 Oct. 21, 1975 COSMETIC AND TOOTHPASTE PREPARATIONS Inventors: Thomas H. Shepherd, Hopewell;
Francis E. Gould, Princeton, both of NJ.
Assignee: National Patent Development Corporation, New York, N.Y. Filed: May 21, 1973 Appl. No.: 361,932
Related US. Application Data Ser. No. 654,044, July 5, 1967, abandoned, which is a continuation-in-part of Ser. No. 743,626, July 10, l 1968, Pat. No. 3,574,822.
52 US. Cl. 424/49; 424/81 [51] lm. cl. A61K 7/16 Field oi Search 424/49-5s Primary Examiner-Richard L. Huff Attorney, Agent, or FirmCushman, Darby & Cushman [5 7 ABSTRACT A toothpaste composition is prepared containing a hydrophilic acrylate or methacrylate.
8 Claims, No Drawings COSMETIC AND TOOTHPASTE PREPARATIONS This present application is a continuation of application Ser. No. 192,658, filed Oct. 26, 1971, now abandoned, which in turn is a continuation-in-part of application Ser. No. 567,856 filed July 26, 1966, now U.S. Pat. No. 3,520,9149; application Ser'. No. 650,259, filed June 30, 1967 and nowabandoned; application Ser. No. 654,044, filed July 5, 1967 and now abandoned and application Ser. No. 743,626, filed July 10, 1968 now U.S.Pat. No. 3,574,822.
Cosmetic manufacturers have sought in the past to produce compositions for use on human hair and skin which'may, be easily applied, exhibit no detrimental effect on the skin and retain their stability for a resonable period of time. Some progress has been madev in producing products of this type. However, there remains inherent defects. in prior preparations such as creams, lotions, shampoos, dressings, stick, and the like which impairs their cosmetic effectiveness. One example of this is the well-known tendency of conventional mascara to run when wet by tears or water.
'As is well known the various creams used on the body have a tendency to soil clothing, bed clothes and the like. Lipsticks and suntan creams have a tendency to be greasy and essences (e.g. perfume) and other volatile components present in lipstick, creams and lotions have a tendency to be lost on standing.
It has hitherto been proposed to employ lacquers for imparting a temporary set to the'hair. However, since lacquers include a water-insoluble film-forming ingredient,jit has been extremely difficult to remove them from the hair. When his desired to change the hair style, it'sometimes becomes necessary to employ a special solvent or a powerful detergent composition, neither of which is readily'available inthe home. Lacquers have generally been considered unsatisfactory for applicat ion to the hair for'this reasongA' number of watersoluble film-forming resinous materials have also been proposed for application to the hair in order to set it. However, such water-soluble materials have not been completely satisfactorybecause of the tendency for the resultant,- film to become tacky andfor the'hair to lose itsv li when exposed to conditions of high humidity.
furthermore, atpresent "there" is no satisfactory method for straightening kinky hair. t f
Accordingly, it is an object of the'present invention to prepare novel cosmetic compositions. Another object is to improve the application of cos metic compositions to the body.
An additional object is to overcome mascara to run when wet.,
.furtherobject is to protectthe body against the drying effects of cosmetics comprising alcohol solutions-f1 Yet anotherobject is to overcome the greasiness present in various cosmetic creamsjs'ticks, and lotions.
Astill further objectis to reduce the staining or soilingproperty of cosmetic creams and lotions.
An additional object is to'reduce the loss of flavors or essences from cosmetic compositions. j 1 I A corollary object is to develop cosmetic compositions which release a flavor or'essence when wet.
An important object of the invention is to straighten kinky" or curly hair so that it can be manipulated as desired. a I
A related object is to set hair of any type.
the tendency of does not result in the treated hair developing static electrical charges under conditions of low humidity.
Another object is to apply a film having one or more of the above characteristics in relation to hair, but which can be readily removed.
A still further object is to develop novel aerosol compositions useful for application to the body.
Still further objects and the entire scope of applicability of the present invention will become apparent from the detailed description given hereinafter; it
should be understood, however, that the detailed description and specific examples, while indicating preferred embodiment of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the'art from this detailed description.
It has now been found that these objects can be attained by employing certain hydrophylic acrylate and methacrylate polymers in cosmetic compositions. For liquid cosmetics the hydrophylic polymer should not have substantial cross-linking (i.e. the cross-linking should not be sufficient to render the polymer'insoluble, in the solvent) while for powdered or creamy compositions cross-linked copolymers can be employed. a v
The term cosmetic is intended to embrace all types ofproducts which are to be applied in any manner directly to the person for the purpose of cleansing or embellishment, including altering the appearance. Toilet soap and shaving soaps and creams are intended to be included in this definition as well as deodorants, depilatories, suntan and sunscreen preparations.
The hydrophylic monomer used to prepare the'hydrophylic polymer is preferably a hydroxyalkyl monoacrylate or methacrylate such as Z-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, diethylene glycol monoacrylate, diethylene glycol monomethacrylate, hydroxypropyl acrylates and methacrylates, e.g. 2- hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 3-hydroxypropyl acrylate, 3-hydroxypropyl methacrylate, tetraethylene glycol monomethacrylate, pentaethylene glycol monomethacrylate, dipropylene glycol monomethacrylate, dipropylene glycol monoacrylate. Acrylamide, methacrylamide, diacetone acrylamide, methylolacrylamide and methylol methacrylamide also are useful hydrophylic monomers. The most preferred monomer is 2-hydroxyethyl methacrylate and the next most preferred monomer is 2-hydroxyethyl acrylate. f
In preparing hydroxyalkyl acrylates and methacrylates asmallamount of the diacrylate or dimethacrylate is also formed. This need not be removed as it does not cause undue cross-linking. v
When it is desired to shampoo out the hydrophylic polymer there aredesirably included 0.1 to 15%fof an ethylenically unsaturated acid to provid'e free acid groups. Typical examples of such acidsinclude acrylic acid, methacrylic acid, itaconic aci'd,ac'onitic acid, cinnamic acid, crotonic acid, citraconic acid, mea'sa'conic acid, maleic acid and fumaric acid. L'ess preferably there can also be, used partial esters of polyba'sic acids such as mono 2-hydroxypropyl itaconate, mono 2- hydroxyethyl itaconate, mono 2-hydroxyethyl citracon ate, mono2-hydroxypropyl aconitate, mono 2- hydroxyethyl maleate, mono2-hydroxypropyl fumarate, monomethyl itaconate, monoethyl itaconate, mono Methyl Cellosolve ester of itaconic acid (Methyl Cellosolve is the monomethyl ether of diethylene glycol), mono Methyl Cellosolve ester of maleic acid.
The use of such acid containing groups does not result in substantial cross-linking unless the polymer is heated for a substantial time above normal operating conditions for cosmetics or unless the polymerization time is prolonged using relatively high amounts of catalysts.
When cross-linked or cross-linkable hydrophylic polymers are prepared normally the cross-linking agent is preferably present in an amount of 0.lto 2.5%, most preferably 0.1 to 1.0%, of the total monomers, although up to of cross-linking agent can be used. Typical examples of cross-linking agents include ethylene glycol diacrylate, ethylene glycol dimethacrylate, l,2-butylene dimethacrylate, 1,3-butylene dimethacrylate, l,4-butylene dimethacrylate, propylene glycol diacrylate, propylene glycol dimethacrylate, diethylene glycol dimethacrylate, dipropylene glycol diacrylate, divinyl benzene, divinyl toluene, diallyl tartrate, allyl pyruvate, allyl malate, divinyl tartrate, triallyl melamine, N,N'-methylene-bis-acrylamide, glycerine trimethacrylate, diallyl maleate, divinyl ether, diallyl mono ethylene-glycol citrate, ethylene glycol vinyl allyl citrate, allyl vinyl'maleate, diallyl itaconate, ethylene glycol diester of itaconic acid, divinyl sulfone, hexahydro-l ,3,5-tri'acryltriazine, triallyl phosphite, diallyl ester of benzene phosphonic acid, polyester of maleic anhydride with triethylene glycol, polyallyl sucrose, polyallyl glucose, e.g. diallyl sucrose and triallyl glucose,1sucrose diacrylate, glucose dimethacrylate, pentaerythri tol diacrylate, sorbitol dimethacrylate.
The cross-linked polymers are characterized by being insoluble in the solvents. Typical examples of suitable crosslinked hydrophilic polymers are those in Wichterle U.S. Pat. No. 2,976,576, Wichterle US. Pat. No. 3,220,960, e'.g. examples II], V, VI, VII, and IX, Wichterle U.S. Pat. No. 3,36l,858, examples I, 2, 3,6, 8, 9, l0, and l l, as well as copolymers of parts ethylene glycol with 0.1 part ethylene glycol bis-methacrylatej 54.7 parts ethylene glycol monomethacrylate, 17.2 parts diethylene glycol monomethacrylate and 0.6 parts of diethylene glycol dimethacrylate; 80 parts ethylene glycol monomethacrylate, 15 parts methacrylamide and 0.4 parts of ethylene glycol bis-methacrylate; 97 parts ethylene glycol monomethacrylate, 0.25 parts diethylene glycol dimethacrylate and 0.25 part ethylene glycol bis-methacrylate; 60 parts ethylene glycol monomethacrylate, 19.7 parts diethylene glycol monomethacrylate, 0.3 part ethylene glycol bismethacrylate, 99.6 parts ethylene glycol monomethacrylate and 0.4 part ethylene glycol bismethacrylate, 99.5 parts ethylene glycol monomethacrylate and 0.4 part ethylene bis-methacrylate, 99.7 parts ethylene glycol monomethacrylateand ethylene glycol bismethacrylate; 98 .7 partsethylene glycol monomethacrylate and 0.3 part diethylene glycol dimethacrylate. They can also be prepared using the procedures set forth in our; parent application Ser. No. 654,044 or the procedures employed in the specific examples below.
Unless otherwise indicated all parts and percentages are by weight.
The hydrophylic polymers of this invention possess unique properties which are capable of improving a wide range of cosmetic products. In particular, they impart to such products a wide range of unusual and desirable properties and effects on the skin and hair, such as lubricity, emolliency, softening and smoothing, resistance to and protection against the drying effects of alcohol solutions, resistance to water and/or soap or detergents and water, freedom from tactile greasiness or oiliness due to mineraland/or vegetable oils, marked solvency and coupling effects for lanolin, lanolin isolates and derivatives either alone or in the presence of mineral and vegetable oils and freedom from tackiness or greasiness in preparations containing any of the above-mentioned materials.
Considering specific applications of the hydrophilic polymers; they are useful in creams, which essentially comprise an oleaginous base, either as an addition thereto or to replace, at least in part, oily fatty and/or waxy ingredients of the creams. For example, the polymers may partly replace the almond oil, mineral oil, lanolin, beeswax, paraffin wax, oleic acid, or spermaceti, and the like, which are conventionally used in creams, whether of the cleansing, emollient, or finishing types, and including cold cream, quick-liquefying cream, liquid cleanser cream, night cream, massage cream, vanishing cream, foundation cream, and various special creams. An advantage of replacing at least part of such materials is that the soiling tendency of the creams is reduced, that is to say, the creams after being spread over the skin by the user are less apt to pick up or attact soil or foreign particles, similarly, the deposited creams transfer off the users skin less readily, as by contact with clothing, bed sheets, and the like. This last advantage is of particular importance in other creams such as deodorants, including deodorizer and anti-perspirant creams, which are used under the arms and on the palms and soles and which are quite apt to come in contact with clothing and to soil it to such an extent that the garments are frequently ruined. The lanolin, petrolatum, cresin, beeswax, cocoa butter, and/or stearic acid contents of emollient and vanishing creams,.and also of cream and paste rouges, can be partly supplanted to reduce their soiling tendency, and more particularly to reduce their oily or greasy feel while yet retaining their power of free motion over the skin. Because they are lubricitous in a cream preparation without increasing its oleaginous character, crosslinked polymers are suitable for addition to creams to be applied to the oily skin.
Special creams such as protective creams can usefully incorporate the polymers of this invention. The creams can be of any suitable type, such as a mixture of fats and oils, a jelly containing a physical barrier, an emulsion, or a soap base. These creams are of particular value for protecting the hands from injury, or from soiling, in carrying out many processes and procedures in industrial plants. These creams containing physical barriers are particularly adapted to receive the hydrophylic polymers, which being available in various particle sizes,may form protective barriers on the skin of varying degrees of fineness and smoothness.
Make up powders for the face may benefit from the presence of the polymers. These powders usually comprise an opacifying agent (clay, titania, magnesia zinc oxide, etc.,) a slip material, (talc, metal stearates, etc.,), an adherent material (stearates, clay, etc.) and an absorbent (chalk, calcium carbonate, kaolin, etc.).
The hydrophilic polymers are capable of replacing in whole or in part, metal salts and oxides like chalk, kaolin, magnesium carbonate, talc, titania, magnesium stearate, zinc oxide, zinc oxide, zinc stearate and the like;
An advantage of such a substitution is the reduced incidence of undesirable dermatological reactions. For example, in the case of magnesium carbonate, a widely used ingredient, it is known that some persons are sensitive to the presence of trace amounts of elements like selenium, arsenic, or mercury which tend to be present in the magnesium carbonate owing to the difficulty of meant the capacity of thepolymeric powder to absorb oily, fatty, greasy, waxy and aqueous materials.
In addition to the foregoing capabilities, the polymers are of benefit to loose face powder compositions by virtu'eof their excellent adherence to-surfaces including the skin, by the degree to' which their particle size may be varied, and by the extent to which .theirfluffiness or bulk density may be changed. Therefore, they are useful in place of theadherent agents noted. Byincorporating conventional amounts of' a desired color and a desired perfume, a complete, esthetically suitable face powder may be-made which will inherentlyhave a mat effect, and which may be used per se or serve as a base, with or without the-zcol'or and perfume,-to which only minor additions need be made to obtain desired-finished powders to suit different types of skin.
In compact powders, including face powder and rouge, which are pressed after the addition of a binder like gum arabic, gum tragacanth, glycerine, sorbitol,
etc., the use of the hydrophilic polymers can eliminate the need for the binder as they are inherently compressible in the dry; or wet state to any desireddegree.
The polymers :are also useful in lipstick compositions and can'replaceone or more oleaginous ingredients in whole orv part, such as the fats and waxes, with the advantage or decreased .greasiness without'loss of lubricity, and improved consistency retention. Fats and waxes which arecommonly used in lipstick composi-. tions include beeswax, carnauba wax, ceresin, lanolin, lard, mineral oil, petrolatum, etc.Conventionally used lipstick flavors, usually i comprising a volatile, waterimmiscible organic ester, may bebetter retained in the lipstick owing to the goodsorptive capacity of the polymers for. such compounds. The. polymers form freeflowin'g, apparently dry mixes with flavors, and thus can facilitatelipstick manufactureby serving as a carrier for introducing these volatile compounds to the production batch and losses of the flavors may bereduced.
ln mascara preparations such as mascara cake, the polymers cansupplant conventional soaps like triethanolamine stearate, triethanolamine, oleate, etc., and thereby renderthe preparation less irritating to the. eyes. The waxes frequently used, in these preparations, and also in roll-on mascara and cream mascara, can be at least partly replaced with advantages similar to those described in wax substitutions. The hydrophylic polymers of this invention are also capable of imparting a cleaner effect to eyelashes, avoiding the thick, pasty, or crumbly look resulting from the use of some conventional preparations or the startling effect imparting by some enamel-like preparations. Use of the polymers permits a wider selection of colors to be employed and thus may avoid dependence on the conventional but somewhat dangerous use of silver nitrate with sodium thiosulfate. Suitable colors include natural pigments, e.g. carbon, ochers, siennas, umbers, ultramarine, etc. In similar ways, the polymers are of value to other cosmetics for use around the eye, as in eye shadow sticks,
, eyeliner pencils, and eyebrow pencils.
without greasiness, and in addition, the adherence of.
the product to the skin is enhanced, and its water-removability improved. As these preparations are frequently in dispersion form, a further advantage resides in the stability which is imparted to. the dispersions by the presence of the polymers. Of interest in this connection are simple 2-, 3-, or 4- componentsunscreen preparations made by mixing a base like petrolaturn or zinc oxide or lanolin with the hydrophilic polymer and water. A sunburn preventive can be added to help block out harmful radiation, including such agents, as acetanilide, cholesterol, p-aminobenzoic and salicylic acid salts, quinine salts, and the like. These com-- ponents form compatible mixtures. Suntan make-up, whether in loose powder form for the face and other areas, or in cake form, can be benefited in the manner described'for make-up powders.
In manicure compositions, water removable nail coating compositions can be prepared comprising simply a hydrophilic polymer of this invention, a coloring agent, and solvent. The polymer provides the necessary adherence to the nails. Such compositions are of value for application to the nails for a single occasion of short duration, after which the coatings are removable by simply washing the hands in water. I
The polymers of this invention are also effective in hair preparations.
The present invention overcomes the disadvantages pointed out supra of previous hair preparations. Even though the hydrophylic polymers of the invention are insoluble in water, they are easily removed, e.g. with conventional shampoo. s
' Hair sprays produced according to this invention comprise a soluble hydrophylic polymer such as previously described and a non-toxic organic solvent. When an aerosol is to be prepared then a propellant is also used. As the organic solvent there can be employedal cohols,.particularly lower aliphatic saturated alcohols e.g. ethyl alcohol, isopropyl alcohol, propyl alcohol, glycols, e.g. ethylene glycol diethylene glycol, propylene glycol and clipropylene glycol, glycerine,ethyle'ne glycol methyl ether, ethylene glycol ethyl ether, npropylene glycol monomethyl ether, n-propylene gly col monoethyl ether, isopropylene glycol monomethyl ether, isopropylene glycol monoethyl ether, ethyl acetate. Mixtures of these solvents with minor amounts of water, e.g. up to 30% water, can be also employed. Glycols and glycerine and similar polyhydric alcohols act as plasticizers for the hydrophylic polymer.
Generally the amount of hydrophylic polymer will be about 0.5 to 10%, preferably 0.75 to by weight of the total hair spray composition.
Hair setting and hair Straightening compositions are also produced according to the invention using 0.5 to of the hydrophylic polymer in the solvent.
Such compositions not only provide the desired temporary set-holding characteristics and maintains the hair in the desired configuration until removed, but do so even when the hair is exposed to conditions of high humidity without the development of any appreciable surface track. In addition, the hair thus treated, despite its resistance to moisture, is remarkably free from any tendency to develop static electrical charges when combed or brushed under conditions of low humidity. Furthermore, the treated hair is capable of being reset merely by use of water-dampened comb. Finally, the film on the hair may readily be removed, despite its resistance to moisture, by a mild shampoo.
The hydrophylic polymers can be used not only in solution, but also in compositions having the form of stable gels, creams and the like without requiring the presence of an emulsifying agent. They can have the physical form of a jelly, paste, plastic mass, or the like and generally comprise the hydrophylic polymer in an amount of 2 to by weight of the total composition. Advantageously there can be included 7 to of a thixotropic agent such as Carbopol 961 (sucrose acrylate having free acid groups).
The amount of solvent is usually 10% or more of the total hair preparation. When a propellant is present the solvent is normally not over 60% and is preferably to 40% of the total hair preparation by weight.
When the hydrophylic polymer is packaged in an aerosol container the propellant should be sufficient. to force the composition out of the container as a spray. The propellant can vary considerably, but usually is about 25 to 85%, preferably 50 to 70%, of the total hair spray composition. As the aerosol propellants there can be used compressed gasses such as carbon dioxide, nitrous oxide and nitrogen, liquifled volatile hydrocarbons such as propane, n-butane, isobutane, 2-methyl butane and fluorinated compounds including perhalogenated compounds and fluorinated hydrocarbons such as dichlorodifluoromethane, trichlorofluoromethane, l ,2-dichlorotetrafluoroethane, octofluorocyclobutane, chlorodifluoromethane, l l
difluoroethane, l-chlorol l -difluoroethane. These fluorinated compounds are available under thev names Freon and Genetron. The propellant should contain a substantial amount of volatile material boiling at not over 20C., but there can also be present a significant amount of less volatile material boiling up to 50C., e.g. methylene chloride can be present as a substantial part of the propellant. Of course perfumes or other essences can be included in the formulations.
As catalysts for carrying out the polymerization there is employed free radical catalyst in the range of 0.05 to l% of the polymerizable hydroxyalkyl ester, for example, the preferred amount of catalyst is 0.1 to 0.2% of the monomer. Typical catalysts include t-butyl peroctoate, benzoyl peroxide, isopropyl percarbonate, methylethylketone peroxide, cumene hydroperoxide and dicumylperoxide. Irradiation, e.g., by ultra violet light or gamma rays, also can be employed to catalyze the polymerization. Polymerization can be done at 20 to 150 C., usually 40 to 90 C.
When cross-linked polymers are prepared the method of polymerization is not critical and the monomers can be polymerized in water, by suspension poly-' merization, in organic solvent or without any solvent. However, when hydrophylic soluble thermoplastic polymers are desired they are preferably prepared by suspension polymerization of the hydrophylic monomers in a non-polar medium such as silicone oil, mineral oil, xylene, toluene, benzene or the like. Alternatively they can be polymerized while in solution in ethyl alcohol, methyl alcohol, propyl alcohol, isopropyl alcohol, formamide, dimethyl sulfoxide or other appropriate solvent.
In the suspension polymerization procedure the catalyst containing monomer is dispersed in the non-polar medium in the form of small droplets which are polymerized to form finely divided spheres or beads. The beads are dissolved in the polar organic solvents, e.g., ethyl alcohol, isopropyl alcohol, ethyl alcohol-water (e.g. 95:5 or 70:30), glycols and glycol ethers for use as sprays, etc. or are mixed with other ingredients to make creams, powders or the like.
Suspension polymerization is preferably carried out at 50l05 C. until bead formation is completed. The ratio of suspension oil to monomer can be varied widely, but preferably is from 5:1 to 20:1. As stated the catalyst to monomer ratio is preferably from 0.05 to 1.0 parts per 100 parts of monomer.
One method of incorporating the hydrophylic polymeric powders'with cosmetic ingredients or essences dissolved in an appropriate solvent is to place the mix ture on a mechanical roller so that the solution becomes intimatelymixed with the powder. The mixture is dried by air evaporation or forced heat. Upon evaporation of the solvent the cosmetic ingredients and/or essences are retained by the powder.
EXAMPLE 1 Into a flask equipped with an agitator and a heating mantle was charged 1000 grams of silicone oil; polydimethyl silicone) 100 grams of 2-hydroxyethyl methacrylate and 0.33 grams of isopropyl percarbonate. The flask was placed under a nitrogen atmosphere and the contents were rapidly agitated and heated to 100 C. After 15 minutes at 100 C., the polymer slurry obtained was filtered hot to isolate the polymer. The polymer powder was reslurried in 300 ml. of xylene, filtered and dried. A 98% yield of 2 to 5 micron particle size powder was obtained.
EXAMPLE 2' EXAMPLE 3 Example 1 was repeated using xylene in place of the silicone oil. The amount of 2-hydroxyethyl methacrylate was increased from 100 grams to 300 grams and the quantity of isopropyl percarbonate was increased to 9 0.99 gram. An 85% yield of polymer beads was obtained.
EXAMPLE 4 Example 1 was repeated using mineral oil in place of the silicone oil, the amount of 2-hydroxyethyl methacrylate was increased from 100 grams to 200 grams and the quantity of isopropyl percarbonate was increased from 0.33 to 0.66 gram. A 98% yield of polymer beads ranging in diameter from 2 to 5 microns was obtained.
EXAMPLE 5 800 grams of ethylene glycol monomethyl ether, 180 grams of 2-hydroxyethyl methacrylate, 20 grams of acrylic acid and 2 grams of t-butyl peroctoate were charged into a flask. The solution was heated and stirred under a carbon dioxide atmosphere at 85 C. for 6 hours. The thermoplastic hydrophylic polymer formed was precipitated by pouring the reaction solution into liters of rapidly agitated water. The precipitated polymer was isolated by filtration and dried. The product of this example while thermoplastic and solvent soluble has the capability of curing to cross-linked solvent insoluble polymer by further heating, particularly if additional catalyst is added. In contrast, the polymers of examples 1, 3, and 4 are permanently thermoplastic and solvent soluble. The copolymers formed in examples 7-13 are all cross-linked.
EXAMPLE 6 The procedure of example 1 was repeated replacing the 2-hydroxyethyl methacrylate by 100 grams of 2- hydroxypropyl methacrylate to produce a thermoplastic solvent soluble hydrophylic finely divided bead polymer.
EXAMPLE 7 This example shows the preparation of a cross-linked polymer prepared with the aid of a foaming agent. The use of a foaming agent, e.g. sodium bicarbonate, potassium bicarbonate, azodicarbonamide, benzene sulfonyl hydrazide, azo-bis-isobutyronitrile, etc. aids in preparing polymers which are in the form of a foam which is easily disintegrated to form a fine powder by means of a shearing action. Quantities of 0.5 to 10 grams of foaming agent per 100 grams of reactants are adequate.
100 grams of 2-hydroxyethyl methacrylate, 0.15 grams of t-butyl peroctoate, 0.20 grams of ethylene glycol dimethacrylate and 1 gram of sodium bicarbonate were heated to 70 C. and the resulting solid friable p01- ymeric foam ground into a powder of 80 mesh size (U.S. Standard Sieve).
EXAMPLE 8 100 grams of purified 2-hydroxyethyl methacrylate was mixed with 0.2 grams of ethylene glycol dimethacrylate and 1 gram of benzoyl peroxide. The mixture was -.sprayed via a nozzle which forms fine droplets into a chamber containing nitrogen at 150 C. After spraying EXAMPLE 9 An aqueous solution was prepared from acrylamide, 10% ethylene glycol monomethacrylate, 0.1%
ethylene glycol dimethacrylate and the balance water. One liter of this solution was mixed with 10 ml. of an aqueous 2% solution of sodium thiosulfate and 15 ml. of an aqueous 2% solution of ammonium persulfate and the mixture allowed to polymerize at room temperature. The resulting gel was then finely divided to give a cross-linked hydrophylic polymer.
EXAMPLE 10 A polymerization mixture was prepared from 15 parts methacrylamide, 80 parts ethylene glycol monomethacrylate, 0.4 parts ethylene glycol bismethacrylate and 5 parts of dibenzoyl peroxide. The mixture was rotated at 400 rpm. in a helium atmosphere at 80 C. for 6 hours to give a cross-linked copolymer. The polymer was then finely divided (below 100 mesh).
EXAMPLE 1 l 97 parts of ethylene glycol monomethacrylate, 0.25 part ethylene glycol bis-methacrylate, 0.25 part diethylene glycol bis-methacrylate, 2 parts ethylene glycol and 0.2 part diisopropyl percarbonate were rotated 80 minutes at 420 rpm. in a carbon dioxide'atmosphere at C. to produce a crosslinked hydrophylic copolymer. The polymer was then finely divided, i.e. to less than 100 mesh.
EXAMPLE l2 15 parts of a monomer mixture consisting of 99.7% ethylene glycol monomethacrylate and 0.3% ethylene glycol bis-methacrylate-as a cross-linking agent, 85 parts glycerol and 0.1 part diethyl percarbonate as a catalyst was heated at C. for 20 minutes to form a cross-linked hydrophylic polymer.
EXAMPLE 13 50 ml. of a mixture of 98% ethylene glycol monomethacrylate, 0.3% diethylene glycol bis-methacrylate and 1% ethylene glycol were mixed with 50 ml. formamide and an amount of azo-bis-isobutyronitrile corresponding to 0.2% of the combined monomers. Polymerization was performed at 75 C. for 50 minutes to give a cross-linked hydrophylic polymer.
EXAMPLE 14 30 grams of the solvent soluble, thermoplastic hydrophylic poly(2-hydroxyethyl methacrylate) prepared in example 1 was dissolved in ml. of methanol. To the solution was added 4.0 grams of peppermint oil. The viscous solution was coated on an impervious plate and allowed to dry to form a film 1.0 mil thick. The dry film was stripped from the plate and ground to form minute platelets. These were incorporated in an amount of about 1% in Crest-type toothpaste devoid of flavoring to provide prolonged release of the peppermint flavor on contact of the product with an aqueous medium, e.g. in the normal brushing of teeth.
The toothpaste formula was:
l-lydrophylic polymer platelets containing peppermint oil 1 part Calcium pyrophosphate 39 parts Sodium carboxymethyl cellulose 1.20 parts Magnesium aluminum silicate 0.40 part Sorbitol 20.00 parts Sodium coconut monoglyceride sulfonate 0.81 part Sodium lauryl sulfate 0.70 part Saccharin 0.l2 part Stannous pyrophosphate 1.00 part Water 25.77 parts EXAMPLE A hair setting composition was prepared from 1.90 parts of the poly 2-hydroxyethyl methacrylate prepared in example 1, 0.10 part of perfume (oil of orchids) and 28 parts of ethyl alcohol. This solution (50% of the total formulation) was packaged in a conventional aerosol pressure can container together with 45.5 parts (32% of the total formulation) of monofluorotrichloromethane and 24.5 parts (18% of the total) of methylene chloride.
The aerosol was sprayed on hair held in a desired configuration and=allowed to dry, the formulation was found to provide satisfactory set-holding characteristics even under conditions of high humidity. The sprayed hair was natural looking, non-sticky, non-static and exhibited holding power for a relatively long period of time.
EXAMPLE 16 A 5% solution of the polymeric Z-hydroxyethyl methacrylate prepared in example 1 in 95% ethyl alcohol (95% alcohol, 5% water) was applied to kinky hair. The hair was relaxed and then rolled on rollers and held in tension until dried. When dry the hair was set and could be combed in conventional fashion. The perma-- EXAMPLE 17 A more flexible wave can be obtained by incorporating 5 to 100%, based on the polymer, of glycerol, sorbitol, diethylene glycol, dipropylene glycol, ethylene glycol, propylene glycol or other liquid polyhydric alcohol as a plasticizer.
Thus a more flexible wave than that of example 16 Wasobtained by applying to the hair, a solution. of 5 parts of the a poly 2-hydroxyethyl methacrylate, 100 parts of 95% ethyl alcohol and 0.75 part of glycerol. After the hair was relaxed it was held in tension until dried using a hair dryer. The hair was thus set and was combed in a conventional manner. Not only wasa more flexible wave obtained, but the use of glycerol prevented flaking of the polymer when the hair was combed.
EXAMPLE 18 To impart greater sheen to the hair a small amount, e.g. 23%, of silicone oil can be added to the formulation. Thus the formulation of example 17 was modified by adding 3% of dimethyl polysiloxane oil based on the 2-hydroxyethyl methacrylate polymer to give a flexible permanent wave having a high sheen.
The hair straightener compositions can be brushed on the hair, poured on the hair or combed on the hair. The preferred solvent is ethyl alcohol with or without minor amounts of water. There can also be employed other solvents such as isopropyl alcohol, monomethyl ether of ethylene glycol, monoethyl ether of ethylene glycol, normal or isopropylene glycol monomethyl ether, normal or isopropylene glycol monoethyl ether.
EXAMPLE 19 A hair sett ing gel was produced having the following formulation;
Hydrophylic Z-hydroxyethyl methacrylate polymer of example 1 10 parts 95% ethyl alcohol 144 parts Water 36 parts Carbopol 940 (sucrose acrylate polymer having free acrylic acid groups) 1 2 part Glycerine 1.4 part Solulan 98 (acetylated polyoxyethylated lanolin) 1.0 part Triton X-lOO (polyoxyethylene (l0)- nonylphenol condensate) 2.0 parts Essence (lavender oil) 0.6 part The polymer was dissolved in the alcohol-water mixture to form a solution. The solution was then mixed with the remaining ingredients by rapid stirring and the pH of the mixture adjusted to a pH of about 7.2 by adding a 10% solution of diisopropanolamine in 95% ethyl alcohol. This gel was suitable for setting hair. Thus a sample of curly hair was straightened by heat and pressure, coated with the above gel and soaked in water. A control sample of the curly hair was also straightened, but remained uncoated when soaked in water. The control sample returned to its original curly configuration after 30 seconds while the coated sample remained straight for about 3 minutes.
In place of the diisopropanolamine there can also be used triethanolamine, diethanolamine or tripropanolamine as a gelling agent in this example.
EXAMPLE 2O Into a bottle equipped with an agitator and a heating mantle was charged 20 liters of 2-hydroxy ethyl methacrylate,- 50 liters of methanol, 30 liters of water and 10 grams of t-butyl peroctoate. The kettle was flushed with carbon dioxide and the contents were rapidly agitated and heated to C. After 8 hours at 75 C. the polymer, representing an polymeric conversion, was isolated. The polymer solution was precipitated from 500 liters of water, filtered and dried at room temperature.
EXAMPLE 2] A cosmetic emulsion with the following formulation was prepared.
Two solutions were formulated:
Solution A Polymer produced according to example 20 30 pans ethanol 61.34 parts Water 75.02 parts Essence 0.5 part Solution B Mineral oil 30 parts Atlas olysorbate 80 2.96 pans Triton X 0.68 part Solution A is added slowly to solution B with rapid stirring for 5 minutes. A stable emulsion results which could' be applied'to the hands or face. Polysorbate 80 is polyoxyethylene (20) sorbitan monooleate.
EXAMPLE 22 An insect repellant sun screen lotion was prepared with the following formulation:
Hydrophylic polymer of example I 1 part 95% ethanol 60 parts Water 38 parts 2-ethyl-1,3-hexandiol 0.5 part Z-ethoxyethyl-p-methoxy cinnamate 0.5 part EXAMPLE 23 100 parts of the hydrophylicpolymer prepared in example 1 containing 10 parts of essence (oil of orchids) was homogeneously mixed with 5 parts of hexachlorophene; 75 parts of the resulting mixture was'mixed with a conventional toilet soap (Ivory) to provide a compositsoap having a pleasant smell, antiseptic and increasedlubricity characteristics.
EXAMPLE 24 A sun screen aerosol was made from 1 part of the poly 2-hydroxyethyl methacrylate prepared in example 1,. 30 parts of 95% ethyl alcohol, 0.5 part pr 2-ethoxyethyl-p-methoxy cinnamate and 685 parts of dichlorotetrafluoroethane. The aerosol was sprayed from the container onto the body and acted as an efiective sun screen.
' EXAMPLE 26. v
l' partofihexachlorophene was absorbedon 10 parts of the finely divided cross-linked hydrophylic-methacrylate polymer prepared. in example ll; There was blended in 20 parts of talc and the deodorant powder was packaged in'an aerosol container together with 30 parts of chlorotrifluoromethane and 10 parts of methylene chloride. v
Theratio of polymer to talc can range from '10 to 90 parts of polymer to '9 -to 10 parts of talc orthe talc can be omitted. y
, EXAMPLE 27 20 parts of aluminum chlorohydrol, in-l00 parts of water, 10 parts of hydroxyethyl 'methacrylate containing 1 part of perfume (e .g. rose oil)'and 0.04 part of isopropyl percar'bon'ate were polyrnerize d' at 70 C. for
2 hours. The solid obtained was ground to a powderless than 3 00 mesh and was useful as a deodorant by applying the same to the body.
EXAMPLE 28 I A nail enamel was prepared by makinga solution of the polymer prepared in example 1 in alcohol together with a small amount of red dye. The resulting solution was applied to fingernails and allowed to dry.
EXAMPLE 29 A cleansing cream was prepared from a mixture of 5 parts almond oil, 15 parts lanolin, 5 parts of the hydrophylic Z-hydroxyethyl methacrylate polymer prepared in example I, 30 parts paraffin wax, 5 parts borax and 35 parts distilled water.
EXAMPLE 30 Another cleansing cream was prepared from 25 parts almond oil, 10 parts beeswax, 15 parts lanolin, 8 parts spermaceti, 12 parts of the hydrophylic cross-linked polymer of example 11 and 30 parts of rose water.
EXAMPLE 3 l A cleansing cream was prepared from 7 parts beeswax, 30 parts mineral oil, 15 parts soyabean oil, 10 parts spermaceti, 1 part borax, 8 parts of the hydrophylic polymer prepared in example 6 and 29 parts of rose water.
EXAMPLE 32 EXAMPLE 33 A vanishing cream was prepared from 0.5 part cetyl alcohol, 5 parts glycerol, 4 parts lanolin, 3 parts mineral' oil, 20 parts stearic acid, 2 parts triethanola'min'e,
0.5 part part oil of orchids, 3 parts of the hydrophylic polymer prepared in example 5 and 62 parts of water.
EXAMPLE 34 A quick-liquefying hand cream was made from 12 part cresin, 85 parts mineral oil and 3 parts of the hydrophylic polymer prepared in example 4.
EXAMPLE 35 EXAMPLE 36 A face powder was made from 10 parts precipitated chalk, 75 parts talc, 5 parts of the hydrophylic polymer of example 1, 5 parts zinc oxide and 5 parts zinc stear ate.
EXAMPLE 37 A loose face powder was prepared from 3 parts kaolin, parts talc, 1.5 parts magnesium stearate, 2 parts of D & C Red No. 2 (lake) 20% in talc, D & C Red 3 (lake) 10% tale, 1 part yellow iron oxide 20% inftalc and 1 part rose oil absorbed in 4.5 parts of the hydrophylic polymer of example 7.
EXAMPLE 38 A cake type face powder. was prepared from 10 parts kaolin, 5 parts zinc stearate, 10 parts zinc oxide, 3 parts magnesium carbonate, 61 parts talc (French), 1.4 parts of the hydrophylic polymer prepared in example 1 2 parts light mineral oil, 1 part cetyl alcohol, 0.3 part lanolin, 2.7 parts D & C Orange No.4 (lake), 10% in talc,
0.8 part D & C No. 2 (lake), 20% in talc, 1 part brown iron oxide, 20% in talc and 0.8 part perfume.
EXAMPLE 39 A baby powder was prepared from 80 parts talc, 9 parts zinc stearate, parts boric acid and 0.25 part perfume absorbed in 5.75 parts of the hydrophylic polymer prepared in example 1.
EXAMPLE 40 A lipstick was prepared from 12 parts beeswax, 3 parts of the hydrophilic polymer of example 1, 5 parts Carnauba wax, 20 parts cresin, 5 parts lanolin, 28 parts lard, 15 parts mineral oil, 2 parts of dibromo fluorescein and parts of lakes (a mixture of equal parts of D & C No. 9 and D & C Orange No. 4).
As indicated previously, there can be employed c0- polymers of hydroxy lower alkyl acrylates or methacrylates with copolymerizable monomers which are either hydrophobic, e.g., alkyl acrylates and methacrylates such as methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, butyl methacrylate, octyl methacrylate, methyl methacrylate or hydrophilic, e.g., lower alkoxy lower alkyl acrylates and methacrylates such as methoxyethyl acrylate, ethox? yethyl acrylate, methoxyethyl methacrylate, ethox yethyl methacrylate, acrylamide, methacrylamide, acrylic acid, methacrylic acid, crotonic acid, vinylpyrrolidone, etc. There can also be added hydrophilic polymers such as polyvinylpyrrolidone and polyvinyl alcohol, e.g., in an amount of l to 50% by weight of the polymer made from the hydroxyalkyl acrylateor methacrylate. A
Examples 4l-45 illustrate additional mascara preparations.
EXAMPLE 4] In a 1 liter flask there were placed 80 grams of hydroxyethyl methacrylate, 20 grams of butyl acrylate and 600 grams of ethanol. T-butyl-peroctoate (0.5 gram),was added and the solution was heated at 80C. for 16 hours under an inert atmosphere (nitrogen) to effect polymerization. The resulting polymer solution was diluted with an equal volume of water and was extracted three times with n-hexane. After extraction the polymer was precipitated by adding excess water to the polymer-water layer.'The polymer was isolated by filtration and dried at 45C. An 83% yield of polymer having an intrinsic viscosity of 0.38 in methyl Cellosolve was obtained. q
A portion of the polymer was dissolved in a solvent mixture of 50 wt.% ethanol, 40 wt.% water and 10 wt.% glycerol to provide a solution of wt.% polymer concentration.
To the solution, 5 wt.% (based on polymer) of carbon black pigment was added and the suspension was ball-milled to provide good pigment dispersion.
This formulation was applied in the area of the eye and was found to be non-irritating. Moreover, after drying, it did not run when wet. it could be removed cleanly by moistening and rubbing.
' EXAMPLE 42 To the formulation prepared in example 41 there were added 3 wt.% (based on the total formulation) of polyvinylpyrrolidone having a molecular weight of 15000. After milling to dissolve the polymer, a formulation which applied more smoothly in the area of the eye and was easier to remove than the formulation of example 41 was obtained.
EXAMPLE 43 To 600 grams of ethanol in a reaction flask there were added 50 grams of 2-hydroxyethyl methacrylate, 45 grams of ethoxyethyl acrylate and 5 grams of methacrylic acid. 0.15 grams of t-butyl peroctoate was added and the solution was subjected to polymerization in accordance with Example 41. The polymer was isolated from solution by precipitation with n-hexane. After drying, an 88% yield of polymer having an intrinsic viscosity in methyl Cellosolve of 0.45 was obtained.
This polymer was dissolved at an l8 wt.% solids level in a solvent mixture consisting of 45 wt.% ethanol, 20 wt.% diacetin and 35 wt.% water. Carbon black pigment was dispersed by ball-milling in the solution at a 5 wt.% level to provide a formulation which when applied to the eyelid and eyelashes was non-streaking with water but easily removed as a coherent film when wet.
EXAMPLE 44 To the formulation prepared in example 43 there was added 1 wt.% of fumed silica. This aided in maintaining pigmentdispersion and improved covering properties of the pigment withhout detracting from theeasy removal from around the eye and non-streaking qualities of the formulation.
EXAMPLE 45 A copolymer was prepared as in example 41 from a monomer mixture consisting of 60 wt.% hydroxyethyl methacrylate and 40 wt.% butyl acrylate. The polymer was formulated with the solvent mixture and pigment of example 41. The formulation when applied to the eyelid and eyelashes was soft, flexible and nonirritating and showed slightly greater water resistance than the formulation of example 41.
What is claimed is:
1. In a toothpaste containing a flavoring agent the improvement comprising including in said toothpaste a hydrophilic polymer of an acrylate or methacrylate selected from the group consisting of hydrophilic polymers of hydroxy lower alkyl acrylates, hydroxy lower alkyl methacrylates, hydroxy lower alkoxy lower alkyl acrylates and hydroxy lower alkoxy lower alkyl methacrylates, said flavoring agent being contained in said vpolymer and being releasable upon contact with an aqueous medium.
2. A process of improving the external appearance of the human body comprising applying the toothpaste of claim 1 to the teeth.
. 3. A toothpaste according to claim 1 wherein the polymer is in the form of platelets.
4. A toothpaste according to claim 1 including stan; nous pyrophosphate.
5. A toothpaste according to claim 1 wherein the polymer is a member of the group consisting of hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate and hydroxypropyl methacrylate.
6 A toothpaste according to claim 5 including a stannous pyrophosphate.
'7. A toothpaste according to claim 1 consisting essentially of 1 part of hydrophilic polymer of hydroxyparts of calcium pyrophosphate, 1.20 parts of sodium ethyl methacrylate containing flavoring therein, 39 nous pyrophosphate and 25:77 parts of water.
8. A toothpaste according to claim 7 wherein the polcarboxymethyl cellulose, 0.40 part of magnesium aluf minum silicate, 2000 parts of sorbitol, 0.81 part of soymer contains 4 parts peppermint ml per 30 parts of dium coconut monoglyceride sulfonate, 0.70 part so- P y dium lauryl sulfate, 0.12 part saccharin, 1.00 part stan-

Claims (8)

1. IN A TOOTHPASTE CONTAINING A FLAVORING AGENT THE IMPROVEMENT COMPRISING INCLUDING IN SAID TOOTHPASTE A HYDROPHILIC POLYMER OF AN ACRYLATE OR MATHACRYLATE SELECTED FROM THE GROUP CONSISTING OF HYDROPHILIC POLYMERS OF HYDROXY LOWER ALKYL ACRYLATES, HYDROXY LOWER ALKYL METHACRYLATES, HYDROXY LOWER ALKOXY LOWER ALKYL ACRYLATES AND HYDROXY LOWER ALKOXY LOWER ALKYL METHACRYLATES, SAID FLAVORING AGENT BEING CONTAINED IN SAID POLYMER AND BEING RELEASABLE UPON CONTACT WITH AN AQUEOUS MEDIUM.
2. A process of improving the external appearance of the human body comprising applying the toothpaste of claim 1 to the teeth.
3. A toothpaste according to claim 1 wherein the polymer is in the form of platelets.
4. A toothpaste according to claim 1 including stannous pyrophosphate.
5. A toothpaste according to claim 1 wherein the polymer is a member of the group consisting of hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate and hydroxypropyl methacrylate.
6. A toothpaste according to claim 5 including a stannous pyrophosphate.
7. A toothpaste according to claim 1 consisting essentially of 1 part of hydrophilic polymer of hydroxyethyl methacrylate containing flavoring therein, 39 parts of calcium pyrophosphate, 1.20 parts of sodium carboxymethyl cellulose, 0.40 part of magnesium aluminum silicate, 20.00 parts of sorbitol, 0.81 part of sodium coconut monoglyceride sulfonate, 0.70 part sodium lauryl sulfate, 0.12 part saccharin, 1.00 part stannous pyrophosphate and 25.77 parts of water.
8. A toothpaste according to claim 7 wherein the polymer contains 4 parts of peppermint oil per 30 parts of polymer.
US361932A 1966-07-26 1973-05-21 Cosmetic and toothpaste preparations Expired - Lifetime US3914405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US361932A US3914405A (en) 1966-07-26 1973-05-21 Cosmetic and toothpaste preparations

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US56785666A 1966-07-26 1966-07-26
US19265871A 1971-10-26 1971-10-26
US361932A US3914405A (en) 1966-07-26 1973-05-21 Cosmetic and toothpaste preparations

Publications (1)

Publication Number Publication Date
US3914405A true US3914405A (en) 1975-10-21

Family

ID=27393081

Family Applications (1)

Application Number Title Priority Date Filing Date
US361932A Expired - Lifetime US3914405A (en) 1966-07-26 1973-05-21 Cosmetic and toothpaste preparations

Country Status (1)

Country Link
US (1) US3914405A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4128636A (en) * 1976-03-26 1978-12-05 Henkel Kommanditgesellschaft Auf Aktien Cosmetic emulsions containing copolymers of 2-hydroxy-3-hydroxyalkyl-aminopropyl(meth)acrylates and alkyl (meth)acrylates
US4128635A (en) * 1976-03-04 1978-12-05 Henkel Kommanditgesellschaft Auf Aktien Cosmetic emulsions containing copolymers of alkyl (meth) acrylates and mono- or polyhydroxyalkyl (meth) acrylates
US4128634A (en) * 1976-03-04 1978-12-05 Henkel Kommanditgesellschaft Auf Aktien Cosmetic emulsions containing copolymers of alkyl(meth)acrylates and mono-(N-hydroxyalkyl) or bis-(N-hydroxyalkyl) (meth)acrylamides
WO1980001166A1 (en) * 1978-12-05 1980-06-12 Solar Dental Odontologic compositions and preparation thereof
US4482535A (en) * 1980-10-03 1984-11-13 Andras Sugar Cosmetic preparation for teeth
US4710375A (en) * 1984-02-28 1987-12-01 Pola Chemical Industries Inc. Stick cosmetics containing coated pearlescent pigments
US4757099A (en) * 1986-04-07 1988-07-12 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Deodorizing resin compositions and formed deodorizing articles
US4772331A (en) * 1985-10-25 1988-09-20 Merck Patent Gesellschaft Mit Beschrankter Haftung Flaky colored pigments, methods for their production, and their use in cosmetic compositions
US5506290A (en) * 1993-11-09 1996-04-09 Shapero; Wallace Plastic moldable composition
US5597556A (en) * 1995-04-20 1997-01-28 The Mennen Company Colored bicarbonate containing solid composition
US6060084A (en) * 1997-08-28 2000-05-09 Cannon Chemical Company Method for preparing a core material containment system and the core material containment system prepared thereby
US6517863B1 (en) * 1999-01-20 2003-02-11 Usbiomaterials Corporation Compositions and methods for treating nails and adjacent tissues
US20050152855A1 (en) * 2003-09-19 2005-07-14 Damian Hajduk Materials for enhanced delivery of hydrophilic active agents in personal care formulations
WO2007024265A2 (en) * 2005-02-25 2007-03-01 Amcol International Corporation Oral care compositions
US20070185276A1 (en) * 2003-06-26 2007-08-09 Symyx Technologies, Inc. Synthesis of Photresist Polymers
WO2008015186A1 (en) * 2006-08-03 2008-02-07 Unilever Plc Oral care composition
WO2009009796A1 (en) * 2007-07-12 2009-01-15 Amcol International Corporation High-foaming cleanser composition with a skin care agent
WO2011020684A2 (en) 2009-08-19 2011-02-24 Unilever Plc Delivery system

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4128635A (en) * 1976-03-04 1978-12-05 Henkel Kommanditgesellschaft Auf Aktien Cosmetic emulsions containing copolymers of alkyl (meth) acrylates and mono- or polyhydroxyalkyl (meth) acrylates
US4128634A (en) * 1976-03-04 1978-12-05 Henkel Kommanditgesellschaft Auf Aktien Cosmetic emulsions containing copolymers of alkyl(meth)acrylates and mono-(N-hydroxyalkyl) or bis-(N-hydroxyalkyl) (meth)acrylamides
US4128636A (en) * 1976-03-26 1978-12-05 Henkel Kommanditgesellschaft Auf Aktien Cosmetic emulsions containing copolymers of 2-hydroxy-3-hydroxyalkyl-aminopropyl(meth)acrylates and alkyl (meth)acrylates
WO1980001166A1 (en) * 1978-12-05 1980-06-12 Solar Dental Odontologic compositions and preparation thereof
US4318742A (en) * 1978-12-05 1982-03-09 Solar Dental Co., Inc. Odontologic compositions and preparation thereof
US4482535A (en) * 1980-10-03 1984-11-13 Andras Sugar Cosmetic preparation for teeth
US4710375A (en) * 1984-02-28 1987-12-01 Pola Chemical Industries Inc. Stick cosmetics containing coated pearlescent pigments
US4772331A (en) * 1985-10-25 1988-09-20 Merck Patent Gesellschaft Mit Beschrankter Haftung Flaky colored pigments, methods for their production, and their use in cosmetic compositions
US4757099A (en) * 1986-04-07 1988-07-12 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Deodorizing resin compositions and formed deodorizing articles
US5506290A (en) * 1993-11-09 1996-04-09 Shapero; Wallace Plastic moldable composition
US5597556A (en) * 1995-04-20 1997-01-28 The Mennen Company Colored bicarbonate containing solid composition
US6060084A (en) * 1997-08-28 2000-05-09 Cannon Chemical Company Method for preparing a core material containment system and the core material containment system prepared thereby
US6517863B1 (en) * 1999-01-20 2003-02-11 Usbiomaterials Corporation Compositions and methods for treating nails and adjacent tissues
US20070185276A1 (en) * 2003-06-26 2007-08-09 Symyx Technologies, Inc. Synthesis of Photresist Polymers
US7399806B2 (en) 2003-06-26 2008-07-15 Symyx Technologies, Inc. Synthesis of photoresist polymers
US20050152855A1 (en) * 2003-09-19 2005-07-14 Damian Hajduk Materials for enhanced delivery of hydrophilic active agents in personal care formulations
WO2007024265A2 (en) * 2005-02-25 2007-03-01 Amcol International Corporation Oral care compositions
WO2007024265A3 (en) * 2005-02-25 2007-09-20 Amcol International Corp Oral care compositions
US20080286318A1 (en) * 2005-02-25 2008-11-20 Amcol International Corporation Oral Care Compositions
WO2008015186A1 (en) * 2006-08-03 2008-02-07 Unilever Plc Oral care composition
US20090297570A1 (en) * 2006-08-03 2009-12-03 Brian Joseph Groves Oral care composition
WO2009009796A1 (en) * 2007-07-12 2009-01-15 Amcol International Corporation High-foaming cleanser composition with a skin care agent
WO2011020684A2 (en) 2009-08-19 2011-02-24 Unilever Plc Delivery system

Similar Documents

Publication Publication Date Title
US3697643A (en) Cosmetic preparations
US3574822A (en) Powdered cosmetics of hydrophilic hydroxy lower alkyl acrylates and methocrylates
US3577518A (en) Hydrophilic hairspray and hair setting preparations
US3914405A (en) Cosmetic and toothpaste preparations
US6290941B1 (en) Powder to liquid compositions
EP1024783B1 (en) Emollient compositions based on jojoba oil
DE60105246T2 (en) Film-forming cosmetic composition
US3660561A (en) Hair spray
JP2002501481A (en) Cosmetic composition containing a film-forming mixture comprising film-forming polymer particles and non-film-forming particles as a keratin fiber coating agent
KR101838323B1 (en) Esterification product and cosmetics
JPH05170635A (en) Cosmetic composition for filtered light
JP2003160438A (en) Makeup kit containing goniochromatic coloring material together with monochromatic coloring material
JPH0748231A (en) Composition for make-up containing false latex that has residual property
US20110250151A1 (en) Cold process water soluble wax containing powders
KR19990063330A (en) Non-Take Cosmetic Composition Including Particle Dispersion of Film-Non-Forming Polymer In Partially Nonvolatile Liquid Fatty Phase
US5034216A (en) Anhydrous cosmetic product containing a particular gel phase
JPH0524124B2 (en)
KR19990013446A (en) A novel cosmetic composition comprising a film-forming polymer
EP0802785A1 (en) Anhydrous cosmetic compositions with dermatologically active agents
JP2017518410A (en) Cross-linked aminosiloxane polymer and production method
US20110250148A1 (en) Cold process water soluble wax containing powders
JPH11512749A (en) Cosmetic containing western holly resin, method for producing western holly resin, and western holly resin obtained by this method
KR19990063208A (en) A fine powder cosmetic composition containing polymer particles dispersed in a liquid fatty phase and having long-term fixability
US6432421B1 (en) Emollient compositions with polyethylene beads
US5965116A (en) Use of acrylic copolymers in cosmetics and compositions used