US3912013A - High temperature perforating method - Google Patents

High temperature perforating method Download PDF

Info

Publication number
US3912013A
US3912013A US522529A US52252974A US3912013A US 3912013 A US3912013 A US 3912013A US 522529 A US522529 A US 522529A US 52252974 A US52252974 A US 52252974A US 3912013 A US3912013 A US 3912013A
Authority
US
United States
Prior art keywords
gun
borehole
high temperature
releasable coupling
tubing string
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US522529A
Inventor
Roy R Vann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Geo Vann Inc
Halliburton Co
GEO INTERNATIONAL CORP
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US522529A priority Critical patent/US3912013A/en
Application granted granted Critical
Priority to US05/622,427 priority patent/US3990507A/en
Publication of US3912013A publication Critical patent/US3912013A/en
Assigned to GEO VANN, INC. A CORP. OF NEW MEXICO reassignment GEO VANN, INC. A CORP. OF NEW MEXICO ASSIGNMENT OF ASSIGNORS INTEREST. EFFECTIVE. 9-21-77 Assignors: VANN, ROY R.
Assigned to GEO INTERNATIONAL CORPORATION reassignment GEO INTERNATIONAL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: PEABODY INTERNATIONAL CORPORATION
Assigned to PEABODY INTERNATIONAL CORPORATION, A DE CORP. reassignment PEABODY INTERNATIONAL CORPORATION, A DE CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: VANN, ROY R, SR.
Assigned to GEO VANN, INC., A NM CORP. reassignment GEO VANN, INC., A NM CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: GEO INTERNATIONAL CORPORATION
Assigned to GEO INTERNATIONAL CORPORATION reassignment GEO INTERNATIONAL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: PEABODY INTERNATIONAL CORPORATION
Assigned to HALLIBURTON COMPANY reassignment HALLIBURTON COMPANY MERGER (SEE DOCUMENT FOR DETAILS). Assignors: VANN SYSTEMS, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/119Details, e.g. for locating perforating place or direction

Definitions

  • a perforating gun is suspended from a tubing string and located within a relative low temperature zone of the borehole.
  • a packer and a releasable coupling member is interposed in the tubing string, with the coupling member being interposed between the gun and the packer.
  • a stop member, against which the gun can impact, is located downhole in a high temperature region of the borehole, in an underlying position respective the gun and to a hydrocarbon bearing formation.
  • the gun has a detonator which is actuated when the gun is suddenly arrested by engagement with the stop member.
  • the relative position of the gun, stop member, detonator, and hydrocarbon bearing formation is arranged or selected so that the coupling member can be parted to drop the gun, causing the gun to fall downhole, whereupon its motion is arrested by the stop member, thereby causing the charges in the gun to be detonated, and the well completed.
  • the present invention has for its primary object a method by which a high temperature zone in a borehole can be successfully perforated.
  • Another object of the invention is to enable a production formation to be completed by utilizing conventional shaped explosive charges which are detonated in accordance with the present invention.
  • a further object of this invention is the provision of a method of completing a high temperature zone of a borehole.
  • Still another object ofthe invention is the provision"; of method and apparatus for perforating a high tempep,
  • Another and still further object of this invention is the provision of a method of using conventional perforating guns downhole in a high temperature region of a borehole which is at a temperature in excess of the designed operating temperature of the perforating gun apparatus.
  • a further object of this invention is the provision of apparatus for perforating a high temperature region of a borehole, by employment of wireline actuated equipment.
  • Still another object of this invention is to provide a perforating system by which a high temperature zone of a borehole can be completed using conventional explosives.
  • FIG. 1 is a part diagrammatical, part schematical, cross-sectional representation of a borehole formed into the earth and with apparatus made in accordance with the present invention being associated therewith;
  • FIG. 2 is similar to FIG. 1 and shows the apparatus of the present invention in another of its operative configurations
  • FIG. 3 is indexed with FIGS. 1 and 2 and sets forth a hypothetical illustration of the temperature gradient encountered downhole in the borehole of the previous figures;
  • FIG. 4 is a side elevational view, partly in longitudinal cross-section, illustrating one form of part of the apparatus which is used in carrying out the method of the present invention
  • FIG. 5 is a cross-sectional view taken along line 55 of FIG. 4;
  • FIG. 6 is an enlarged, longitudinal, part crosssectional view of part of the apparatus disclosed in FIG.
  • FIG. 7 is a part cross-sectional, part broken, disassembled view of part of the apparatus disclosed in FIG.
  • FIG. 8 is a longitudinal, part cross-sectional view of a modified embodiment of the apparatus seen in FIG. 4;
  • FIG. 9 is a cross-sectional view taken along line 99 of FIG. 8.
  • a borehole 10 extends through a surface casing 11 and below the surface 12 of the ground.
  • the upper terminal end of the casing is connected to the wellhead 14 in a conventional manner.
  • Production tubing 16 and 17 are series connected and concentrically disposed within the cased borehole.
  • the christmas tree 18 has a usual lubricator and valve 19 attached thereto so that a wireline 20 can be run downhole into the tubing string thereby carrying out various downhole operations in a manner understood and appreciated by those skilled in the art.
  • Outflow valve 22 conducts flow of fluid from the production tubing string.
  • a packer 24 which can take on any number of different known forms, isolates the upper borehole annulus 25 from the lower borehole annulus 26.
  • a jet perforating gun 30, made in accordance with the present invention is provided with an actuating shaft 32 which causes a firing head 33 to detonate the various shaped charges associated therewith upon impact of the actuator with fixed abutment member 34.
  • An anchoring device 36 affixes the abutment member at a predetermined location downhole in the borehole, so that the shaped charges, when detonated, perforate the casing adjacent to a hydrocarbon producing zone 38.
  • a moderate temperature zone 39 exists uphole in the borehole where temperatures are below the boiling point of water. Further downhole there exists a high temperature zone 40, often in excess of 400F, wherein ordinary electrical components and explosives associated with jet perforating guns cannot safely endure if permitted to reach equilibrium therein.
  • the temperature decreases at 44 as one penetrates the surface of the earth, where the temperature remains fairly constant at 45, and then begins to increase at a more rapid rate at 45.
  • the temperature continues increasing at 46 to define the upper limit of the before mentioned moderate temperature zone 39, whereupon the temperature continues to increase as one travels downhole until the before mentioned high temperature zone 40 is encountered.
  • the term relative low temperature is intended to define a temperature at which perforating gun components, such as shaped charges, prima cord, blasting caps, and electrical gun circuitry, can endure for several days
  • the term relative high temperature defines an elevated temperature at which the gun components cannot endure long enough to be run downhole and fired in a conventional manner.
  • Any temperature zone above numeral 39 is a relative low temperature zone while any temperature zone at or below numeral 40 is a relative high temperature zone.”
  • the coupling member comprises the before mentioned separable upper and lower members 28 and 29 which are series connected into the tubing string.
  • Upper member 28 has an upper box end portion 48 threadedly engaged with tubing 16, and further includes a terminal lower edge portion 48.
  • Lower member 29 has a lowermost edge portion 49 in the form of a pin which threadedly engages tubing 17.
  • the upper edge portion of member 29 is seen illustrated by the numeral 50.
  • Numeral 51 broadly illustrates a releasing member having an upper conical shaped entrance 52, and a lower edge portion 53in the form of a shoulder, which is engagable byseveral known wireline operated fishing tools so that the member can be engaged and forced to move axially in an uphole direction into engagement with. the sholder formed by the lower end'of the tubing (not shown).
  • Those skilled in the art know several different fishing tools which are suitable for this purpose, and therefore the details thereof will be omitted.
  • An axial passageway extends through the concentrically arranged upper, lower, and releasable members with the passageway being broadly indicated by the numerals 54 and 54.
  • a plurality of radially spaced load transferring members, in the form of steel balls 55, are seated within individual radially spaced apart cavities 56.
  • Groove 57 receives chevron ring 58 therein so as to form a fluid tight seal between the members, and therefore preclude fluid flow into the longitudinally extending central passageway.
  • the before mentioned cavity is formed by a plurality of radially spaced apart ports 59 placed in communication with a circumferentially extending annular cavity 60 so that any one of the balls are individually held within its respective cavity by an outer wall surface of the skirt portion of the releasing member.
  • the balls each are biased towards the skirt member because of the geometrical configuration of the port and cavity.
  • FIGS. 8 and 9 there is disclosed a fluid actuated releasable coupling having a fluid actuated releasing member 151 in the form of a piston.
  • the piston has a wall surface 152, a lower edge portion 153, and a circumferentially extending skirt portion 154.
  • Spaced seals 190 in the form of o-rings set in a suitable annular groove form a slidable seal which seals the piston wall and the axial passageway 54 against fluid flow thereacross.
  • Shear pin 191 can be of any number and of a selected diameter so as to require a predetermined pressure differential thereacross before movement thereof will occur.
  • jet perforating gun 30 is seen to have a plurality of charge containing chambers 61 and 64, each containing one or more shaped charges which are positioned behind sealed window 62 in the usual manner.
  • the second chamber 64 likewise has associated therewith a shaped charge window 66 while any number of additional charges may be located uphole as broadly indicated by the arrow at numeral 68.
  • Counterbore 74 contains a prima cord detonator in the form of a blasting cap. 75 which is axially disposed therewithin, with the prima cord 76 having a marginal end inserted into the detonator, with the remaining end thereof suitably affixed for detonating the various shaped charges located at 62 and 66.
  • Counterbore 77 communicates the charge carrying chambers with the firing head.
  • Enlarged counterbore 80 sealingly receives resilient seal member 82 tightly compressed therewithin, while counterbore 84 sealingly receives a cartridge holder 86
  • Reciprocating member 93 is held spaced from'the firing pin in the illustrated position of FIG. 6 by shear pins 94.
  • Chamber 95 is hermatically sealed by a suitableclosure member 96 which includes a seal means affixed to the illustrated axial passageway at 97 leading therein so that a slidable shaft 98 can be sealingly and reciprocatingly received thereby when manipulated by an arresting member 99.
  • member 99 moves shaft 98 uphole so that member'93 engages and forces firing pin 92 into cutting engagement with disk 88, thereby detonating the three cartridges 104.
  • Explosion of any one cartridge causes the dynamite cap to detonate the prima cord, and the prima cord detonates the shaped charges located at 62,66, 68, thereb'y causing the jet perforators to penetrate the windows 62 and 66, the casing wall, and the formation. This'action perforates the borehole, thereby establishing communication between the hydrocarbon producing formation and the well bore in the manner illustrated by'numerals 41 and 42 of FIG. 2.
  • the apparatus is assembled in the manner of FIGS. 1, 4, and 6.
  • the lower stop member is positioned relative to the hydrocarbon producing formation so that the individually shaped charges will penetrate selected portions of the hydrocarbon producing zone in the manner illustrated in FIG. 2.
  • Packer 24 is positioned so that the releasable coupling member is therebelow, and further that the gun is positioned in a relatively low temperature zone 39 where the components thereof are not injured rather than a relatively high temperature zone where the components thereof could not endure. Sometimes it is desirable to leave the gun in the illustrated position of FIG. 1 for several days before continuing with the process of completion of the well.
  • a wireline fishing tool is run through the lubricator and downhole into engagement with shoulder 53 of the releasing member of the releasable coupling.
  • the balls are forced radially inwardly from their cavities, thereby enabling members 28 and 29 to separate from one another, and causing the gun to fall downhole where the gun firing mechanism strikes abutment 34 thereby reciprocating shaft 98 uphole relative to the gun firing mechanism 33.
  • FIGS. 8 and 9 The pressure operated releasable coupling of FIGS. 8 and 9 is employed where the use of a wireline is to be avoided.
  • pressure is applied at 22 slightly in excess of the calculated force required to shear pin 191. Upon the pins shearing, the lower edge portion of the piston moves against shoulder 31,
  • Thepresence of the discharged gun downhole adjacent the hydrocarbon producing formation is desirable in that high pressure flow from the perforations initially strike the gun housing rather than the opposed inside peripheral wall surface of the casing. Hence, the gases are diverted up the annulus formed between the gun and easing, therebyavoiding erosion of the inside wall surface of the casing in proximity of the production zone.
  • the pressure actuated releasable coupling of FIGS. 8 and 9 preferably is operated by connecting a suitable source of pressure to the tubing string through a suitable valve means, while all other outflow v'alves associated with the flow line 22 are closed to flow.
  • source of pressure can be compressible or noncompressible fluids, including water liquid or gaseous hydrocarbons, and inert gases such as nitrogen, CO and flue gases.
  • inert gases such as nitrogen, CO and flue gases.
  • nitrogen, CO or flue gases are employed to actuate the releasable coupling in order to keep a dry tubing string as well'as a minimum hydrostatic head above the packer.
  • a wireline actuated perforated nipple can be interposed between the packer and the releasable coupling apparatus, and 'the flow diverted into the perforated nipple.
  • Step (3) is carried out according to the following steps:
  • Step (1) is carried out by placing a packer on the end of a tubing string and connecting the gun to the packer so that the gun is located uphole in the borehole in the low temperature region thereof.
  • Step (3) is carried out by connecting the gun to the packer by a tubing string having a releasable coupling series connected therein;
  • Step (3) is carried out by connecting the gun to the packer by a tubing string having a releasable coupling series connected therein; and.
  • High temperature well completion method comprising:
  • step of releasing the gun is carried out by connecting the gun to the tubing string by a releasable coupling;

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A high temperature well completion method is carried out by releasably suspending a perforating gun uphole in a relative low temperature region of the borehole. A wireline actuated releasable coupling drops the armed gun, and the gun comes to rest adjacent to a hydrocarbon bearing formation located downhole in a high temperature region of the borehole. The downward motion of the gun is arrested at a preselected location, causing the gun to be detonated and the casing to be perforated before the gun reaches temperature equilibrium.

Description

United States Patent 1191 Vann Oct. 14, 1975 [54] HIGH TENIPERATURE PERFORATING 3,193,013 7/1965 White Side 166/63 X METHOD 3,199,287 8/1965 Kinley 166/63 x 3,530,948 9/1970 Garrett... l66/55.l X Inventor: y R Vann, BOX Artes1a,N- 3,706,344 12/1972 Vann 166/297 Mex. 88210 [22] Filed: Nov, 11, 1974 Primary ExaminerDavid H. Brown t pp No: 522,529 At orney, Agent, or Firm Marcus L Bates [52] US. Cl. 166/297; l66/55.1; 166/63; [57] CT l75/4.56 A high temperature well completion method is carried [51] Int. Cl. E21B 29/02; E218 43/ l 1 Out by releasably suspending a perforating gun uphole [58] Field of Search 175/451, 4.52, 4.56; in a relative low temperature region of the borehole. 166/297, 299, 55, 55.1, 63; 102/20, 24 A wireline actuated releasable coupling drops the armed gun, and the gun comes to rest adjacent to a [56] References Cited hydrocarbon bearing formation located downhole in a UNITED STATES PATENTS high temperature region of the borehole. The down- 2 866 508 12/l958 church I 66/55 1 X ward motion of the gun is arrested at a preselected 10- 2906339 9/1959 onmn 11:11: 166/297 cation causing the gun to be detonated and the Sing 3,011,551 12/1961 Young et a1. 166/297 x to be F'erforated before the gun reaches temperature 3,058,522 10 1962 McElheny l66/55.l equilibrium- 3,189,094 6 1965 Hyde 166/63 x 3,190,372 6/1965 Johnson 102/20 x 12 Clam, 9 Drawmg Flgures US. Patent 0m. 14, 1975 Sheet 1 013 3,912,013
FIG. 3
TEMPERATURE o F U.S. Patent oer. 14, 1975 Sheet 3 of3 3,912,013
. 1 HIGH TEMPERATURE PERFORATING METHOD BACKGROUND OFTHE INVENTION After a borehole has been formed into the earth and cased, it is necessary to communicate the hydrocarbon bearing formation through which the well bore extends with the interior of the casing so that production fluid can flow uphole to the surface of the earth. There are deep wells exceeding 15,000 feet in depth which have extremely high temperature gradients as measured from near the surface of the earth to the bottom of the borehole. The temperature at the production formation often exceeds 400F. For this reason some tool strings must be run into proximity of the bottom of the borehole with great caution, otherwise, the excessive temperature will bring about deleterious effects to some components thereof.
This is especially so with jet perforating apparatus for the obvious reason that the various components thereof cannot endure such an elevated temperature. More importantly, the electrical and explosive apparatus associated with the circuitry cannot endure this temperature. The explosives become ultrasensitive and change in chemical composition at these excessive temperatures.
Others have attempted to employ special high temperature explosive material and devices which can endure for a while at elevated temperatures; however, it is much preferable to utilize well known explosive apparatus, circuitry, devices, and techniques wherever it is possible, thereby taking advantage of years of accumulated knowledge.
SUMMARY OF THE INVENTION Method and apparatus for completing a high temperature zone of a borehole. A perforating gun is suspended from a tubing string and located within a relative low temperature zone of the borehole. A packer and a releasable coupling member is interposed in the tubing string, with the coupling member being interposed between the gun and the packer. A stop member, against which the gun can impact, is located downhole in a high temperature region of the borehole, in an underlying position respective the gun and to a hydrocarbon bearing formation.
The gun has a detonator which is actuated when the gun is suddenly arrested by engagement with the stop member. The relative position of the gun, stop member, detonator, and hydrocarbon bearing formation is arranged or selected so that the coupling member can be parted to drop the gun, causing the gun to fall downhole, whereupon its motion is arrested by the stop member, thereby causing the charges in the gun to be detonated, and the well completed.
Accordingly, the present invention has for its primary object a method by which a high temperature zone in a borehole can be successfully perforated.
Another object of the invention is to enable a production formation to be completed by utilizing conventional shaped explosive charges which are detonated in accordance with the present invention.
A further object of this invention is the provision of a method of completing a high temperature zone of a borehole.
Still another object ofthe invention is the provision"; of method and apparatus for perforating a high tempep,
ature hydrocarbon bearing zone in a boreh ole'using conventional explosives.
Another and still further object of this invention is the provision of a method of using conventional perforating guns downhole in a high temperature region of a borehole which is at a temperature in excess of the designed operating temperature of the perforating gun apparatus.
A further object of this invention is the provision of apparatus for perforating a high temperature region of a borehole, by employment of wireline actuated equipment.
Still another object of this invention is to provide a perforating system by which a high temperature zone of a borehole can be completed using conventional explosives.
These and other objects of the invention are attained by following the teachings set forth in the above abstract, summary, and the appended claims of this patent specification.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a part diagrammatical, part schematical, cross-sectional representation of a borehole formed into the earth and with apparatus made in accordance with the present invention being associated therewith;
FIG. 2 is similar to FIG. 1 and shows the apparatus of the present invention in another of its operative configurations;
FIG. 3 is indexed with FIGS. 1 and 2 and sets forth a hypothetical illustration of the temperature gradient encountered downhole in the borehole of the previous figures;
FIG. 4 is a side elevational view, partly in longitudinal cross-section, illustrating one form of part of the apparatus which is used in carrying out the method of the present invention;
FIG. 5 is a cross-sectional view taken along line 55 of FIG. 4;
FIG. 6 is an enlarged, longitudinal, part crosssectional view of part of the apparatus disclosed in FIG.
FIG. 7 is a part cross-sectional, part broken, disassembled view of part of the apparatus disclosed in FIG.
FIG. 8 is a longitudinal, part cross-sectional view of a modified embodiment of the apparatus seen in FIG. 4; and,
FIG. 9 is a cross-sectional view taken along line 99 of FIG. 8. T
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Throughout the various figures of the drawings, whenever it is practical or logical to do so, like or similar numerals will usually indicate or refer to like or similar elements.
In the figures of the drawings, a borehole 10 extends through a surface casing 11 and below the surface 12 of the ground. The upper terminal end of the casing is connected to the wellhead 14 in a conventional manner. Production tubing 16 and 17 are series connected and concentrically disposed within the cased borehole. The christmas tree 18 has a usual lubricator and valve 19 attached thereto so that a wireline 20 can be run downhole into the tubing string thereby carrying out various downhole operations in a manner understood and appreciated by those skilled in the art. Outflow valve 22 conducts flow of fluid from the production tubing string.
A packer 24, which can take on any number of different known forms, isolates the upper borehole annulus 25 from the lower borehole annulus 26. A releasable coupling member 27, preferably made in accordance with my co-pending patent application Ser. No. 517,391, filed Oct. 23, 1974, is comprised of separable members 28 and 29 which can be disengaged from one another by manipulation of a common fishing tool with an ordinary wireline 20, or with uphole tubing pressure, as will be more fully understood later on in this disclosure.
A jet perforating gun 30, made in accordance with the present invention, is provided with an actuating shaft 32 which causes a firing head 33 to detonate the various shaped charges associated therewith upon impact of the actuator with fixed abutment member 34. An anchoring device 36 affixes the abutment member at a predetermined location downhole in the borehole, so that the shaped charges, when detonated, perforate the casing adjacent to a hydrocarbon producing zone 38.
A moderate temperature zone 39 exists uphole in the borehole where temperatures are below the boiling point of water. Further downhole there exists a high temperature zone 40, often in excess of 400F, wherein ordinary electrical components and explosives associated with jet perforating guns cannot safely endure if permitted to reach equilibrium therein.
In the hypothetical representation of FIG. 3, the temperature decreases at 44 as one penetrates the surface of the earth, where the temperature remains fairly constant at 45, and then begins to increase at a more rapid rate at 45. The temperature continues increasing at 46 to define the upper limit of the before mentioned moderate temperature zone 39, whereupon the temperature continues to increase as one travels downhole until the before mentioned high temperature zone 40 is encountered.
In the claims, the term relative low temperature is intended to define a temperature at which perforating gun components, such as shaped charges, prima cord, blasting caps, and electrical gun circuitry, can endure for several days, whereas the term relative high temperature defines an elevated temperature at which the gun components cannot endure long enough to be run downhole and fired in a conventional manner. Any temperature zone above numeral 39 is a relative low temperature zone while any temperature zone at or below numeral 40 is a relative high temperature zone."
FIGS. 4 and disclose the details of the before mentioned wireline actuated releasable coupling member 27. The coupling member comprises the before mentioned separable upper and lower members 28 and 29 which are series connected into the tubing string. Upper member 28 has an upper box end portion 48 threadedly engaged with tubing 16, and further includes a terminal lower edge portion 48.
Lower member 29 has a lowermost edge portion 49 in the form of a pin which threadedly engages tubing 17. The upper edge portion of member 29 is seen illustrated by the numeral 50. Numeral 51 broadly illustrates a releasing member having an upper conical shaped entrance 52, and a lower edge portion 53in the form of a shoulder, which is engagable byseveral known wireline operated fishing tools so that the member can be engaged and forced to move axially in an uphole direction into engagement with. the sholder formed by the lower end'of the tubing (not shown). Those skilled in the art know several different fishing tools which are suitable for this purpose, and therefore the details thereof will be omitted.
An axial passageway extends through the concentrically arranged upper, lower, and releasable members with the passageway being broadly indicated by the numerals 54 and 54. A plurality of radially spaced load transferring members, in the form of steel balls 55, are seated within individual radially spaced apart cavities 56.
Groove 57 receives chevron ring 58 therein so as to form a fluid tight seal between the members, and therefore preclude fluid flow into the longitudinally extending central passageway.
The before mentioned cavity is formed by a plurality of radially spaced apart ports 59 placed in communication with a circumferentially extending annular cavity 60 so that any one of the balls are individually held within its respective cavity by an outer wall surface of the skirt portion of the releasing member. The balls each are biased towards the skirt member because of the geometrical configuration of the port and cavity. Reference is made to my co-pending patent application for further details of the releasable coupling.
In FIGS. 8 and 9, there is disclosed a fluid actuated releasable coupling having a fluid actuated releasing member 151 in the form of a piston. The piston has a wall surface 152, a lower edge portion 153, and a circumferentially extending skirt portion 154. Spaced seals 190 in the form of o-rings set in a suitable annular groove form a slidable seal which seals the piston wall and the axial passageway 54 against fluid flow thereacross. Shear pin 191 can be of any number and of a selected diameter so as to require a predetermined pressure differential thereacross before movement thereof will occur.
Looking now to the details of FIG. 6, in conjunction with FIGS. 1, 2 and 7, the before mentioned jet perforating gun 30 is seen to have a plurality of charge containing chambers 61 and 64, each containing one or more shaped charges which are positioned behind sealed window 62 in the usual manner. The second chamber 64 likewise has associated therewith a shaped charge window 66 while any number of additional charges may be located uphole as broadly indicated by the arrow at numeral 68.
The spaced subs threadedly engage each of the spaced charge containing chambers and the firing head at 70, for example, while a suitable seal means 72 precludes leakage of fluid thereinto. Counterbore 74 contains a prima cord detonator in the form of a blasting cap. 75 which is axially disposed therewithin, with the prima cord 76 having a marginal end inserted into the detonator, with the remaining end thereof suitably affixed for detonating the various shaped charges located at 62 and 66. Counterbore 77 communicates the charge carrying chambers with the firing head.
Enlarged counterbore 80 sealingly receives resilient seal member 82 tightly compressed therewithin, while counterbore 84 sealingly receives a cartridge holder 86 Reciprocating member 93 is held spaced from'the firing pin in the illustrated position of FIG. 6 by shear pins 94. Chamber 95 is hermatically sealed by a suitableclosure member 96 which includes a seal means affixed to the illustrated axial passageway at 97 leading therein so that a slidable shaft 98 can be sealingly and reciprocatingly received thereby when manipulated by an arresting member 99.
As seen in FIGS. 1, 6, and 7, when the gun is brought into contact with the fixed abutment 34, member 99 moves shaft 98 uphole so that member'93 engages and forces firing pin 92 into cutting engagement with disk 88, thereby detonating the three cartridges 104. Explosion of any one cartridge causes the dynamite cap to detonate the prima cord, and the prima cord detonates the shaped charges located at 62,66, 68, thereb'y causing the jet perforators to penetrate the windows 62 and 66, the casing wall, and the formation. This'action perforates the borehole, thereby establishing communication between the hydrocarbon producing formation and the well bore in the manner illustrated by'numerals 41 and 42 of FIG. 2.
In carrying out the method of the present invention, the apparatus is assembled in the manner of FIGS. 1, 4, and 6. The lower stop member is positioned relative to the hydrocarbon producing formation so that the individually shaped charges will penetrate selected portions of the hydrocarbon producing zone in the manner illustrated in FIG. 2.
Packer 24 is positioned so that the releasable coupling member is therebelow, and further that the gun is positioned in a relatively low temperature zone 39 where the components thereof are not injured rather than a relatively high temperature zone where the components thereof could not endure. Sometimes it is desirable to leave the gun in the illustrated position of FIG. 1 for several days before continuing with the process of completion of the well.
When it is desired to complete the well, a wireline fishing tool is run through the lubricator and downhole into engagement with shoulder 53 of the releasing member of the releasable coupling. Upon engaging the shoulder and lifting the releasing member uphole, the balls are forced radially inwardly from their cavities, thereby enabling members 28 and 29 to separate from one another, and causing the gun to fall downhole where the gun firing mechanism strikes abutment 34 thereby reciprocating shaft 98 uphole relative to the gun firing mechanism 33.
This action causes detonation of the shaped charges contained within the gun, whereupon deep penetration of the formation is effected in the illustrated manner indicated in FIG. 2. At the same time gaseous hydrocarbons are free to immediately flow through the newly formed perforations, where the gases flow uphole around the gun, into the upper member of the releasable coupling, through the tubing string 16 and through outlet 22, so that the well is immediately put on production.
The pressure operated releasable coupling of FIGS. 8 and 9 is employed where the use of a wireline is to be avoided. After the packer has been set, and the gun and stop member properly positioned downhole in the illustrated manner of FIG. 1, pressure is applied at 22 slightly in excess of the calculated force required to shear pin 191. Upon the pins shearing, the lower edge portion of the piston moves against shoulder 31,
thereby allowing'the balls to be forced from their respective cavities, whereupon the upper and lower members separate from one another, allowing the gun to fall downhole and where it impacts against member 34, as in the before described manner.
Thepresence of the discharged gun downhole adjacent the hydrocarbon producing formation is desirable in that high pressure flow from the perforations initially strike the gun housing rather than the opposed inside peripheral wall surface of the casing. Hence, the gases are diverted up the annulus formed between the gun and easing, therebyavoiding erosion of the inside wall surface of the casing in proximity of the production zone.
The pressure actuated releasable coupling of FIGS. 8 and 9 preferably is operated by connecting a suitable source of pressure to the tubing string through a suitable valve means, while all other outflow v'alves associated with the flow line 22 are closed to flow. The
source of pressure can be compressible or noncompressible fluids, including water liquid or gaseous hydrocarbons, and inert gases such as nitrogen, CO and flue gases. The use of nitrogen, CO or flue gases are employed to actuate the releasable coupling in order to keep a dry tubing string as well'as a minimum hydrostatic head above the packer. I
Where deemed desirable, a wireline actuated perforated nipple can be interposed between the packer and the releasable coupling apparatus, and 'the flow diverted into the perforated nipple.
It is considered within the comprehension of this invention to use an electrically fired gun mechanism at 32, as well as to separate the tubing at 27 with explosive means.
I claim:
1. In a borehole havinga relative high temperature zone located downhole of a relative low temperature zone, the method of completing a hydrocarbon producing formation located within said high temperature zone comprising the steps of:
I. suspending a perforating gun apparatus within the low temperature zone of the borehole;
2. placing an abutment means downhole within said high temperature zone of said borehole and in close proximity of a hydrocarbon producing formation for arresting the gun when it is dropped;
3. dropping the gun apparatus so that it falls downhole from the low to the high temperature zone, and impacts against said abutment means;
4. detonating the gun apparatus by using the force resulting from the gun apparatus impacting against the abutment.
2. The method of claim 1 wherein Step (3) is carried out according to the following steps:
3a. suspending the gun apparatus from a tubing string; 1
3b. separating the tubing string by using fluid pressure to cause the gun carrying end of the string to separate from the upper end thereof.
3. The method of claim 1 wherein said gun is run into the borehole on the end of a tubing string, and the step of dropping the gun is carried out as follows:
3a. placing a wireline actuated releasable coupling apparatus in the tubing string; and,
3b. actuating the releasable coupling with a wireline fishing tool so that the gun is dropped downhole against said abutment.
4. The method of claim 3 and further including the step of placing a packer device above said releasable coupling so that the production from the completed well flows upholeand into the tubing string, immediately upon completion of the well.
5. The method of claim 1 wherein Step (1) is carried out by placing a packer on the end of a tubing string and connecting the gun to the packer so that the gun is located uphole in the borehole in the low temperature region thereof.
6. The method of claim wherein Step (3) is carried out by connecting the gun to the packer by a tubing string having a releasable coupling series connected therein; and,
actuating the releasable coupling with a wireline actuated fishing tool.
7. The method of claim 5 wherein Step (3) is carried out by connecting the gun to the packer by a tubing string having a releasable coupling series connected therein; and.
actuating the releasable coupling by fluid pressure.
8. High temperature well completion method comprising:
connecting a detonator to a perforating gun apparatus and arranging the detonator so that it fires the gun upon impact with a downhole obstruction; releasably locating a perforating gun apparatus uphole in a relative low temperature region of a borehole;
locating an obstruction against which said gun can be abuttingly received downhole in a relative high temperature region of the borehole;
positioning said gun and obstruction relative to one another and to any hydrocarbon formation which may be contained within said high temperature region so that when the gun impacts the obstruction, the gun can perforate the borehole adjacent the hydrocarbon formation;
releasing said gun apparatus so that it falls from said low to said high temperature region and strikes said abutment, whereupon said detonator fires said gun, causing the borehole to be perforated adjacent the hydrocarbon formation, thereby completing the well.
9. The method of claim 8, wherein said gun is releasably located uphole by telescopingly receiving a marginal length of tubing one within the other and suspending the gun from the tubing;
concentrically positioning a piston in the telescoping portions of the tubing and releasably connecting the telescoping portions of the tubing together by a releasing member which is held into an unreleased position by the piston;
moving the piston downhole by forcing fluid into the upper tubing string, thereby enabling said releasing member to move, and causing the telescoping portions of the tubing to move apart.
10. The method of claim 8 wherein the step of releasing the gun is carried out by connecting the gun to the tubing string by a releasable coupling; and,
actuating the releasable coupling with a wireline actuated fishing tool.
11. The method of claim 8 wherein said gun is run into the borehole on the end of a tubing string, and the step of dropping the gun is carried out as follows:
placing a wireline actuated releasable coupling apparatus in the tubing string; and,
actuating the releasable coupling with a wireline fishing tool so that the gun is dropped against said abutment.
12. The method of claim 11 and further including the step of placing a packer device above said releasable coupling so that any production from the completed well must flow uphole and into the tubing string.

Claims (19)

1. IN A BOREHOLE HAVING A RELATIVE HIGH TEMPERATURE ZONE LOCATED DOWNHOLE OF A RELATIVE LOW TEMPERATURE ZONE, THE METHOD OF COMPLETING A HYDROCARBON PRODUCTION FORMATION LOCATED WITHIN SAID HIGH TEMPERATURE ZONE COMPRISING THE STEPS OF:
1. SUSPENDING A PERFORATING GUN APPARATUS WITHIN THE LOW TEMPERATURE ZONE OF THE BOREHOLE,
2. PLACING AN ABUTMENT MEANS DOEWHOLE WITHIN SAID HIGH TEMPERATURE ZONE OF SAID BOREHOLE AND IN CLOSE PROXIMITY OF A HYDROCARBON PRODUCING FORMATION FOR ARRESTING THE GUN WHEN IT IS DROPPED,
2. The method of claim 1 wherein Step (3) is carried out according to the following steps: 3a. suspending the gun apparatus from a tubing string; 3b. separating the tubing string by using fluid pressure to cause the gun carrying end of the string to separate from the upper end thereof.
2. placing an abutment means downhole within said high temperature zone of said borehole and in close proximity of a hydrocarbon producing formation for arresting the gun when it is dropped;
3. dropping the gun apparatus so that it falls downhole from the low to the high temperature zone, and impacts against said abutment means;
3. The method of claim 1 wherein said gun is run into the borehole on the end of a tubing string, and the step of dropping the gun is carried out as follows: 3a. placing a wireline actuated releasable coupling apparatus in the tubing string; and, 3b. actuating the releasable coupling with a wireline fishing tool so that the gun is dropped downhole against said abutment.
3. DROPPING THE GUN APPARATUS SO THAT IT FALLS DOWNHOLE FROM THE LOW TO THE HIGH TEMPERATURE ZONE, AND IMPACTS AGAINST SAID ABUTMENT MEANS,
4. DETONATING THE GUN APPARATUS BY USING THE FORCE RESULTING FROM THE GUN APPARATUS IMPACTING AGAINST THE ABUTMENT.
4. The method of claim 3 and further including the step of placing a packer device above said releasable coupling so that the production from the completed well flows uphole and into the tubing string, immediately upon completion of the well.
4. detonating the gun apparatus by using the force resulting from the Gun apparatus impacting against the abutment.
5. The method of claim 1 wherein Step (1) is carried out by placing a packer on the end of a tubing string and connecting the gun to the packer so that the gun is located uphole in the borehole in the low temperature region thereof.
6. The method of claim 5 wherein Step (3) is carried out by connecting the gun to the packer by a tubing string having a releasable coupling series connected therein; and, actuating the releasable coupling with a wireline actuated fishing tool.
7. The method of claim 5 wherein Step (3) is carried out by connecting the gun to the packer by a tubing string having a releasable coupling series connected therein; and, actuating the releasable coupling by fluid pressure.
8. High temperature well completion method comprising: connecting a detonator to a perforating gun apparatus and arranging the detonator so that it fires the gun upon impact with a downhole obstruction; releasably locating a perforating gun apparatus uphole in a relative low temperature region of a borehole; locating an obstruction against which said gun can be abuttingly received downhole in a relative high temperature region of the borehole; positioning said gun and obstruction relative to one another and to any hydrocarbon formation which may be contained within said high temperature region so that when the gun impacts the obstruction, the gun can perforate the borehole adjacent the hydrocarbon formation; releasing said gun apparatus so that it falls from said low to said high temperature region and strikes said abutment, whereupon said detonator fires said gun, causing the borehole to be perforated adjacent the hydrocarbon formation, thereby completing the well.
9. The method of claim 8, wherein said gun is releasably located uphole by telescopingly receiving a marginal length of tubing one within the other and suspending the gun from the tubing; concentrically positioning a piston in the telescoping portions of the tubing and releasably connecting the telescoping portions of the tubing together by a releasing member which is held into an unreleased position by the piston; moving the piston downhole by forcing fluid into the upper tubing string, thereby enabling said releasing member to move, and causing the telescoping portions of the tubing to move apart.
10. The method of claim 8 wherein the step of releasing the gun is carried out by connecting the gun to the tubing string by a releasable coupling; and, actuating the releasable coupling with a wireline actuated fishing tool.
11. The method of claim 8 wherein said gun is run into the borehole on the end of a tubing string, and the step of dropping the gun is carried out as follows: placing a wireline actuated releasable coupling apparatus in the tubing string; and, actuating the releasable coupling with a wireline fishing tool so that the gun is dropped against said abutment.
12. The method of claim 11 and further including the step of placing a packer device above said releasable coupling so that any production from the completed well must flow uphole and into the tubing string.
US522529A 1974-11-11 1974-11-11 High temperature perforating method Expired - Lifetime US3912013A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US522529A US3912013A (en) 1974-11-11 1974-11-11 High temperature perforating method
US05/622,427 US3990507A (en) 1974-11-11 1975-10-14 High temperature perforating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US522529A US3912013A (en) 1974-11-11 1974-11-11 High temperature perforating method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/622,427 Division US3990507A (en) 1974-11-11 1975-10-14 High temperature perforating apparatus

Publications (1)

Publication Number Publication Date
US3912013A true US3912013A (en) 1975-10-14

Family

ID=24081229

Family Applications (1)

Application Number Title Priority Date Filing Date
US522529A Expired - Lifetime US3912013A (en) 1974-11-11 1974-11-11 High temperature perforating method

Country Status (1)

Country Link
US (1) US3912013A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4113016A (en) * 1977-09-26 1978-09-12 Trott Donald E Casing perforation method and apparatus
US4227582A (en) * 1979-10-12 1980-10-14 Price Ernest H Well perforating apparatus and method
USRE30829E (en) * 1977-09-26 1981-12-22 D & D Company Casing perforation method and apparatus
US4375834A (en) * 1979-05-16 1983-03-08 D & D Company Ltd. Casing perforation method and apparatus
US4554981A (en) * 1983-08-01 1985-11-26 Hughes Tool Company Tubing pressurized firing apparatus for a tubing conveyed perforating gun
US4852647A (en) * 1985-09-18 1989-08-01 Mohaupt Henry H Wire line hold down device
US5025861A (en) * 1989-12-15 1991-06-25 Schlumberger Technology Corporation Tubing and wireline conveyed perforating method and apparatus
US5429192A (en) * 1992-03-26 1995-07-04 Schlumberger Technology Corporation Method and apparatus for anchoring a perforating gun to a casing in a wellbore including a primary and a secondary anchor release mechanism
GB2343241A (en) * 1998-10-30 2000-05-03 Baker Hughes Inc Perforating guns
US6098713A (en) * 1996-09-12 2000-08-08 Halliburton Energy Services, Inc. Methods of completing wells utilizing wellbore equipment positioning apparatus

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2866508A (en) * 1955-05-09 1958-12-30 Walter L Church Gun test packer
US2906339A (en) * 1954-03-30 1959-09-29 Wilber H Griffin Method and apparatus for completing wells
US3011551A (en) * 1958-11-06 1961-12-05 Halliburton Co Fracturing gun
US3058522A (en) * 1958-04-07 1962-10-16 Hydro Perf Company Oil well casing perforator
US3189094A (en) * 1963-01-03 1965-06-15 Halliburton Co Firing apparatus for gun perforators
US3190372A (en) * 1962-03-05 1965-06-22 Sun Oil Co Methods and apparatus for drilling bore holes
US3193013A (en) * 1962-11-05 1965-07-06 John D Whiteside Wire line cutter
US3199287A (en) * 1962-05-09 1965-08-10 John C Kinley Explosive means for tubing perforator and the like
US3530948A (en) * 1968-06-20 1970-09-29 Brown Oil Tools Perforator
US3706344A (en) * 1970-10-15 1972-12-19 Roy R Vann Tubing conveyed permanent completion method and device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2906339A (en) * 1954-03-30 1959-09-29 Wilber H Griffin Method and apparatus for completing wells
US2866508A (en) * 1955-05-09 1958-12-30 Walter L Church Gun test packer
US3058522A (en) * 1958-04-07 1962-10-16 Hydro Perf Company Oil well casing perforator
US3011551A (en) * 1958-11-06 1961-12-05 Halliburton Co Fracturing gun
US3190372A (en) * 1962-03-05 1965-06-22 Sun Oil Co Methods and apparatus for drilling bore holes
US3199287A (en) * 1962-05-09 1965-08-10 John C Kinley Explosive means for tubing perforator and the like
US3193013A (en) * 1962-11-05 1965-07-06 John D Whiteside Wire line cutter
US3189094A (en) * 1963-01-03 1965-06-15 Halliburton Co Firing apparatus for gun perforators
US3530948A (en) * 1968-06-20 1970-09-29 Brown Oil Tools Perforator
US3706344A (en) * 1970-10-15 1972-12-19 Roy R Vann Tubing conveyed permanent completion method and device
US3706344B1 (en) * 1970-10-15 1985-07-09

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4113016A (en) * 1977-09-26 1978-09-12 Trott Donald E Casing perforation method and apparatus
USRE30829E (en) * 1977-09-26 1981-12-22 D & D Company Casing perforation method and apparatus
US4375834A (en) * 1979-05-16 1983-03-08 D & D Company Ltd. Casing perforation method and apparatus
US4227582A (en) * 1979-10-12 1980-10-14 Price Ernest H Well perforating apparatus and method
US4554981A (en) * 1983-08-01 1985-11-26 Hughes Tool Company Tubing pressurized firing apparatus for a tubing conveyed perforating gun
US4852647A (en) * 1985-09-18 1989-08-01 Mohaupt Henry H Wire line hold down device
US5025861A (en) * 1989-12-15 1991-06-25 Schlumberger Technology Corporation Tubing and wireline conveyed perforating method and apparatus
AU634324B2 (en) * 1989-12-15 1993-02-18 Schlumberger Technology B.V. Tubing and wireline conveyed perforating method and apparatus
US5429192A (en) * 1992-03-26 1995-07-04 Schlumberger Technology Corporation Method and apparatus for anchoring a perforating gun to a casing in a wellbore including a primary and a secondary anchor release mechanism
US6098713A (en) * 1996-09-12 2000-08-08 Halliburton Energy Services, Inc. Methods of completing wells utilizing wellbore equipment positioning apparatus
GB2343241A (en) * 1998-10-30 2000-05-03 Baker Hughes Inc Perforating guns
GB2343241B (en) * 1998-10-30 2003-11-05 Baker Hughes Inc Apparatus for releasing then firing perforating guns

Similar Documents

Publication Publication Date Title
US4512406A (en) Bar actuated vent assembly
US4509604A (en) Pressure responsive perforating and testing system
US4544034A (en) Actuation of a gun firing head
US5992289A (en) Firing head with metered delay
US4330039A (en) Pressure actuated vent assembly for slanted wellbores
US4576233A (en) Differential pressure actuated vent assembly
US4541486A (en) One trip perforating and gravel pack system
US4605074A (en) Method and apparatus for controlling borehole pressure in perforating wells
US4560000A (en) Pressure-activated well perforating apparatus
CA1162843A (en) Bar actuated vent assembly and perforating gun
US5398760A (en) Methods of perforating a well using coiled tubing
US4616718A (en) Firing head for a tubing conveyed perforating gun
US3706344A (en) Tubing conveyed permanent completion method and device
US4650010A (en) Borehole devices actuated by fluid pressure
US20150247389A1 (en) Bottom Hole Firing Head and Method
JPS61109894A (en) Firing system of tubing carrying type boring gun
US3990507A (en) High temperature perforating apparatus
US4709760A (en) Cementing tool
US4880056A (en) Hydraulically activated firing head for well perforating guns
CA1284768C (en) Firing head for a tubing conveyed perforating gun
US6220370B1 (en) Circulating gun system
US4078611A (en) High temperature perforating method
US3912013A (en) High temperature perforating method
US5632348A (en) Fluid activated detonating system
US4771827A (en) Automatic drop-off device for perforating guns

Legal Events

Date Code Title Description
AS Assignment

Owner name: GEO VANN, INC. A CORP. OF NEW MEXICO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST. EFFECTIVE. 9-21-77;ASSIGNOR:VANN, ROY R.;REEL/FRAME:003950/0314

Effective date: 19820217

STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)

AS Assignment

Owner name: GEO INTERNATIONAL CORPORATION, 1 LANDMARK SQ., STA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:PEABODY INTERNATIONAL CORPORATION;REEL/FRAME:004231/0865

Effective date: 19840229

Owner name: GEO VANN, INC., 16350 PARK TEN PLACE DRIVE, HOUSTO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:GEO INTERNATIONAL CORPORATION;REEL/FRAME:004231/0869

Effective date: 19840229

Owner name: PEABODY INTERNATIONAL CORPORATION, GALION, OH A DE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:VANN, ROY R, SR.;REEL/FRAME:004231/0873

Effective date: 19770921

Owner name: GEO INTERNATIONAL CORPORATION, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PEABODY INTERNATIONAL CORPORATION;REEL/FRAME:004231/0865

Effective date: 19840229

AS Assignment

Owner name: GEO INTERNATIONAL CORPORATION, A CORP. OF DE.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:PEABODY INTERNATIONAL CORPORATION;REEL/FRAME:004555/0052

Effective date: 19850928

Owner name: GEO INTERNATIONAL CORPORATION, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PEABODY INTERNATIONAL CORPORATION;REEL/FRAME:004555/0052

Effective date: 19850928

AS Assignment

Owner name: HALLIBURTON COMPANY

Free format text: MERGER;ASSIGNOR:VANN SYSTEMS, INC.;REEL/FRAME:004606/0300

Effective date: 19851205

Owner name: HALLIBURTON COMPANY,STATELESS

Free format text: MERGER;ASSIGNOR:VANN SYSTEMS, INC.;REEL/FRAME:004606/0300

Effective date: 19851205