US3911719A - High speed ejector mechanism - Google Patents

High speed ejector mechanism Download PDF

Info

Publication number
US3911719A
US3911719A US528778A US52877874A US3911719A US 3911719 A US3911719 A US 3911719A US 528778 A US528778 A US 528778A US 52877874 A US52877874 A US 52877874A US 3911719 A US3911719 A US 3911719A
Authority
US
United States
Prior art keywords
actuator
punch
push rod
carriage
rearward
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US528778A
Inventor
David Degenhardt
Fred Nelson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Closure Systems International Packaging Machinery Inc
Original Assignee
Ragsdale Brothers Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ragsdale Brothers Inc filed Critical Ragsdale Brothers Inc
Priority to US528778A priority Critical patent/US3911719A/en
Application granted granted Critical
Publication of US3911719A publication Critical patent/US3911719A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D45/00Ejecting or stripping-off devices arranged in machines or tools dealt with in this subclass
    • B21D45/02Ejecting devices
    • B21D45/04Ejecting devices interrelated with motion of tool

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

An ejector mechanism for ejecting a thin-walled seamless cylindrical metal can having a bottom from around the punch of a drawing and ironing press having one or more hollow cylindrical dies and a punch which is movable into said dies to draw and iron a ductile metal blank or cup into a can. The front end of said ejector mechanism forms the nosepiece of the punch and said nosepiece moves reciprocally with respect to said punch after the punch begins its rearward stroke out of the dies.

Description

United States Patent Degenhardt et a1.
HIGH SPEED H CTOR MECHANISM Inventors: David Degenhardt, Denver; Fred Nelson, Englewood, both of Colo.
Assignee: Ragsdale Brothers Inc., Englewood,
Colo.
Filed: Dec. 2, 1974 Appl. No: 528,778
US. Cl. 72/345; 72/349; 72/427; 113/7 A; 113/120 H Int. Cl. B21D 45/00; B21D 45/02; B21D 45/04 Field of Search 72/344, 345, 349, 427; 113/7 R, 7 A, 120 H References Cited UNITED STATES PATENTS 6/1936 Johnson 72/427 ll/l942 Bauman et a1... 72/353 X 3/ 1946 boewy 72/ 345 Oct. 14, 1975 2,462,315 2/1949 Gagne, Jr 72/345 2,667,853 2/ 1954 Ingersoll 72/345 3,120,769 2/ 1964. Hatebur 72/427 X 3,570,300 3/1971 Schulte 72/427 3,733,884 5/1973 Foster et al 72/429 Primary ExaminerVictor A. DiPalma Attorney, Agent, or Firm-Jack C. Sloan ABSTRACT An ejector mechanism for ejecting a thin-walled seamless cylindrical metal can having a bottom from around the punch of a drawing and ironing press having one or more hollow cylindrical dies and a punch which is movable into said dies to draw and iron a ductile metal blank or cup into a can. The front end of said ejector mechanism forms the nosepiece of the punch and said nosepiece moves reciprocally with respect to said punch after the punch begins its rearward stroke out of the dies.
10 Claims, 3 Drawing Figures U.S. Patent Oct. 14, 1975 Sheet 1 of3 3,911,719
Oct. 14, 1975 Sheet 2 of 3 BACKGROUND OF THEHINVENTION This invention relates to ejector mechanisms for drawing and ironing presses which conventionally comprise one or more dies and a punch which is movable coaxially with respect to the dies with both the dies and the punch each comprising an axially central bore so adapted and arranged that the ductile material of a blank or cup flows back in a space between the walls of the punch and the dies to form a container. More particularly, this invention relates to ejector mechanisms for drawing and ironing presses for drawing and ironing ductile metal blanks or cups to form'thin-walled seamless metal cans suitable for storage of liquids or semi-liquid substances such as beverages, food stuffs, aerosols and paints. v
In order to function effectively, ejector mechanisms for thin-walled cans must quickly overcome forces from a number of sources. For example, since the axial walls and edge portions of the bottoms of the cans are formed by drawing and ironing the blanks ductile metal back along the punch between the walls of the punch and dies, frictional forces are formed all along the walls of the can. Furthermore, in many drawing and ironing presses, the punch often has a slightly irregular or tapered shank, wherein the front of'the punch often has a slightly larger diameter than the rear portion. This taper produces cans of slightly increased thickness near the top so that the top of the can will be able to withstand subsequent machining operation associated with the addition of a top to the can. Such a taper produces a hump, which in turn creates mechanical forces between the punch and can near the tapered top portion of the can which the ejector mechanism must also overcome.
Hitherto known ejector mechanisms for thin-walled cans have utilized such means as ejector pins operating from either the die side or the punch side to deliver a sharp tap to the bottom of the can, pneumatic means to deliver a blast of'air to the bottom of the can, strippers or grippers to apply pressure to the top edges of the can'from the punch side as the punch starts its return stroke, or combinations of these means such as those taught in U.S. Pat. No. 3,165,203 and 3,719,069. Owing to the high mechanical and frictional forces and the thinness of the walls of the can, the cans are often deformed by these types of 'ejector actions. Furthermore, the relatively thin' ejector pins are, themselves, sometimes deformed or broken by the high buckling stresses caused by their impact with the cans. These buckling stresses are'particularly prevalent in ejection systems wherein the pins are activated by means of electrical or pneumatic contacts which in turn activate the ejection pin driving means. This is because pneumatic or electrical make and break devices take slightly varying time spans to activate the ejector pins particularly as these devices wear in use. This results in improperly timed ejection actions and hence higher buckling stresses. Thus, timing of the ejection is of the utmost importance, particularly when rejections are carried out at rates in excess of 100 cans per minute.
SUMMARY OF THE INVENTION A specific object of this invention is to provide an ejector mechanism which operates through completely mechanical means, that is, through mechanical link- 7 2 ages without the need for electrical or pneumatic operations. It being understood, however, that the ejector mechanism of this invention is designed to initially loosen the "workpiece from' the mechanical and frictional'forc'es caused by the drawing and ironing process. After the'workpiece is free of these forces, then known devices for holding and conveying the finished workpiece away from the die and punch work area may be used. Such devices form no part of this invention. It
should also be understood that known pneumatic harmful deformations to said cansfilt isstill another object of this invention to reduce tool wear in the ejection mechanism in ways which will be hereinafter described. Ejector mechanisms constructed in accordance with this invention comprise a nosepiece located at the working end of a punch. Saidpunch forms a fixed part of a punch carriage. The nosepiece is capable of reciprocal motion with respect to the punchwith' the reciprocal motion being independent of the motion of the punch. The nosepiece is connected to a 'push rod which transmits independent reciprocal motions to the nosepiece as the punch makes its rearward stroke out of the die. The push rod has connecting points fo r pivotally receiving actuator arms which are in turn pivotally connected to actuators. The actuators are pivotally mounted at one end to a known type of punch carriage which forms no part of this invention. The actuators are so adapted and arranged that the actuator initially jams against a biased trip dog during the return'stroke of the punch carriage. This causes the actuator to pivot forward about its punch carriage pivot mounting. Thus, the actuator arm, the push rod, and hence the nosepiece is forced forward to eject the workpiece. As the punch carriage continues its rearward stroke, the actuator slips past thebiased trip dog. When this happens, a push rod biasing means forces the push rod back to its original position before the punch carriagecompletes its rearward stroke. The return of the push rod is inhibited by a damping means connected to said push rod to prevent harmful impacts between the nosepiece and punch as the push rod is forced back by the'push rod biasing means. The punch carriage then completes its rearward stroke. The actuator is also adapted to slide past the biased trip dogs as the punch carriage makes its forward or work stroke. 7
Other and further objects of the present invention will be apparent from the following description and claims. The accompanying drawings shown only the preferred embodiments of the present invention and the principles thereof, and what is now considered to be the best mode contemplated for applying these principles.Other embodiments of the invention utilizing the same or equivalent principles may be made as desired by those skilled inthe art without departing from the scope of the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS I Throughout this specification and in the appended claims the terms cylindrical can and can are employed in the general sense as referring to a configuration generated by movement of a straight line in a closed path about a parallel straight line axis; thus, these terms include cylinders of generally rectangular, square, elliptical and other cross-sectional configurations, as well as the usual cylinders of circular crosssection. In the apparatus embodiments of this invention illustrated in the drawings, the drawing and ironing press is shown as having a generally circular configuration, and this is also true with respect to the workpieces, such as the lower portions of beer cans, produced by said drawing and ironing press. It being understood that modification to other cross-sectional configurations can be readily accomplished by changing the die and punch to the appropriate configuration. Furthermore, it will be understood by those skilled in the art that although the can is envisioned as having a full bottom in the approximate conformation of the nosepiece, the mechanism would operate on cans without full bottoms.
Likewise, even though the term drawing and ironing is generally used throughout this application, those skilled in the art will recognize that cold ironing or extruding presses could also utilize the ejection mechanisms taught by this invention and hence these terms should be considered as equivalents insofar as they apply to this invention.
DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of a known drawing and ironing press with the ejector mechanism of this invention associated therewith. The punch carriage, and hence the punch which is fixedly attached to said punch carriage, is shown in its full forward position.
FIG. 2 is a sectional view of the drawing and ironing press and ejector mechanism showing the action of the ejector mechanism at a point just after the actuators have slid past the trip dogs during the rearward stroke of the punch carriage,
FIG. 3 is a sectional view of the drawing and ironing press and ejector mechanism showing the push rod re turned to a full rearward position in the damping means after the actuators have slid past the trip dogs, but before the punch carriage has reached its full rearward stroke position. The figure shows a new workpiece in position ready to be extruded as the punch comes forward.
FIG. 1 is a sectional view of a drawing and ironing press 10, in which an ejection mechanism 11 constructed in accordance with one embodiment of the present invention is incorporated. The press comprises a punch carriage 12 having a known power means not shown for driving said punch carriage 12 between a full forward position FF and a full rearward position FR. The punch carriage 12 has a punch 13 fixedly attached so that said punch carriage l2 and punch 13 move in unison. A work piece 14 is ironed or extruded between the punch 13 and a die or series of dies 15 as the punch 13 moves into the die(s) 15. The punch 13 is substantially hollow throughout its center to allow reciprocal passage of push rod 16. A nosepiece 17 which substantially forms the forward or working end of the punch 13 is reciprocally mounted to move forward and rearward with respect to said forward end of the punch 13 as the punch carriage 12, and hence the punch 13 makes its rearward stroke. The
rear end of the nosepiece 17 is fixedly mounted to the front end of the push rod 16. Another point on said push rod 16, shown as the rear end in FIG. 1, is fixedly mounted for reciprocation therewith to a damping means 18. The damping means 18 shown in FIG. 1 is a known two-stage hydraulic damper having a firststage piston 19 and a second-stage piston 20. The push rod 16 is provided with an abutting means such as a back up ring 21 for contacting a biasing means depicted as a spring 22 in FIG. 1. The purpose of said spring 22 is to force the push rod 16 far enough to the rear that the nosepiece 17 returns to the front of the punch 13 when the spring 22 is allowed to decompress. When the punch carriage 12 is in the full forward position FF shown in FIG. 1, the other end of the spring 22 rests in a substantially decompressed state against a spring housing 23 which forms a fixed part of the punch carriage 12. The push rod 16 is also fixedly provided with at least one connector 24 for pivotal connection with an actuator arm 25. Said actuator arm 25 is pivotally connected at one end to the push rod connector 24 and pivotally connected at the other end to an actuator 26. The actuator 26 is pivotally mounted to the punch carriage 12 at one end and pivotally mounted to the actuator arm 25 at some point adjacent to the actuators punch carriage pivot mounting point. The actuator 26 is forced to pivot forward about the actuators punch carriage pivot mounting point by a lever action delivered to the actuator 26 by a trip dog 27 after the punch carriage l2 begins its rearward stroke with said actuator 26 being so adapted and arranged that it initially jams against the trip dog 27 to create the levered pivot action of the actuator 26 about its punch carriage pivot mounting point, and then slides past the trip dog 27 after the actuator 26 has pivoted far enough forward to allow the actuator 26 to slide past the trip dog 27 as the punch carriage continues on its rearward stroke. The actuator 26 is also so adapted and arranged that it slips past the trip dog 27 without creating any forward movement of the actuator arm 25 during the forward stroke of the punch carriage 12.
FIG. 1 shows the trip dog 27, located a distance d from the rear edge of the actuator 26 when the punch carriage 12 is in the full forward FF position. The trip dog 27 has a biasing means for returning said trip dog to an actuating position when the trip dog is not in contact with the actuator 26. The actuating end of the trip dog 27 is so adapted and arranged that the actuating end of the trip dog 27 initially jams against the actuator 26 after the punch carriage l2 begins its rearward stroke. The trip dog actuating end arrangement then allows the actuator 26 to slide past the actuating end of the trip dog as the punch carriage l2 continues on its rearward stroke. The actuating end of the trip dog 27 is so adapted and arranged that it allows the actuator 26 to slide past the biased trip dog 27 without a forward lever action of the actuator 26 as the punch carriage 12 makes its forward stroke.
FIG. 2 is a sectional view of the drawing and ironing press 10, in which the ejection mechanism 11 constructed in accordance with one embodiment of this invention is shown at a position where the actuator 26 is just sliding past the trip dog 27 during the rearward stroke of the punch carriage 12. The actuator 26 has forced the actuator arm 25 completely forward and the actuator arm 25 has forced the push rod 16 completely forward and the push rod 16 has in turn pushed the nosepiece17 forward to free the workpiece 14 from the forces holding the workpiece l4 to.the pucnh 13. At this point in the ejection process other known devices for holding and conveying the finished workpiece 14 away from the die and punch work area may .be utilized. Such devices are not shown and form no part of this invention. In the position shown in FIG. 2 the spring 22 has been put in compression between the back up ring 21 and the spring housing 23. The first stage piston 19 and the second-stage piston have been pulled forward by the push rod 16 where they are now ready to dampen the return of push rod 16, and hence the return of the nosepiece 17 to the punch 13.
FIG. 3 is a sectional view of the drawing and ironing press 10, in which the ejection mechanism 11, constructed in accordance with one embodiment of this invention, is shown at a position in the return stroke of the punch carriage 12 where the actuator 26 is no longer. in contact with the .trip dog 27 and hence the spring 22 has decompressed. This decompression has preferably taken place before the punch carriage 12 has gone to the full rearward strike position FR. The forces supplied by the decompressing spring 22 have driven the push rod 16 rearward and hence pulled the nosepiece 17 back into contact with the front end of the punch 13. The impact of the return of the nosepiece 17 to the punch 13 has been softened by the damping means 18. Anew workpiece 14 in the form of a blank or cup has been placed in position for drawing and ironing when the punch 13 makes its forward stroke.
Although a preferred embodiment of this invention is illustrated, it will be realized by those skilled in the art that modifications of the structual details may be made without departing from the mode of operation and the essence'of this invention. For example,- in all the figures shown above, the ejector mechanism is shown as being bilaterally symmetrical, i.e., actuator arms, actuators, and trip dogs are shown on each side of the push rod axis. This'is the preferred arrangement,
although itshould be understood that the ejector mechanism would work with just one of each of the above elements in the arrangement shown in the drawings.
Furthermore, the push rod biasing means could be a device other than the spring shown in the above figures. Likewise, a damping means other than the hydraulic means shown in the figures above could be utilized. The two-stage hydraulic means shown above is preferred, however, since the first stage can be adapted to allow a damped, but nonetheless high speed return of the nosepiece to the ram under the influence of the biasing means and then further dampen the impact of the nosepiece to the ram at the end of this return to prevent harmful impacts between the nosepiece l7 and the punch 13. This combination is particularly well suited for the high speed operations contemplated by this invention.
Similarly, applicants have discovered that harmful mechanical impacts between the actuator and trip dog can be minimized if the distance between the rear edge of the actuator and the foward edge of the trip dog shown in FIG." 1 is less than about 2 inches and most preferably less than about A of an inch. With this arrangement, the actuator has not had time to achieve a high rearward velocity before the rear edge of the actuator 26 and the front edge of the tripdog'27'impact. It should also be noted with respect to the actuator and trip dog that other geometric forms such as, for example, rounded edges would have the capability of sliding past each other in the rearward direction to lever the actuator and not lever the actuator during the forward stroke of the punch carriage. The trip dog can be biased toward the actuating position by any suitable biasing means such assprings, air pressure, etc.
Finally, it will be understood by those skilled in the art that the relationship between the punch and the die could be reversed since it is not absolutely essential that the punch be the movable element of the die and punch combination.
Therefore, except insofar as they are claimed in the appended claims, structural details may be varied widely without modifying the mode of operation. Accordingly, the appended claims and not the aforesaid descriptions are determinative of the scope of this invention.
What is claimed is:
1. An ejector mechanism for ejecting a workpiece from a drawing and ironing press having at least one die, a means adapted for receiving said workpiece, and a punch mounted to a powered punch carriage so adapted and arranged that the' punch moves in the die(s) during a forward stroke to draw and iron the workpiece and moves out of the die(s) during a rearward stroke to permit ejection of the workpiece from the press, said ejector mechanism comprising:
a. A nosepiece reciprocally mounted with respect to the working end of the punch, said nosepiece having a forward working end for drawing and ironing the workpiece and for ejecting said workpiece by moving forward with respect to the punch just after the punch begins its rearward stroke, and having a rear end rigidly attached to a push rod for transmitting reciprocal motions from the push rod to said nosepiece;
b. A push rod for transmitting reciprocal motions to the nosepiece by having one end of said push rod rigidly attached to the nosepiece and another point fixedly mounted for reciprocation therewith, to a damping means and by having another point on said push rod fitted with at least one connector for pivotal connection with at least one actuator arm and by having another point fitted with a means for fitting a biasing means which returns the push rod to a position far enough to the rear that the nosepiece returns to the working end of the punch after a forward force delivered by the actuator arm is removed and before the punch carriage completes its rearward stroke;
. At least one actuator arm for transmitting forward forces to the push rod from an actuator arm and for transmitting rearward forces from the push rod biasing means to the actuator arm by having one end of the actuator arm pivotally connected to the push rod and the other end pivotally connected to an actuator;
d. At least one actuator pivotally mounted to the ram carriage at one end and pivotally mounted to the actuator arm at some point adjacent to the actuators punch carriage pivot mounting so that the actuator pushes the actuator arm forward when the actuator is forced to pivot forward about the actuators punch carriage pivot mounting by a levered pivot action delivered to' the actuator by a trip dog after the punch carriage begins its rearward stroke with said actuator being so adapted and arranged that it initially jams against the trip dog to create the levered pivot action of the actuator about its punch carriage pivot mounting and then slides past the trip dog when the actuator has pivoted far enough forward to allow the actuator to slide past the trip dog as the punch carriage continues on its rearward stroke and then allows the actuator to slide past the trip dog without creating any levered pivot action during the forward stroke of the punch carriage; t e. At least one trip dog, having a biasing means to return the trip dog to an actuating position when the trip dog is not in contact with the actuator, and having an actuating end so adapted and arranged that the actuating end initially jams against the actuator after the punch carriage begins its rearward stroke and then allows the actuator to slide past the actuating end of the trip dog as the punch carriage continues on its rearward stroke and then allows the actuator arm to slide past the biased trip dog without pivoting of the actuator forward asthe punch carriage'm'akes its forward stroke;
A biasing means for returning the push rod to its rearward position with respect to a damping means after the actuator slides past the trip dog, but before the punch carriage completes its return stroke: g. A damping means mounted to the punch carriage and reciprocally mounted to the push rod for damping the return of the nosepiece to the punch during the period the push rod is underthe influence of the biasing means after the actuator slides past the trip dog during the rearward stroke of the punch carriage. 2. The mechanism of claim 1 wherein the workpiece receiving means is adapted to receive a blank of material capable of undergoing drawing and ironing.
3. The mechanism of claim 2 wherein the workpiece receiving means is adapted to receive a blank of ductile cylindrical die or dies and a punch mounted to a pow- ..eredpunch carriage so adapted and arrangedthat a working end of said punch moves into the die(s) during a forward stroke to draw and iron the ductile metal -blank into a can and moves out of the die during a rearward stroke to permit ejection of the can, said ejector mechanism comprising:
a.vA nosepiece reciprocally mountedwith respect to the working end of the punch, said nosepiece having a forward working end for drawing and ironing the can and for ejecting the can from around the punch by a forward movement with respect to the punch just after the punch starts the rearward ."stroke, and having a back end rigidly attached to a push rod. for transmitting reciprocal motions from the push rod to the nosepiece;
b. A push rod for transmitting reciprocating motions to the nosepiece byhaving one end rigidly attached to said nosepiece and the other end fixedly mounted for reciprocation therewith, to a damping means with said-push rod being fitted with a plurality of connectors for pivotal connection with a plurality of actuator arms and being fitted with a biasing means to return said push rod to a rearward position after forward forces delivered by the actuator arms are removed and before the punch carriage completes its rearward stroke;
. A plurality of actuator arms for tramsmitting forward forces to the push rod from a plurality of actuators and for transmitting rearward forces from the push rod biasing means to the actuators'by having each actuator arm pivotally connected to the push rod at one end and the other end pivotally connected to an actuator which pushes the actuator arm forward after the punch begins its rearward stroke;-
d. A plurality of actuators, each pivotally mounted to the punch carriage at one end and each pivotally mounted to an actuator arm at some point adjacent to the actuators'punch carriage pivot mounting so that the'actuator pushes the actuator arm forward when the actuator is forced to pivot forward about the actuators punch carriage pivot mounting by a lever action delivered to the actuator by a biased trip dog afterthe punch carriage begins its rearward stroke with said actuator being so adapted and arranged that it initially jams against the trip dog to create the pivot action of the actuator about its punch carriage pivot mounting then slides past the trip dog when the actuator has pivoted far enough forward to allow the actuator to slide past the trip dog as the punch carriage continues on its rearward stroke and allows the actuatorto slide past the trip dog without creating any lever actions during the forward stroke of the punch carriage; A plurality of trip dogs, each having a biasing means to return the trip dog to an actuating position when the tripdog is not in contact with the actuator, and each having an actuating end so adapted and arranged that the actuating end initially jams against the actuator after the punch carriage begins its rearward stroke, and then allows the actuator to slide past the actuating end of the trip dog as the actuator pivots forward as the punch carriage continues its rearward stroke and subsequently allows the actuator arm to slide past the biased trip dog without forward actuation of the actuator as the punch carriage makes its forward stroke;
A spring resting between the push rod and a spring housing which forms a fixed part of the punch car- .spring has been put in compression by the forward force of .the actuator arm as the actuator, jams against the trip dog, with said spring being allowed to decompress andhence push the push rod rearward'after the actuatorslides past the trip dog during the punch carriages return stroke, with said .sp ring having sufficient force to return the push rod to the rearward position before the punch carriage completes its rearward .stroke;
g. A hydraulic damping means fixedly mounted to the ram carriage and having means for fixedly mounting for reciprocation therewith, the push rod, for damping the closing of the nosepiece to the punch during the period when the push rod is under the influence of the decompressing spring after the actuator has slid past the trip dog during the rearward stroke of the punch carriage;
7. The ejector mechanism of claim 6 wherein two actuator arms, two actuators, and two trip dogs are mounted in bilateral symmetry about the push rod.
8. The ejector mechanism of claim 7 wherein the trip dogs are mounted so that contact with the actuators is made near the end of the actuator which is opposite the actuators punch carriage pivot mounting and at a time before the actuator has traveled rearward a distance of less than two inches.
9. The ejector mechanism of claim 8 wherein the means to bias the trip dogs into the actuating position is air pressure.
10. The ejector mechanism of claim 6 wherein the hydraulic dampingmeans operates in two stages to allow a first stage for a rapid initial closing of the distance between the nosepiece and the punch when the spring is moving the push rod rearward and a slower closing during a second stage before the nosepiece and the punch come into actual contact so as to prevent harmful impacts between said nosepiece and punch.

Claims (10)

1. An ejector mechanism for ejecting a workpiece from a drawing and ironing press having at least one die, a means adapted for receiving said workpiece, and a punch mounted to a powered punch carriage so adapted and arranged that the punch moves in the die(s) during a forward stroke to draw and iron the workpiece and moves out of the die(s) during a rearward stroke to permit ejection of the workpiece from the press, said ejector mechanism comprising: a. A nosepiece reciprocally mounted with respect to the working end of the punch, said nosepiece having a forward working end For drawing and ironing the workpiece and for ejecting said workpiece by moving forward with respect to the punch just after the punch begins its rearward stroke, and having a rear end rigidly attached to a push rod for transmitting reciprocal motions from the push rod to said nosepiece; b. A push rod for transmitting reciprocal motions to the nosepiece by having one end of said push rod rigidly attached to the nosepiece and another point fixedly mounted for reciprocation therewith, to a damping means and by having another point on said push rod fitted with at least one connector for pivotal connection with at least one actuator arm and by having another point fitted with a means for fitting a biasing means which returns the push rod to a position far enough to the rear that the nosepiece returns to the working end of the punch after a forward force delivered by the actuator arm is removed and before the punch carriage completes its rearward stroke; c. At least one actuator arm for transmitting forward forces to the push rod from an actuator arm and for transmitting rearward forces from the push rod biasing means to the actuator arm by having one end of the actuator arm pivotally connected to the push rod and the other end pivotally connected to an actuator; d. At least one actuator pivotally mounted to the ram carriage at one end and pivotally mounted to the actuator arm at some point adjacent to the actuator''s punch carriage pivot mounting so that the actuator pushes the actuator arm forward when the actuator is forced to pivot forward about the actuator''s punch carriage pivot mounting by a levered pivot action delivered to the actuator by a trip dog after the punch carriage begins its rearward stroke with said actuator being so adapted and arranged that it initially jams against the trip dog to create the levered pivot action of the actuator about its punch carriage pivot mounting and then slides past the trip dog when the actuator has pivoted far enough forward to allow the actuator to slide past the trip dog as the punch carriage continues on its rearward stroke and then allows the actuator to slide past the trip dog without creating any levered pivot action during the forward stroke of the punch carriage; e. At least one trip dog, having a biasing means to return the trip dog to an actuating position when the trip dog is not in contact with the actuator, and having an actuating end so adapted and arranged that the actuating end initially jams against the actuator after the punch carriage begins its rearward stroke and then allows the actuator to slide past the actuating end of the trip dog as the punch carriage continues on its rearward stroke and then allows the actuator arm to slide past the biased trip dog without pivoting of the actuator forward as the punch carriage makes its forward stroke; f. A biasing means for returning the push rod to its rearward position with respect to a damping means after the actuator slides past the trip dog, but before the punch carriage completes its return stroke: g. A damping means mounted to the punch carriage and reciprocally mounted to the push rod for damping the return of the nosepiece to the punch during the period the push rod is under the influence of the biasing means after the actuator slides past the trip dog during the rearward stroke of the punch carriage.
2. The mechanism of claim 1 wherein the workpiece receiving means is adapted to receive a blank of material capable of undergoing drawing and ironing.
3. The mechanism of claim 2 wherein the workpiece receiving means is adapted to receive a blank of ductile metal.
4. The mechanism of claim 3 wherein the workpiece receiving means is adapted to receive a blank of aluminum.
5. The mechanism of claim 3 wherein the workpiece receiving means is adapted to receive a blank of mild steel.
6. An ejector mechanism for ejecting a thin-walled cylindrical metal can having a bottom from around a ram of a drawing and ironing press having a means adapted for receiving a ductile metal blank, a hollow cylindrical die or dies and a punch mounted to a powered punch carriage so adapted and arranged that a working end of said punch moves into the die(s) during a forward stroke to draw and iron the ductile metal blank into a can and moves out of the die during a rearward stroke to permit ejection of the can, said ejector mechanism comprising: a. A nosepiece reciprocally mounted with respect to the working end of the punch, said nosepiece having a forward working end for drawing and ironing the can and for ejecting the can from around the punch by a forward movement with respect to the punch just after the punch starts the rearward stroke, and having a back end rigidly attached to a push rod for transmitting reciprocal motions from the push rod to the nosepiece; b. A push rod for transmitting reciprocating motions to the nosepiece by having one end rigidly attached to said nosepiece and the other end fixedly mounted for reciprocation therewith, to a damping means with said push rod being fitted with a plurality of connectors for pivotal connection with a plurality of actuator arms and being fitted with a biasing means to return said push rod to a rearward position after forward forces delivered by the actuator arms are removed and before the punch carriage completes its rearward stroke; c. A plurality of actuator arms for tramsmitting forward forces to the push rod from a plurality of actuators and for transmitting rearward forces from the push rod biasing means to the actuators by having each actuator arm pivotally connected to the push rod at one end and the other end pivotally connected to an actuator which pushes the actuator arm forward after the punch begins its rearward stroke; d. A plurality of actuators, each pivotally mounted to the punch carriage at one end and each pivotally mounted to an actuator arm at some point adjacent to the actuator''s punch carriage pivot mounting so that the actuator pushes the actuator arm forward when the actuator is forced to pivot forward about the actuator''s punch carriage pivot mounting by a lever action delivered to the actuator by a biased trip dog after the punch carriage begins its rearward stroke with said actuator being so adapted and arranged that it initially jams against the trip dog to create the pivot action of the actuator about its punch carriage pivot mounting then slides past the trip dog when the actuator has pivoted far enough forward to allow the actuator to slide past the trip dog as the punch carriage continues on its rearward stroke and allows the actuator to slide past the trip dog without creating any lever actions during the forward stroke of the punch carriage; e. A plurality of trip dogs, each having a biasing means to return the trip dog to an actuating position when the trip dog is not in contact with the actuator, and each having an actuating end so adapted and arranged that the actuating end initially jams against the actuator after the punch carriage begins its rearward stroke, and then allows the actuator to slide past the actuating end of the trip dog as the actuator pivots forward as the punch carriage continues its rearward stroke and subsequently allows the actuator arm to slide past the biased trip dog without forward actuation of the actuator as the punch carriage makes its forward stroke; f. A spring resting between the push rod and a spring housing which forms a fixed part of the punch carriage, for returning the push rod to a rearward position with respect to the damping means after the spring has been put in compression by the forward force of the actuator arm as the actuator jams against the trip dog, with said spring being allowed to decompress and hence push the push rod rearward after the actuator slides past the trip dog during the punch carriage''s return stroke, with said spring having sufficient force to return the push rod to the rearward position before the punch carriaGe completes its rearward stroke; g. A hydraulic damping means fixedly mounted to the ram carriage and having means for fixedly mounting for reciprocation therewith, the push rod, for damping the closing of the nosepiece to the punch during the period when the push rod is under the influence of the decompressing spring after the actuator has slid past the trip dog during the rearward stroke of the punch carriage;
7. The ejector mechanism of claim 6 wherein two actuator arms, two actuators, and two trip dogs are mounted in bilateral symmetry about the push rod.
8. The ejector mechanism of claim 7 wherein the trip dogs are mounted so that contact with the actuators is made near the end of the actuator which is opposite the actuator''s punch carriage pivot mounting and at a time before the actuator has traveled rearward a distance of less than two inches.
9. The ejector mechanism of claim 8 wherein the means to bias the trip dogs into the actuating position is air pressure.
10. The ejector mechanism of claim 6 wherein the hydraulic damping means operates in two stages to allow a first stage for a rapid initial closing of the distance between the nosepiece and the punch when the spring is moving the push rod rearward and a slower closing during a second stage before the nosepiece and the punch come into actual contact so as to prevent harmful impacts between said nosepiece and punch.
US528778A 1974-12-02 1974-12-02 High speed ejector mechanism Expired - Lifetime US3911719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US528778A US3911719A (en) 1974-12-02 1974-12-02 High speed ejector mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US528778A US3911719A (en) 1974-12-02 1974-12-02 High speed ejector mechanism

Publications (1)

Publication Number Publication Date
US3911719A true US3911719A (en) 1975-10-14

Family

ID=24107153

Family Applications (1)

Application Number Title Priority Date Filing Date
US528778A Expired - Lifetime US3911719A (en) 1974-12-02 1974-12-02 High speed ejector mechanism

Country Status (1)

Country Link
US (1) US3911719A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007620A (en) * 1975-06-11 1977-02-15 Crown Cork & Seal Company, Inc. Metal container forming apparatus
US4036047A (en) * 1975-10-28 1977-07-19 Ball Corporation Bodymaker punch and ram
FR2378583A1 (en) * 1977-01-26 1978-08-25 American Can Co Double ended press for deep drawn canisters - has blank positioning assisted by speed control on punch ram giving delay at end of stroke
US4263800A (en) * 1979-03-26 1981-04-28 Reynolds Metals Company Method of forming a nestable container
US4283932A (en) * 1979-05-31 1981-08-18 Textron, Inc. Toggle-actuated punch stripper
US4506534A (en) * 1983-01-03 1985-03-26 Redicon Corporation Method and apparatus for removing drawn container from draw horn
US4599884A (en) * 1984-01-16 1986-07-15 Dayton Reliable Tool & Mfg. Co. Apparatus for transferring relatively flat objects
US4862722A (en) * 1984-01-16 1989-09-05 Dayton Reliable Tool & Mfg. Co. Method for forming a shell for a can type container
US6256853B1 (en) 2000-01-31 2001-07-10 Eveready Battery Company, Inc. Crimping die employing powered chuck
WO2003043759A1 (en) * 2001-11-22 2003-05-30 Adval Tech Holding Ag Device for ejection of moulded pieces from a moulding tool
CN109079048A (en) * 2018-08-16 2018-12-25 台山市向友五金制品有限公司 A kind of workpiece automatic ejecting mechanism being used in punching machine processing
CN111229967A (en) * 2019-05-17 2020-06-05 旭精机工业株式会社 Press machine and press forming method
US20220314299A1 (en) * 2019-10-30 2022-10-06 Akribis Systems Pte Ltd Workpiece ejecting system for use in stamping machine
US11517956B2 (en) * 2020-03-10 2022-12-06 Fords Packaging Systems Limited Bottle, cap and machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2044574A (en) * 1934-10-04 1936-06-16 Johnson Steel & Wire Company I Stripper for wire-receiving blocks
US2301846A (en) * 1941-08-05 1942-11-10 Hazel Atlas Glass Co Apparatus for manufacturing metallic closures
US2396108A (en) * 1941-05-09 1946-03-05 Loewy Eng Co Ltd Metalworking press
US2462315A (en) * 1944-04-27 1949-02-22 Remington Arms Co Inc Ammunition making machinery
US2667853A (en) * 1954-02-02 ingersoll
US3120769A (en) * 1960-08-29 1964-02-11 Hatebur Fritz Bernhard Pressing device for cold forming or hot forming workpieces
US3570300A (en) * 1967-11-09 1971-03-16 Kieserling & Albrecht Apparatus for ejecting articles in cold forming presses or the like
US3733884A (en) * 1969-07-03 1973-05-22 Massey Ltd B & S Forging presses with ejector means

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2667853A (en) * 1954-02-02 ingersoll
US2044574A (en) * 1934-10-04 1936-06-16 Johnson Steel & Wire Company I Stripper for wire-receiving blocks
US2396108A (en) * 1941-05-09 1946-03-05 Loewy Eng Co Ltd Metalworking press
US2301846A (en) * 1941-08-05 1942-11-10 Hazel Atlas Glass Co Apparatus for manufacturing metallic closures
US2462315A (en) * 1944-04-27 1949-02-22 Remington Arms Co Inc Ammunition making machinery
US3120769A (en) * 1960-08-29 1964-02-11 Hatebur Fritz Bernhard Pressing device for cold forming or hot forming workpieces
US3570300A (en) * 1967-11-09 1971-03-16 Kieserling & Albrecht Apparatus for ejecting articles in cold forming presses or the like
US3733884A (en) * 1969-07-03 1973-05-22 Massey Ltd B & S Forging presses with ejector means

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007620A (en) * 1975-06-11 1977-02-15 Crown Cork & Seal Company, Inc. Metal container forming apparatus
US4036047A (en) * 1975-10-28 1977-07-19 Ball Corporation Bodymaker punch and ram
FR2378583A1 (en) * 1977-01-26 1978-08-25 American Can Co Double ended press for deep drawn canisters - has blank positioning assisted by speed control on punch ram giving delay at end of stroke
US4263800A (en) * 1979-03-26 1981-04-28 Reynolds Metals Company Method of forming a nestable container
US4283932A (en) * 1979-05-31 1981-08-18 Textron, Inc. Toggle-actuated punch stripper
US4506534A (en) * 1983-01-03 1985-03-26 Redicon Corporation Method and apparatus for removing drawn container from draw horn
US4599884A (en) * 1984-01-16 1986-07-15 Dayton Reliable Tool & Mfg. Co. Apparatus for transferring relatively flat objects
US4862722A (en) * 1984-01-16 1989-09-05 Dayton Reliable Tool & Mfg. Co. Method for forming a shell for a can type container
US6256853B1 (en) 2000-01-31 2001-07-10 Eveready Battery Company, Inc. Crimping die employing powered chuck
US6427302B2 (en) 2000-01-31 2002-08-06 Eveready Battery Company, Inc. Crimping die employing powered chuck
WO2003043759A1 (en) * 2001-11-22 2003-05-30 Adval Tech Holding Ag Device for ejection of moulded pieces from a moulding tool
US20040255636A1 (en) * 2001-11-22 2004-12-23 Rudolf Luthi Device for ejection of moulded pieces from a moulding tool
US7254979B2 (en) 2001-11-22 2007-08-14 Adval Tech Holding Ag Device for ejection of moulded pieces from a moulding tool
CN109079048A (en) * 2018-08-16 2018-12-25 台山市向友五金制品有限公司 A kind of workpiece automatic ejecting mechanism being used in punching machine processing
CN109079048B (en) * 2018-08-16 2020-09-22 诸暨市泓瑞机械配件厂 Automatic workpiece ejection mechanism applied to punch machining
CN111229967A (en) * 2019-05-17 2020-06-05 旭精机工业株式会社 Press machine and press forming method
CN111229967B (en) * 2019-05-17 2021-06-01 旭精机工业株式会社 Press machine and press forming method
US20220314299A1 (en) * 2019-10-30 2022-10-06 Akribis Systems Pte Ltd Workpiece ejecting system for use in stamping machine
US11517956B2 (en) * 2020-03-10 2022-12-06 Fords Packaging Systems Limited Bottle, cap and machine

Similar Documents

Publication Publication Date Title
US3911719A (en) High speed ejector mechanism
US3364564A (en) Method of producing welding studs dischargeable in end-to-end relationship
US3733881A (en) Method and apparatus for making deep drawn metal shells
CN104741504A (en) Multi-station cold heading forming machine with forcible discharging function
US3886829A (en) Device for shearing rod sections in an automatic multi-stage cross-fed press
US3540255A (en) Method and apparatus for making hollow metal articles
US3948427A (en) Apparatus for driving a length of wire, rod or other elongated body through a workpiece for example for riveting
US3735656A (en) Arrangement in and relating to high speed impact cold planar flow shearing apparatus
JP6845816B2 (en) Progressive molding machine
CN204770405U (en) Reciprocating type punching machine
CN204603198U (en) Force the multi-functional position cold header of blanking
GB1224259A (en) Improvements in upsetting or forging machines
US5865057A (en) Work transfer in multi-stage forging apparatus
US3427851A (en) High energy rate metal forming machine
US2271257A (en) Ejecting mechanism for headers
US3910095A (en) Mechanism for stripping a drawn container from the punch of a deforming tool
US2396108A (en) Metalworking press
US2303780A (en) Upsetting mechanism
US3827278A (en) Joggling tool
US2367515A (en) Automatic work ejector
US3030834A (en) Feed mechanism
JPS63242435A (en) Sealed type forging machine
US3180634A (en) Fluid spring
US2342928A (en) Guide for ejector rods
US6907765B2 (en) Ram-side ejector device for workpieces in single-or multi-stage presses