US3910014A - Apparatus for closing and sealing containers - Google Patents

Apparatus for closing and sealing containers Download PDF

Info

Publication number
US3910014A
US3910014A US443594A US44359474A US3910014A US 3910014 A US3910014 A US 3910014A US 443594 A US443594 A US 443594A US 44359474 A US44359474 A US 44359474A US 3910014 A US3910014 A US 3910014A
Authority
US
United States
Prior art keywords
closure
container
closing
panels
operable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US443594A
Inventor
Eric A Braun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ELOTRADE AG A SWISS CORP
Original Assignee
Ex-Cell-O Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ex-Cell-O Corp filed Critical Ex-Cell-O Corp
Priority to US443594A priority Critical patent/US3910014A/en
Application granted granted Critical
Publication of US3910014A publication Critical patent/US3910014A/en
Assigned to EX-CELL-O CORPORATION, A CORP. OF DE reassignment EX-CELL-O CORPORATION, A CORP. OF DE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: EX-CELL-O CORPORATION, A MI CORP
Assigned to ELOTRADE A.G., A SWISS CORP. reassignment ELOTRADE A.G., A SWISS CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: EX-CELL-O CORPORATION, A DE CORP.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/431Joining the articles to themselves
    • B29C66/4312Joining the articles to themselves for making flat seams in tubular or hollow articles, e.g. transversal seams
    • B29C66/43121Closing the ends of tubular or hollow single articles, e.g. closing the ends of bags
    • B29C66/43122Closing the top of gable top containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/133Fin-type joints, the parts to be joined being flexible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7232General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer
    • B29C66/72327General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer consisting of natural products or their composites, not provided for in B29C66/72321 - B29C66/72324
    • B29C66/72328Paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81411General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat
    • B29C66/81425General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being stepped, e.g. comprising a shoulder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81427General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single ridge, e.g. for making a weakening line; comprising a single tooth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81431General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single cavity, e.g. a groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/816General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the mounting of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8161General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the mounting of the pressing elements, e.g. of the welding jaws or clamps said pressing elements being supported or backed-up by springs or by resilient material
    • B29C66/81611General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the mounting of the pressing elements, e.g. of the welding jaws or clamps said pressing elements being supported or backed-up by springs or by resilient material by resilient material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/816General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the mounting of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8167Quick change joining tools or surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/82Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
    • B29C66/824Actuating mechanisms
    • B29C66/8242Pneumatic or hydraulic drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/849Packaging machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/851Bag or container making machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B51/00Devices for, or methods of, sealing or securing package folds or closures; Devices for gathering or twisting wrappers, or necks of bags
    • B65B51/10Applying or generating heat or pressure or combinations thereof
    • B65B51/22Applying or generating heat or pressure or combinations thereof by friction or ultrasonic or high-frequency electrical means, i.e. by friction or ultrasonic or induction welding
    • B65B51/225Applying or generating heat or pressure or combinations thereof by friction or ultrasonic or high-frequency electrical means, i.e. by friction or ultrasonic or induction welding by ultrasonic welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B7/00Closing containers or receptacles after filling
    • B65B7/16Closing semi-rigid or rigid containers or receptacles not deformed by, or not taking-up shape of, contents, e.g. boxes or cartons
    • B65B7/18Closing semi-rigid or rigid containers or receptacles not deformed by, or not taking-up shape of, contents, e.g. boxes or cartons by collapsing mouth portion and subsequently folding-down or securing flaps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/32Measures for keeping the burr form under control; Avoiding burr formation; Shaping the burr
    • B29C66/328Leaving the burrs unchanged for providing particular properties to the joint, e.g. as decorative effect
    • B29C66/3282Leaving the burrs unchanged for providing particular properties to the joint, e.g. as decorative effect for reinforcing the joint
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81433General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined being toothed, i.e. comprising several teeth or pins, or being patterned
    • B29C66/81435General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined being toothed, i.e. comprising several teeth or pins, or being patterned comprising several parallel ridges, e.g. for crimping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/951Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
    • B29C66/9513Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools characterised by specific vibration frequency values or ranges

Definitions

  • container end closure portion includes front, rear and 156/73, 580, 581; 228/1 side panels each extending axially from the tubular body in the open position of the end closure.
  • each of [56] References Cited the end closure panels may have a sealing strip de- UNITED STATES PATENTS fined at its outer end by a scored line with the rear 663 133 12/1900 Shipley 53/45 X panel including a closure flap extending from the 2 433l76 12/1947 Van 3 X outer edge of its sealing strip.
  • the end closure panels 2,575,544 11/1951 Zinn 53/46 x are flded flat closed Position 5y Closing jaws with 2,822,653 2/1958 Zinn et a1.
  • FIGJ. 1 A first figure.
  • This invention relates generally to packaging methods and apparatus and is particularly, but not exclusively, concerned with methods and apparatus for closing and sealing the ends of containers of thermoplastic or thermoplastic coated material.
  • type of container that the present invention is concerned with is the type made of paperboard stock coated on both sides with a thermoplastic material such as polyethylene.
  • the polyethylene coating on the paperboard is utilized not only as a moistureproofing material, but also serves as a heat and pressure sensitive adhesive which cooperates in sealing the closure elements of the container so as to make the container fluid-tight when it is filled with milk or other contents and sealed and closed.
  • An example of this general type of container, and of the general type of apparatus with which the present invention is concerned is disclosed in U.S. Pat. No. 3,120,089.
  • the conventional manner of sealing such containers is to bring portions of the thermoplastic coated container into contact with each other and, by the application of heat sufficient to melt the thermoplastic coating at the portions to be joined and sealed, to weld the two surfaces together. When the thermoplastic material cools and sets, the two surfaces are sealed and adhesively secured together.
  • elaborate apparatus, methods, and systems are required to dissipate the heat from the plant in which the packaging operation is being carried out.
  • Other examples of this general type of packaging apparatus are shown in U.S. Pat. Nos. 3,002,328; 3,120,089, 3,166,994; 3,187,647; 3,239,995 and 3,309,841.
  • thermoplastic coated paperboard container most commonly in use is that having a so-called gabled top (an example of which is disclosed in U.S. Pat. No. 3,239,995) having, in its closed condition, upwardly inclined panels projecting from the top edges of the sides of the container.
  • the gabled top is designed such that, in order to gain access to the contents of the container, the seal may be broken in a particular manner and the top partially unfolded to form a pouring spout.
  • a particular problem encountered with gabled top containers is that of shipping large numbers of the containers since it is difficult to stack the containers on top of each other.
  • a specially designed shelf or divider having projections on its lower side designed to fit in a complementary relationship with the gabled tops must be placed between each layer of the containers so that the bottoms of the containers making up the next upper layer can be seated on a flat surface.
  • the specially designed shelf or divider adds to the expense of shipping handling large numbers of the containers.
  • One of the objects of the present invention is to provide a method and apparatus for closing and sealing an end closure of thermoplastic coated paperboard containers and the like at a high rate of production with minimum requirements for heat generation and dissipation.
  • a more specific object is to provide apparatus for folding and sealing a flat top end closure of a container of thermoplastic coated paperboard, or the like, with a sonic welding operation to reduce the amount of heat required for the sealing operation.
  • a still further object is to provide a method and apparatus for closing and sealing a flat end closure of a container of thermoplastic coated paperboard, or the like.
  • a still further object is to provide a method and apparatus for closing and sealing the flat top of a container of thermoplastic coated paperboard, or the like, with a sonic welding operation utilizing a minimum amount of heat, and wherein the flat top container has a closure flap that can be easily removed to permit the container top to be opened to form a pouring spout.
  • the end closure is folded by closing means to a closed position with the front and rear panels lying substantially flat and transversely of the tubular body with theside panels collapsed beneath the front and rear panels, and with sealing strips and a closure flap on the panels projecting axially outwardly from the container body.
  • the sealing strips are then welded together to seal the end of the container and secure the end closure in its closed condition.
  • the closure flap is heated and it, together with sealing strips, are folded flat to overlie: one of the flat front or rear panels, and the closure flap is adhesively secured thereto.
  • the apparatus for carrying out the closing and sealing operation includes a conveyor for conveying the containers sequentially through a closing station, a welding station, and a closure flap heating, folding and welding station.
  • a pair of opposed closing jaws are located at the closing station which are movable toward each other from retracted positions spaced from each other to extended positions when a container is located between the jaws to fold the open end closure panels to the closed condition.
  • An anvil and sonic welding device is located at the welding station. When a container moves to the welding station from the closing station, a vibrating horn extends from the sonic welding device and engages one outer surface of the sealing strips while forcing the other outer surface of the sealing strips into engagement with the anvil.
  • the horn vibrates at a frequency sufficient to generate an amount of heat necessary to weld the layers of sealing strips together to seal the end of the container.
  • the vibrating horn retracts, the container moves to the closure flap heating, folding and welding station where the closure flap is heated and folded flat over the closed top, the heat causing the closure flap to stick to the outer surface of the closed flat panels.
  • the closure flap may include a tear strip to permit the closure flap and sealing strips to be unfolded so that the seal can be broken by partially separating the sealing strips and forming a pouring spout with one of the collapsed side panels as with a conventional gable-top container.
  • FIG. 1 is a perspective view of a portion of a container of thermoplastic coated paperboard material, or the like, with the container end closure portion in a fully open position;
  • FIG. 2 is a perspective view of the container of FIG. 1 after a prebreaking operation in which the panels of the end closure portion have been slightly bent inwardly toward the closed position;
  • FIG. 3 is a perspective view of the container of FIGS. 1 and 2 with the end closure portion in the closed condition with a closure flap and sealing strips projecting generally axially from the closed end prior to the sealing operation;
  • FIG. 4 is a perspective view of the container after the sealing strips have been sealed together by sonic weld-
  • FIG. 5 is a view of the container with the closure flap folded flat and adhered to the top of the container;
  • FIG. 6 is an elevational view of a portion of apparatus according to the invention for filling, closing and sealing containers of the type illustrated in FIGS. 1 through FIG. 7 is an elevational view of another portion of the apparatus of FIG. 6 as viewed along lines 7-7 of FIG.
  • FIG. 8 is a sectional view taken on lines 8-8 of FIG. 7;
  • FIG. 9 is a plan view of a portion of the apparatus of FIGS. 6 and 7 as viewed approximately along lines 9-9 of FIG. 7;
  • FIG. 10 is an end view of the apparatus of FIGS. 6 and 7 as viewed along lines 10-10 of FIG. 7;
  • FIG. 11 is a sectional view taken along lines l111 of FIG. 9;
  • FIGS. 12 and 13 are sectional views taken along lines 12-12 and 13-13, respectively, of FIG. 14;
  • FIG. 14 is a plan view of a portion of an anvil used in the welding operation as viewed alonglines 14-14 of FIG. 15;
  • FIG. 15 is a view of the sonic welding apparatus taken along lines 15l5 of FIG. 9;
  • FIG. 16 is a sectional view taken along lines 16-16 of FIG. 9;
  • FIG. 17 is a sectional view taken along lines 1717 I of FIG. 16;
  • FIG. 18 is a perspective view of hold-down bars or guide members for holding the container end closure panels in the closed position as the container moves from the closing station of FIG. 11 to the sonic welding apparatus;
  • FIG. 19 is a sectional view of the guide members shown in FIG. 18 taken along lines 1919 of FIG. 9;
  • FIG. 20 is a perspective view of a portion of the top breaking mechanism
  • FIG. 21 is a plan view of a second, preferred form of sonic welding anvil.
  • FIG. 22 is a sectional view of the anvil of FIG. 21 taken along lines 2222 of FIG. 21.
  • a container is designated collectively by reference character C.
  • container C is provided with a thermoplastic coating, and may be made of paperboard, or the like, coated with thermoplastic material such as polyethylene.
  • the container C is made from a blank of the thermosplastic coated paperboard and may be erected from the blank into the form shown in FIG. 1 by prior art machinery of the type disclosed in the patents referred to above
  • the body of the container C is of tubular configuratior having a rectangular cross-section with four body side panels indicated by reference numerals l, 2, 3 and 4 with a sealing flap or panel indicated by reference numeral 5.
  • the flap 5 is bent inwardly from the side panel 4 and sealed to the inner surface of the side panel 1.
  • the top end closure portion of the container C is shown in its fully open position in FIG. 1 and includes from, rear and side end closure panels 6, 7, 8 and 9, respectively.
  • the end closure panels 6, 7, 8 and 9 project axially from the tubular body of the container.
  • the side panels 8 and 9 are formed into three triangular segments 13, 14 and 15 by scored lines 10, 11 and 12.
  • the triangular segment 15 constitutes a central segment with one side extending along the scored line 12 at the upper end of the respective side panel of the body of the container.
  • a sealing strip or rib 18 is provided at the upper end of the side panel 9 and is separated from the triangular segments by a scored line 16.
  • the center of the sealing strip 18 is provided with a scored line 17 tode'fine an inwardly projecting corner for overlapping engagement with the corresponding corner 17 of the side panel 8 when the top closure portion is folded and sealed to its closed position as is described in greater deta'il below.
  • the front panel 6 has a scored line 20 defining a triangular segment adjacent to the side panel 8 which cooperates therewith to define a pouring spout when the container is opened after being filled.
  • the lower edge of the front end closure panel 6 is connected with the body panel 3 by ascored line 19,
  • a sealing strip 22 the lower edge of which is defined by a scored line 21.
  • the rear end closure panel 7 has a scored line 23 corresponding to the scored line 20 on the front panel 6 to define a triangular segment adjacent to the side closure panel 8.
  • the rear closure panel 7 also has a sealing strip 25 projecting from a scored line 24 at the upper edge of the rear closure panel 7. Projecting upwardly from the sealing strip 25 is a closure flap 26 formed intermediate its ends with a tear strip 27.
  • the tear strip 27 is defined between two lines of a series of perforations.
  • the closure portion When the container C has been erected from the blank with the end closure portion in the fully open position illustrated in FIG. 1, in which it extends axially from the tubular body of the container, the closure portion can be closed, sealed and folded to the position shown in FIG. 5 in which the end of the container is flat with the front and rear closure panels 6 and 7, respectively, lying flat across the end of the container with the closure flap 26 adhered to and overlying the front panel 6.
  • the tear strip 27 is removed, the edges 30 and 31 of the closure portion can be pushed upwardly to break the seal 28, and the triangular segments 13, 14 and 15 of the side panel 8, in cooperation with the triangular segments defined by the scored lines 20 and 23 on the front and rear panels 6 and 7, respectively, will define a pouring spout.
  • the method by which the top, closure portion of the container C is closed from the open position of FIG. 1 to the closed position of FIG. 5 comprises first a prebreaking step, by which is meant that the side panels 7 and 8 are bent slightly inwardly to initially bend the triangular segments along the scored lines 10, ll, 12 and 17 so that the side panels will collapse inwardly as the front and rear panels are moved toward each other.
  • the prebreaking operation may take place either prior to or subsequent to filling the container with milk or other contents.
  • the front and rear closure panels 6 and 7 are bent toward each other as shown in FIG. 2 to cause the side panels 8 and 9 to collapse inwardly beneath the front and rear panels 6 and 7.
  • the closing operation continues until the lower edges of the sealing strips 18, 22 and 25 along the scored lines 16, 21 and 24 are brought together such that the front and rear panels 6 and 7 lie substantially flat across the end of the container as shown in FIG. 3. With the panels in the position shown in FIG. 3, the sealing strips are sonically welded together along the band indicated by the shaded area 28 in FIGS. 4 and 5. Following the sonic welding step, the closure flap 26 is heated on its outer end on the surface adjacent to the 'front panel 6, after which the closure flap, together with the sealing strips 18, 22 and 25, are folded downwardly until the closure flap 26 assumes the position shown in FIG. 5. The closure flap 26 is heated on its outer end, that is, the end opposite the sealing strip so that the tear strip 27 preferably is not adhered to the front panel 6.
  • FIGS. 6 through 10 The apparatus for filling, closing and sealing the top of the container illustrated in FIGS. 1 through 5 is shown in FIGS. 6 through 10, with various details and components being illustrated in the remaining FIG- URES of the drawings.
  • reference numeral 36 collectively designates conventional prebreak mechanism which is operable to initially bend the end closure panels 5, 6, 7 and 8 inwardly toward their closed position to induce a certain amount of permanent set in the scored lines separating the panels from the container body side panels 1, 2, 3 and 4.
  • Reference numeral 38 collectively designates filler apparatus for filling the containers after the prebreaking operation with milk or other material as the containers move along the production line.
  • Reference numeral 40 collectively designates a conventional defoamer or skimming apparatus for removing foam from the top of the milk or other liquid contents of the container.
  • Reference numeral 42 collectively designates the closing station wherein the end closure panels are moved to a closed position such that the top of the container is closed with the front and rear panels 6 and 7 lying flat over the upper end of the container with the sealing strips 18, 22, 25 and closure flap 26 projecting axially outwardly from the closed end of the container body.
  • Reference numeral 44 designates hold-down members or guide bars for holding the end closure of the container in its closed position as the container moves to the welding and sealing station indicated by reference numeral 46.
  • a closure flap folding and welding station 47 including a heating station 48 wherein the surface of the closure flap near the outer end is heated, and a folding and cooling station 50 wherein the closure flap 26 is folded downwardly to the position shown in FIG. 5 to adhere the closure flap to the top surface of panel 6.
  • the top of the container is then substantially flat, and the container moves beneath a cooling bar 160 to remove the heat from the container top induced therein by the heating element 48.
  • the containers C are indicated in phantom lines in FIGS. 6 through 10 and are moved along an elongated support member 54 by conveyor chains 56 and 58 each having fingers 60 mounted along their lengths for engaging the containers C.
  • the elongated support member 54 may be adjustable in height to accommodate containers having different heights by conventional mechanism indicated generally by reference numeral 55 in FIG. 7.
  • the conveyor chains 56 may be of the same construction as that disclosed in the above referred to US. Pat. Nos. 3,239,995 and 3,002,328, for example.
  • the conveyor chains 56 move the container C in the direction of arrows 57 in FIGS. 6, 7 and 9.
  • the specific details of the conveying mechanism form no part of the present invention, and various types of conveying means may be employed in the apparatus for moving the containers through the various stations.
  • the top breaking assembly 36 as shown in FIG. 6, includes side panel tucking mechanism indicated collectively by reference numeral 62.
  • the tucking mechanism is vertically reciprocable between the lowered, operable position illustrated in FIG. 6, and an upper, inoperable position in which the tucking mechanism is spaced above the top of the container.
  • the tucking mechanism includes an anvil 68 having inwardly inclined flanges 69 which, in the operable position shown in FIG. 6, are located adjacent to the score lines at the top of the body panels 1, 2, 3 and 4 of the container C.
  • triangular fingers 70 are caused to rotate about their shafts 72 to engage the triangular segments 15 and. bend the side panels 8 and 9 inwardly as shown in FIG. 2.
  • the anvil: 68 is withdrawn and the left-hand finger 70 rotatesin a counterclockwise direction about its shaft 72 and the right-hand finger 70 is rotated in a clockwise direction about its shaft 72 as the tucking mechanism is raised to its inoperative position spaced above the top closure portion of the container C.
  • the top breaking mechanism also includes front and rear panel breaking mechanism indicated collectively by reference numeral 64.
  • the mechanism 64 includes an assembly of plates 74, 76 and 78, the plate.78 being sandwiched between the plates 74 and'7 6 and having inwardly projecting triangular segments formed thereon for further urging the side panels S and 9 of the top closure portion of the container inwardly as shown in FIG. 2.
  • the inclined plate 74 overlies the rear panel 7 and the inclined plate 76 overlies the front panel 6 to cause the panels 6 and 7 to move toward each other with the closure flap 26 extending into the space 82 between the triangular segments 80 of the plate 78.
  • the unit 64 of the top breaker unit is mounted integrally with the side tucking unit 62 so that it is raised and lowered to the inoperable and operable positions, respectively, with the side tucking unit 62.
  • the unit 64 is in an operable position with the preceding container C so that each container C receives a top breaking operation from the side tucking with 62 and the front and rear panel breaking unit 64.
  • the conveyor chains 58 move the containers step by step along the elongated support member 54 from station to station where each operation is performed.
  • the containers move to the filler station 38 where a filler tube is lowered into the open end of the container (the end being in the prebreak condition illustrated approximately in FIG. 2) and the container is filled with milk or other contents.
  • the container then moves to the skimmer or defoaming station 40 where a conventional defoaming apparatus is lowered into the container to suck away the foam on the top of the milk or other liquid contents of the container and carry it to a container located at a remote position from the conveying assembly. After the container has been filled and defoamed, it is conveyed to the closing station 42.
  • the closing station 42 includes a pair of reciprocating closing jaws 86 mounted in opposed relationship with respect to each other.
  • the upper end of each of the closing jaws 86 is connected to the lower end of a piston rod 88 reciprocable in a hydraulic cylinder 92 mounted on a support bracket 94.
  • a guide rod 90 extends from the upper end of each of the jaws 86 through an aperture in the support bracket 94 (FIG. 9).
  • the jaws 86 are reciprocable between the extended position indicated in full lines in FIG. 11 and the retracted position shown approximately in phantom lines in FIG. 11.
  • the closing jaws 86 move in a path extending at an acute angle with respect to the longitudinal axis of the tubular body of the container C.
  • the lower or outer end surfaces 96 of the jaws 86 are consequently inclined with respect to the upper ends97 such that the upper surface 98 of each of the jaws has a greater length than the lower surface lthe jaws being trapezoidal configuration as viewed in FIG. 11. Consequently, since the jaws 86 are reciprocable in opposed, inclined paths with respect to a container C located at the closing station, the lower ends 96, in the extended position, lie in a plane normal to the axis of the tubular body of the container and will force the respective front and rear panels 6 and 7 to the flattened position illustrated in FIG. 42 in which the front and rear panels 6 and 7 of the container C extend at substantially right angles to the body side panels of the container to overlie the upper end of the container body.
  • Fluid flow to and from the cylinders 92 is controlled by a cam follower 97 engaged with the surface of a cam 99 fixed to a rotating shaft 101.
  • the cam follower 97 pivots about the axis ofa pin 97a as it follows the surface of the cam to actuate a control'device 103.
  • the control device 103 causes pnuematic fluid to flow in a direction to cause the ajws 86 to extend from the positions spaced from each other as indicated in phantom lines in FIG. 11 to the extended position indicated in full lines in FIG. 11.
  • each container C is moved along the support member 54 step by step such that each container has a dwell period in each position.
  • the shaft 101, and hence cam 99 rotate in timed relationship with the conveyor such that each time the conveyor indexes to advance a, container C irltothe closing station 42 between the jaws 86 in their retracted, phantom line positions of FIG. 11, the follower 97 is engaged by surface 99a of the cam to cause the jaws to be actuated toward each other to the extended, full line positions of FIG. 11.
  • the closing jaws 86 When the closing jaws 86 are extended to the full line position shown in FIG. 1 1, the jaws engage panels 6 and 7 and close the end of the container C by folding the front and rear panels 6 and 7 to the positions shown in FIG. 11 and bringing the lower edges of the sealing strips 22 and 25 at the score lines 21 and 24 together.
  • the sealing strips 22 and 25, as well as the closure flap 26, project upwardly from the flattened front and rear panels 6 and 7.
  • the guide bar assembly 44 is mounted on a cross-frame member 104 and includes a pair of spaced, flat guide plates 106 secured by conventional fasteners 105 to the cross-frame member 104.
  • the inner edges of the guide bars or plates 106 are flared outwardly at their entrance ends and merge into parallel relationship to define a slot 110 for receiving the upwardly projecting sealing strips 22, 25 and closure flap 26.
  • the guide plates 106 overlie the front and rear panels 6 and 7 of the container C to hold the front and rear panels in the flattened, closed position shown in FIG.
  • anvil 114 As a container C is advanced by the conveying chains 56, 58 from the guide members 106 of the guide assembly 44, the panel 6 of the container engages the underneath surface of an anvil 1 14 located at the welding station 46 (FIG. 15).
  • the anvil 114 has an upper inclined support surface 116 for supporting the sealing strip 22, 25 and closure flap 26 for a sonic welding operation.
  • the anvil 114 is supported between the cross-frame members 104 and 107 (FIG. 9).
  • a sonic welding device which may be an ultrasonic transducer of the type disclosed in US. Pat. No. 3,526,792.
  • the sonic welding device indicated collectivelyby reference numeral 118, is mounted on a supporting structure 122 which in turn is supported on the cross-frame members 104 and 107.
  • the sonic welding device 118 in the illustrated embodiment of FIG. 15, includes a housing 119 for a converter for converting electrical energy into mechanical energy, and a concentrating horn 120 for concentrating the mechanical energy into vibrations at a desired frequency.
  • the concentrating horn 120 is shown in its extended operable position for engaging the outer surface of the sealing strip 25 of the carton C located at the welding station, the support surface 116 of the mandrel 114 engaging the outer surface of the sealing strip 22 and serving as a back-up means for the vibrating horn 120.
  • the horn 120 is movable from its extended, operable position to a retracted inoperable position with respect to the support surface 116 when a carton C is not located at the welding station 46.
  • the horn 120 is actuated to move to the extended position shown in FIG. by the engagement of a carton C with a limit switch actuator 123. When the carton is disengaged from the limit switch actuator 123, the horn 120 retracts upwardly from the position shown in FIG. 15.
  • the shape and configuration of the horn 120 is determined in accordance with the desired frequency of the vibration to produce the desired amount of concentrated, frictional heat at the area to be welded together, namely, the shaded area indicated by reference numeral 28 in FIG. 4.
  • the layers of the carton material between the sealing strips 22 and 25 are welded together by the frictional heat generated by the vibrating horn 120 so that the strips 22, 18, 25, and that portion of the side sealing flap 5 engaged with the sealing strip 25 (FIG. 1) are welded together along the band 28 of FIGS. 4 and 5.
  • the configuration of the support surface 116 is such that a substantially uniform pressure is applied by the horn 120 to the closure portion during the sonic welding operation to accommodate the variations in the thickness along the band 28.
  • the horn 120 is designed to vibrate at a frequency of 20,000 cycles per second when it is in engagement with the outer surface of the sealing strip 25 of the top closure portion of the carton.
  • the vibration of the horn 120 is converted into frictional heat which melts the thermoplastic coating of the layers of the panels between the sealing strips 22 and 25 to weld the various layers together along the band 28.
  • sealing flap 5 provides an extra thickness at the edge of the band 28.
  • the support portion 1 16 of the anvil 114 is provided with a recessed portion 124, and a centrally disposed groove 126 is provided for accommodating the extra thickness of the overlapping tips 17.
  • Grooves 126a and 12612 may be provided for receiving the outer edges of sealing strips and layers to be welded together.
  • Longitudinal grooves 125, 125a and l25b are also formed in the surface 1 16 of the anvil 1 14 to assure that the heated thermoplastic material will flow into and fill all spaces between the layers sandwiched between the surface 116 and the end of the horn to assure a complete seal along the band 28 of FIGS. 4 and 5.
  • the groove 126 and recess 124 accommodates the variations in thickness along the band 28 so that a substantially uniform pressure is applied to the material of the carton along the band 28 by the vibrating horn 120.
  • the mechanical energy of the vibrating horn is converted into frictional heat to melt the thermoplastic coating of all of the layers sandwiched between the sealing strips 22 and 25 so that a completely sealed joint is provided between the sealing strips 22 and 25.
  • the sealing strips are welded together in such a manner that the front and rear panels 6 and 7 lie substantially flat over the top of the container body.
  • a timing sequence is started by a cam 123a.
  • a control device for the sonic welding device 118 is actuated by a cam follower 1230 which is fixed to a pin or shaft 123d.
  • rotation of the cam 123a causes the cam follower 123C to rock about the axis of its shaft 123d and energize and deenergize the control device 125 to, in turn, controlthe operation of the sonic welding device 118.
  • the rotation of cam 123a causes the control device 125 to actuate the horn 120 to sequentially (I) extend into the position shown in FIG. 15 from its retracted position, (2) vibrate for a predetermined period of time, (3) stop vibrating and remain in the extended position shown in FIG. 15 for a predetermined period of time, and (4) return upwardly to its retracted position as the cam 123C completes a full revolution.
  • the amount of time involved in the entire sequence is the same amount of time involved for the conveyor chains to index a carton C from one position to the next along the support member 54 in the direction of arrows 57.
  • a vibration time of from about 0.2 to 0.5 seconds will be required to cause the thermoplastic to flow.
  • the horn 120 is held in contact with the layers 18, 22, 25 for a period of from 0.5 to 1.5 seconds to allow the thermoplastic material to cool and set to complete the seal along the band 28.
  • the cooling time maybe accelerated by circulating cooling fluid through the anvil 114 to cool the surface 116.
  • FIGS. 21 and 22 illustrate an alternative, preferred embodiment of an anvil for cooperation with the horn 120 of the sonic welding device 118.
  • Reference numeral 114 collectively designates the anvil of FIGS. 21 and 22, and reference numeral 132 designates the inclined, support portion of the anvil.
  • Formed in the support portion 132 is an elongated groove 134.
  • Received in the groove 134 is a strip 136 of resilient elastomeric material, such as elastomeric urethane.
  • An elongated plate member 138 corresponding in shape to the groove 134 and resilient strip 136, is received in the groove 134 and is supported on the upper surface of the resilient strip 136. In the unstressed condition of the resilient strip 136, the outer surface of the plate 138 projects above the surface 132 for a distance of, for example, 0.0l inches.
  • the plate member 138 is secured to the anvil 114' by screws 140 having a shank with an enlarged, unthreaded portion 141 and a threaded portion 142.
  • the unthreaded portion 141 is enlarged with respect to the threaded portion 142 to define a shoulder which seats against the bottom of the groove 134 and is received in aligned apertures in the plate member 138 and resilient strip 136.
  • the head of the screw 140 is enlarged with respect to the unthreaded portion 141 of the shank to prevent separation of the plate member 138 from the anvil.
  • the plate member 138 can be compressed inwardly toward the bottom of the groove 134 due to the resilient support provided by the strip 136.
  • An elongated groove 125 is formed in the inclined support surface 132 beneath the groove 134, and the anvil 114' is also provided with a recessed portion 124' to accommodate the extra thickness provided by the side sealing flap Sat its connection with the sealing strip 25 (FIGS. 1 and 4).
  • the portion of the sealing strip 22 encompassed by the band 28 of FIGS. 4 and 5 engages the plate 138 and the horn engages the sealing strip 25 along the band 28 to compress the carton material layers along band 28 between the horn 120 and the plate 138.
  • the resilient strip 136 yields sufficiently in the areas along the band 28 having the greatest thickness to provide a substantial uniform pressure along the end of the vibrating horn 120.
  • the resilient padding permits the plate 138 to float with respect to the bottom of the groove 138 which, in turn, permits the paperboard layers to shift around and cause the thermoplastic material to flow into all of the voids and spaces to provide a complete seal along the band 28.
  • the groove 125 and recess 124' assist in accommodating the extra thicknesses of material and minimizing the distortion of the layers as they engage the plate 138.
  • the vibration of the horn 120 in the longitudinal direction causes the hot thermoplastic material, in conjunction with the resilient support of the plate 138, to flow more freely and fill all of the voids between the layers of material along the band 28.
  • Both of the anvils 114 and 1 14 may be provided with passages for circulating water or other cooling fluid or liquid through the anvil to prevent an excessive buildup of temperature at the surface of the anvil engaged by the carton during repeated operation of the welding apparatus 118, 114 and 114'.
  • the conveyor advances the container C from the welding station to the area indicated generally by reference numeral 47 in FIG. 9 where the closure flap 26 of the container is heated, folded flat against the front panel 6 and then cooled to adhesively secure the closure flap 26 in the position shown in FIG.
  • the end closure panel 7 of the carton engages a guide plate 146, and the closure flap 26 engages a guide rod 144 which urges the closure flap toward the left as viewed in FIG. 16 toward a heating bar 148.
  • the heating bar 148 extends beneath a heat shield 150 for reflecting heat in the direction of the lower surface of the closure flap 26 as viewed in FIG. 16.
  • the heating bar 148 constitutes part of a heating assembly 152 that is shown in its operative, extended position in FIG. 16.
  • the heating assembly 152 remains in the operative, extended position, so long as the conveyor chains 56 and 58 are operating to convey the container C along the support member 54 from station to station. However, in the event of a stoppage, the assembly 152, together with the heating bar 148 retracts to the left as viewed in FIG. 16 so as not to apply an excessive amount of heat to cartons moving through the heating station 48 in proximity to the heating bar 148.
  • the heating assembly 152 is mounted on a platform 162 which is slidably supported in track members 164 mounted on frame members 107 and 166 (FIG. 17).
  • a bracket 168 mounted on the upper surface of the slidable platform 162 .
  • a support member 169 is a hydraulic piston and cylinder assembly including a cylinder 170 secured to the support member 169, and a piston 172 which extends and retracts hydraulically with respect to the cylinder 170.
  • One end of the piston 172 is secured to the bracket 168 so that movement of the rod 172 causes corresponding movement of the platform 162 in the track members 164.
  • the controls for the hydraulic cylinder-170 are interconnected with the conveyor system in such a manner that the piston 172 is actuated to the extended position shown in FIG. 16 when the conveyor is started into operation.
  • the hydraulic pressure in the cylinder 170 is automatically reversed to retract the piston rod 172 and move the platform 162, together with the heating rod 148 to the left as viewed in FIG. 16 so that the heating rod 148 will be out of proximity with any cartons C located at the heating station 48.
  • the heating assembly 152 includes a connector housing 174 in which is mounted the resistance heating rod 148 and various electrical connections, the housing 174 being connected through an electrical conductor 176 with a source of electrical power indicated by reference numeral 178 in FIG. 16.
  • the thermoplastic material on the underneath side of the closure flap 26 adjacent its outer end is heated by the heating rod 148 to a temperature sufficient to cause the thermoplastic material to become tacky or in a plastic state.
  • the cooling bar 160 includes a substantially U-shaped housing portion 179 mounted on the upper surface of the plate 183 to form a chamber 181 for water or other cooling fluid.
  • the cooling fluid is circulated through the chamber 181 by pipes 184 and 186 (FIG.
  • thermoplastic material heated by the heating bar 148 is caused to set and adhesively secure the closure flap 26 to the panel 6 so that the end closure is in the closed and sealed position illustrated in FIG. 5.
  • the movement of the cartons along the length of the cooling bar 160 removes heat from the end closure, and the bottom plate 183 is recessed as indicated by reference numeral 182 in FIG. 8 so that the maximum pressure is applied at the closure flap 26 by portion 183a (FIG. 8) of the bottom plate 183 to insure that the closure flap 26 will be adhesively secured to panel 6 of the end closure as shown in FIG. 5.
  • the operation is completed as a carton C moves past the right end of the bottom plate 183 as viewed in FIG. 7. 2
  • said apparatus comprising: closing means operable to fold the end closure panels to a closed position with the side panels folded beneath the front and rear panels with the front and rear panels lying substantially flat and substantially transversely of the tubular body to close the end of the tubular body with said sealing strips of the front and rear panels projecting axially outwardly of the tubular body in opposed face to face engaged relationship with each other; said closing means comprising a pair of closing jaws each mounted for movement in a path extending at an acute angle with respect to the longitudinal axis of the tubular body of a container located between the closing jaws, each of said closing jaws having-an outer end surface lying in a plane extending substantially normal to the longitudinal axis of the tubular body of
  • welding means operable to weld the sealing strips together to seal and secure the end closure in its closed condition.
  • welding means comprises an anvil engageable with one outer surface of the axially outwardly projecting outer end portions of the front and rear end closure panels in the closed condition, and vibrating means engageable with the opposite outer surface thereof and operable to generate heat sufficient to weld the end portions together.
  • Apparatus as claimed in claim 2 wherein said anvil has a support surface engageable with said one outer surface, said vibrating means being movable from an inoperable position spaced from the support surface of said anvil to an operable position in which it sequentially engages said other outer surface and presses said one outer surface into engagement with said support surface.
  • said support surface includes an elongated plate member engageable by said one outer surface, and means resiliently supporting said plate member to permit the plate member to yield to accommodate variations in the thickness of the end portions lbeing welded together.
  • welding means comprises an anvil engageable with one outer surface of the axially outwardly projecting outer end portions of the front and rear end closure panels in the closed condition, and vibrating means engageable with the opposite outer surface thereof and operable to generate heat sufficient to weld the end portions together.
  • Apparatus as claimed in claim 6 wherein said anvil has a support surface engageable with said one outer surface, said vibrating means being movable from an inoperable position spaced from the support surface of said anvil to an operable position in which it sequentially engages said other outer surface and presses said one outer surface into engagement with said support surface.
  • said support surface includes an elongated plate member engageable by said one outer surface, and means resiliently supporting said plate member to permit the plate member to yield to accommodate variations in the thickness of the end portions being welded together.
  • Apparatus as claimed in claim 10 further including hold-down means located between said closing station and said welding station operable to hold the end closure panels of a container in the closed position as the container moves from the closing station to the welding station.
  • guide bars being engageable with the front end closure panel of such container with the axially projecting outer end portions of the front and rear panels being received in said slot.
  • welding and welding means are respectively located at a closing station, a welding station, and a closure flap folding and welding station spaced sequentially from each other; and further including a conveyor for conveying containers sequentially through said stations.
  • Apparatus as claimed in claim 14 further including a cooling member spaced from the closure flap folding and welding station on the opposite side thereof from said welding station; said cooling member being engageable by each container end closure as it is conveyed to said cooling member from said closure flap folding and welding station to remove heat from the end closure.
  • welding means comprises an anvil engageable with one outer surface of the axially outwardly projecting outer end portions of the front and rear end closure panels in the closed condition, and vibrating means engageable with the opposite outer surface thereof and operable to generate heat sufficient to weld the end portions together.
  • Apparatus for closing and sealing an end closure of a container having a tubular body to form a closed and sealed flat end closure for the container, the material of the container end closure including a thermoplastic material, the container end closure having front, rear and side panels each extending axially from the tubular body in its open position, each of said panels having a sealing strip defined at its outer end by a scored line, and said rear panel including a closure flap extending from the outer edge of its sealing strip, said apparatus comprising: closing means operable to bend the side panels of the cartons inwardly along the scored.
  • Apparatus as claimed in claim 19 further including a plate member engageable by the closure flap of a carton moving from said heating bar and guide rod operable to fold the heated closure flap to a flat closed position against the front end closure panel of the container.
  • Apparatus as claimed in claim 20 including means mounted on said plate member defining a chamber for cooling fluid to cool said plate member and the heated closure flaps of containers in contact with said plate member.
  • Apparatus as claimed in claim 21 including pipes connected with said cooling chamber for connection with a source of cooling fluid and operable to circulate cooling fluid through said cooling chamber.
  • Apparatus as claimed in claim 20 including a heating assembly, said heating bar forming a part of said assembly, said assembly being movable toward and away from said guide bar and operable to move away from said guide bar when movement of cartons along said guide bar is stopped.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Closing Of Containers (AREA)

Abstract

A method and apparatus for closing and sealing the end of a container having a tubular body wherein the container end closure portion includes front, rear and side panels each extending axially from the tubular body in the open position of the end closure. Each of the end closure panels may have a sealing strip defined at its outer end by a scored line with the rear panel including a closure flap extending from the outer edge of its sealing strip. The end closure panels are folded to a flat closed position by closing jaws with the sealing strips and closure flap projecting axially from the tubular body, after which the sealing strips are sonically welded together. The closure flap and sealing strips are then folded flat, and the closure flap is welded to the outer surface of the front end closure panel.

Description

United States Patent 1191 1111 3,910,014
Braun Oct. 7, 1975 [5 1 APPARATUS FOR CLOSING AND SEALING 3,562,041 2/1971 Robertson 156/73 CONTAINERS 3,579,958 5/1971 Hentges et a1. 53/183 3,671,366 6/1972 Miller .1 156/580 Inventor: Em Braun, Northvllle. Mlehs 3,681,167 8/1972 Reifenhauser et a1. 156/580 [73] Assigneez Corporation, Detroit 3,717,539 2/1973 Roberts 156/498 Mich. FOREIGN PATENTS OR APPLICATIONS 22 Filed: Feb. 19, 1974 2,165,620 5/1974 Germany [21] pp 443,594 Primary ExaminerRobert L. Spruill Attorney, Agent, or Firm-Reising, Ethington & Perry [52] US. Cl. 53/373; 53/379; 53/388;
7 156/581 [57] ABSTRACT [51] Int. Cl. B65B 7/18 A method and apparatus for closing and sealing the [58] Field of Search 53/37, 39, 45, 46, 373, end f a n in r h ving a tubular y h r in h 53/375, 379, 388, 186; container end closure portion includes front, rear and 156/73, 580, 581; 228/1 side panels each extending axially from the tubular body in the open position of the end closure. Each of [56] References Cited the end closure panels may have a sealing strip de- UNITED STATES PATENTS fined at its outer end by a scored line with the rear 663 133 12/1900 Shipley 53/45 X panel including a closure flap extending from the 2 433l76 12/1947 Van 3 X outer edge of its sealing strip. The end closure panels 2,575,544 11/1951 Zinn 53/46 x are flded flat closed Position 5y Closing jaws with 2,822,653 2/1958 Zinn et a1. 53/373 the Sealing Strips and Closure p Projecting axially 2,890,554 6/1959 Dolman et a1. 53/373 X from the tubular body, after which the sealing strips 3,114,226 12/1963 Taggart et a1 53/388 X are sonically welded together. The closure flap and 3, 8/1 h nk /3 sealing strips are then folded flat, and the closure flap 3,307,325 3/1967 Garrett et a1 53/186 is welded to the outer surface of the front end closure 3,309,841 3/1967 Egleston et a1. 53/373 paneL 3,417,543 12/1968 Jones 53/373 X 3,468,731 9/1969 Obeda 53/373 x 2 Cl i 22 Drawing Figures 3,531,908 10/1970 Rausing et a]. 53/37 US. Patent Oct. 7,1975 Sheet 1 of 10 3,910,014
FIGJ.
US. Patent Oct. 7,1975 Sheet 3 of 10 3,910,014
U.S. Patent (M11975 Sheet 5 of 10 3,910,014
US. Patent (M11975 Sheet 6 of 10 3,910,014
US. Patent Oct. 7,1975 Sheet 8 of 10 3,910,014
US. Patent 0a. 7,1975 Sheet 9 of 10 3,910,014
US. Patent Oct. 7,1975
Sheet 10 of 10 F'IG.2I
F'IC3.22
l A96 l )4/ APPARATUS FOR CLOSING AND SEALING CONTAINERS This invention relates generally to packaging methods and apparatus and is particularly, but not exclusively, concerned with methods and apparatus for closing and sealing the ends of containers of thermoplastic or thermoplastic coated material.
On particular type of container that the present invention is concerned with is the type made of paperboard stock coated on both sides with a thermoplastic material such as polyethylene. The polyethylene coating on the paperboard is utilized not only as a moistureproofing material, but also serves as a heat and pressure sensitive adhesive which cooperates in sealing the closure elements of the container so as to make the container fluid-tight when it is filled with milk or other contents and sealed and closed. An example of this general type of container, and of the general type of apparatus with which the present invention is concerned is disclosed in U.S. Pat. No. 3,120,089.
The conventional manner of sealing such containers is to bring portions of the thermoplastic coated container into contact with each other and, by the application of heat sufficient to melt the thermoplastic coating at the portions to be joined and sealed, to weld the two surfaces together. When the thermoplastic material cools and sets, the two surfaces are sealed and adhesively secured together. In addition to requiring the use of elaborate and expensive apparatus for generating the considerable amount of energy required, elaborate apparatus, methods, and systems are required to dissipate the heat from the plant in which the packaging operation is being carried out. Other examples of this general type of packaging apparatus are shown in U.S. Pat. Nos. 3,002,328; 3,120,089, 3,166,994; 3,187,647; 3,239,995 and 3,309,841.
The type of thermoplastic coated paperboard container most commonly in use is that having a so-called gabled top (an example of which is disclosed in U.S. Pat. No. 3,239,995) having, in its closed condition, upwardly inclined panels projecting from the top edges of the sides of the container. The gabled top is designed such that, in order to gain access to the contents of the container, the seal may be broken in a particular manner and the top partially unfolded to form a pouring spout.
A particular problem encountered with gabled top containers is that of shipping large numbers of the containers since it is difficult to stack the containers on top of each other. In order to stack several layers of the containers in an upright position on top of each other, a specially designed shelf or divider having projections on its lower side designed to fit in a complementary relationship with the gabled tops must be placed between each layer of the containers so that the bottoms of the containers making up the next upper layer can be seated on a flat surface. The specially designed shelf or divider, of course, adds to the expense of shipping handling large numbers of the containers. It is thus highly desirable to provide a machine that will produce, on a mass production basis, a container of this type having a top end closure that is flat when closed and sealed, so that the necessity for a specially designed divider between stacked layers of the containers will be elimi nated. 7
One of the objects of the present invention is to provide a method and apparatus for closing and sealing an end closure of thermoplastic coated paperboard containers and the like at a high rate of production with minimum requirements for heat generation and dissipation.
A more specific object is to provide apparatus for folding and sealing a flat top end closure of a container of thermoplastic coated paperboard, or the like, with a sonic welding operation to reduce the amount of heat required for the sealing operation.
A still further object is to provide a method and apparatus for closing and sealing a flat end closure of a container of thermoplastic coated paperboard, or the like.
A still further object is to provide a method and apparatus for closing and sealing the flat top of a container of thermoplastic coated paperboard, or the like, with a sonic welding operation utilizing a minimum amount of heat, and wherein the flat top container has a closure flap that can be easily removed to permit the container top to be opened to form a pouring spout.
The foregoing, and other objects, are achieved in accordance with the present invention by the provision of a method and apparatus for closing and sealing the end closure of a container having a tubular body, of rectangular or other cross-section, the end closure having front, rear and side panels that extend axially from the tubular body when the end closure is in its fully open position. In accordance with the invention, the end closure is folded by closing means to a closed position with the front and rear panels lying substantially flat and transversely of the tubular body with theside panels collapsed beneath the front and rear panels, and with sealing strips and a closure flap on the panels projecting axially outwardly from the container body. The sealing strips are then welded together to seal the end of the container and secure the end closure in its closed condition. After the sealing strips are welded together, the closure flap is heated and it, together with sealing strips, are folded flat to overlie: one of the flat front or rear panels, and the closure flap is adhesively secured thereto.
The apparatus for carrying out the closing and sealing operation includes a conveyor for conveying the containers sequentially through a closing station, a welding station, and a closure flap heating, folding and welding station. A pair of opposed closing jaws are located at the closing station which are movable toward each other from retracted positions spaced from each other to extended positions when a container is located between the jaws to fold the open end closure panels to the closed condition. An anvil and sonic welding device is located at the welding station. When a container moves to the welding station from the closing station, a vibrating horn extends from the sonic welding device and engages one outer surface of the sealing strips while forcing the other outer surface of the sealing strips into engagement with the anvil. The horn vibrates at a frequency sufficient to generate an amount of heat necessary to weld the layers of sealing strips together to seal the end of the container. When the vibrating horn retracts, the container moves to the closure flap heating, folding and welding station where the closure flap is heated and folded flat over the closed top, the heat causing the closure flap to stick to the outer surface of the closed flat panels.
The closure flap may include a tear strip to permit the closure flap and sealing strips to be unfolded so that the seal can be broken by partially separating the sealing strips and forming a pouring spout with one of the collapsed side panels as with a conventional gable-top container.
Other objects, advantages and features of the invention will become apparent from the following description taken in connection with the accompanying drawings in which:
FIG. 1 is a perspective view of a portion of a container of thermoplastic coated paperboard material, or the like, with the container end closure portion in a fully open position;
FIG. 2 is a perspective view of the container of FIG. 1 after a prebreaking operation in which the panels of the end closure portion have been slightly bent inwardly toward the closed position;
FIG. 3 is a perspective view of the container of FIGS. 1 and 2 with the end closure portion in the closed condition with a closure flap and sealing strips projecting generally axially from the closed end prior to the sealing operation;
FIG. 4 is a perspective view of the container after the sealing strips have been sealed together by sonic weld- FIG. 5 is a view of the container with the closure flap folded flat and adhered to the top of the container;
FIG. 6 is an elevational view of a portion of apparatus according to the invention for filling, closing and sealing containers of the type illustrated in FIGS. 1 through FIG. 7 is an elevational view of another portion of the apparatus of FIG. 6 as viewed along lines 7-7 of FIG.
FIG. 8 is a sectional view taken on lines 8-8 of FIG. 7;
FIG. 9 is a plan view of a portion of the apparatus of FIGS. 6 and 7 as viewed approximately along lines 9-9 of FIG. 7;
FIG. 10 is an end view of the apparatus of FIGS. 6 and 7 as viewed along lines 10-10 of FIG. 7;
FIG. 11 is a sectional view taken along lines l111 of FIG. 9;
FIGS. 12 and 13 are sectional views taken along lines 12-12 and 13-13, respectively, of FIG. 14;
FIG. 14 is a plan view of a portion of an anvil used in the welding operation as viewed alonglines 14-14 of FIG. 15;
FIG. 15 is a view of the sonic welding apparatus taken along lines 15l5 of FIG. 9;
FIG. 16 is a sectional view taken along lines 16-16 of FIG. 9;
FIG. 17 is a sectional view taken along lines 1717 I of FIG. 16;
FIG. 18 is a perspective view of hold-down bars or guide members for holding the container end closure panels in the closed position as the container moves from the closing station of FIG. 11 to the sonic welding apparatus;
FIG. 19 is a sectional view of the guide members shown in FIG. 18 taken along lines 1919 of FIG. 9;
FIG. 20 is a perspective view of a portion of the top breaking mechanism;
FIG. 21 is a plan view of a second, preferred form of sonic welding anvil; and
FIG. 22 is a sectional view of the anvil of FIG. 21 taken along lines 2222 of FIG. 21.
With reference first to FIGS. 1 through 5, a container is designated collectively by reference character C. the
container C is provided with a thermoplastic coating, and may be made of paperboard, or the like, coated with thermoplastic material such as polyethylene. The container C is made from a blank of the thermosplastic coated paperboard and may be erected from the blank into the form shown in FIG. 1 by prior art machinery of the type disclosed in the patents referred to above The body of the container C is of tubular configuratior having a rectangular cross-section with four body side panels indicated by reference numerals l, 2, 3 and 4 with a sealing flap or panel indicated by reference numeral 5. The flap 5 is bent inwardly from the side panel 4 and sealed to the inner surface of the side panel 1.
The top end closure portion of the container C is shown in its fully open position in FIG. 1 and includes from, rear and side end closure panels 6, 7, 8 and 9, respectively. In the fully open position of FIG. 1, the end closure panels 6, 7, 8 and 9 project axially from the tubular body of the container. The side panels 8 and 9 are formed into three triangular segments 13, 14 and 15 by scored lines 10, 11 and 12. The triangular segment 15 constitutes a central segment with one side extending along the scored line 12 at the upper end of the respective side panel of the body of the container. A sealing strip or rib 18 is provided at the upper end of the side panel 9 and is separated from the triangular segments by a scored line 16. The center of the sealing strip 18 is provided with a scored line 17 tode'fine an inwardly projecting corner for overlapping engagement with the corresponding corner 17 of the side panel 8 when the top closure portion is folded and sealed to its closed position as is described in greater deta'il below.
The front panel 6 has a scored line 20 defining a triangular segment adjacent to the side panel 8 which cooperates therewith to define a pouring spout when the container is opened after being filled.
The lower edge of the front end closure panel 6 is connected with the body panel 3 by ascored line 19,
and the upper edge of the front panel has projecting therefrom a sealing strip 22, the lower edge of which is defined by a scored line 21.
The rear end closure panel 7 has a scored line 23 corresponding to the scored line 20 on the front panel 6 to define a triangular segment adjacent to the side closure panel 8. The rear closure panel 7 also has a sealing strip 25 projecting from a scored line 24 at the upper edge of the rear closure panel 7. Projecting upwardly from the sealing strip 25 is a closure flap 26 formed intermediate its ends with a tear strip 27. The tear strip 27 is defined between two lines of a series of perforations.
When the container C has been erected from the blank with the end closure portion in the fully open position illustrated in FIG. 1, in which it extends axially from the tubular body of the container, the closure portion can be closed, sealed and folded to the position shown in FIG. 5 in which the end of the container is flat with the front and rear closure panels 6 and 7, respectively, lying flat across the end of the container with the closure flap 26 adhered to and overlying the front panel 6. When the tear strip 27 is removed, the edges 30 and 31 of the closure portion can be pushed upwardly to break the seal 28, and the triangular segments 13, 14 and 15 of the side panel 8, in cooperation with the triangular segments defined by the scored lines 20 and 23 on the front and rear panels 6 and 7, respectively, will define a pouring spout.
The method by which the top, closure portion of the container C is closed from the open position of FIG. 1 to the closed position of FIG. 5 comprises first a prebreaking step, by which is meant that the side panels 7 and 8 are bent slightly inwardly to initially bend the triangular segments along the scored lines 10, ll, 12 and 17 so that the side panels will collapse inwardly as the front and rear panels are moved toward each other. The prebreaking operation may take place either prior to or subsequent to filling the container with milk or other contents. After the prebreaking step,-the front and rear closure panels 6 and 7 are bent toward each other as shown in FIG. 2 to cause the side panels 8 and 9 to collapse inwardly beneath the front and rear panels 6 and 7. The closing operation continues until the lower edges of the sealing strips 18, 22 and 25 along the scored lines 16, 21 and 24 are brought together such that the front and rear panels 6 and 7 lie substantially flat across the end of the container as shown in FIG. 3. With the panels in the position shown in FIG. 3, the sealing strips are sonically welded together along the band indicated by the shaded area 28 in FIGS. 4 and 5. Following the sonic welding step, the closure flap 26 is heated on its outer end on the surface adjacent to the 'front panel 6, after which the closure flap, together with the sealing strips 18, 22 and 25, are folded downwardly until the closure flap 26 assumes the position shown in FIG. 5. The closure flap 26 is heated on its outer end, that is, the end opposite the sealing strip so that the tear strip 27 preferably is not adhered to the front panel 6.
The apparatus for filling, closing and sealing the top of the container illustrated in FIGS. 1 through 5 is shown in FIGS. 6 through 10, with various details and components being illustrated in the remaining FIG- URES of the drawings. With reference to FIGS. 6 and 7, reference numeral 36 collectively designates conventional prebreak mechanism which is operable to initially bend the end closure panels 5, 6, 7 and 8 inwardly toward their closed position to induce a certain amount of permanent set in the scored lines separating the panels from the container body side panels 1, 2, 3 and 4. Reference numeral 38 collectively designates filler apparatus for filling the containers after the prebreaking operation with milk or other material as the containers move along the production line. Reference numeral 40 collectively designates a conventional defoamer or skimming apparatus for removing foam from the top of the milk or other liquid contents of the container.
Reference numeral 42 collectively designates the closing station wherein the end closure panels are moved to a closed position such that the top of the container is closed with the front and rear panels 6 and 7 lying flat over the upper end of the container with the sealing strips 18, 22, 25 and closure flap 26 projecting axially outwardly from the closed end of the container body. Reference numeral 44 designates hold-down members or guide bars for holding the end closure of the container in its closed position as the container moves to the welding and sealing station indicated by reference numeral 46.
After the container has been welded and sealed as indicated in FIG. 6 at the welding station 46, it is carried to a closure flap folding and welding station 47 including a heating station 48 wherein the surface of the closure flap near the outer end is heated, and a folding and cooling station 50 wherein the closure flap 26 is folded downwardly to the position shown in FIG. 5 to adhere the closure flap to the top surface of panel 6. The top of the container is then substantially flat, and the container moves beneath a cooling bar 160 to remove the heat from the container top induced therein by the heating element 48.
The containers C are indicated in phantom lines in FIGS. 6 through 10 and are moved along an elongated support member 54 by conveyor chains 56 and 58 each having fingers 60 mounted along their lengths for engaging the containers C. The elongated support member 54 may be adjustable in height to accommodate containers having different heights by conventional mechanism indicated generally by reference numeral 55 in FIG. 7. The conveyor chains 56 may be of the same construction as that disclosed in the above referred to US. Pat. Nos. 3,239,995 and 3,002,328, for example. The conveyor chains 56 move the container C in the direction of arrows 57 in FIGS. 6, 7 and 9. The specific details of the conveying mechanism form no part of the present invention, and various types of conveying means may be employed in the apparatus for moving the containers through the various stations.
The top breaking assembly 36, as shown in FIG. 6, includes side panel tucking mechanism indicated collectively by reference numeral 62. The tucking mechanism is vertically reciprocable between the lowered, operable position illustrated in FIG. 6, and an upper, inoperable position in which the tucking mechanism is spaced above the top of the container.
The tucking mechanism includes an anvil 68 having inwardly inclined flanges 69 which, in the operable position shown in FIG. 6, are located adjacent to the score lines at the top of the body panels 1, 2, 3 and 4 of the container C. When the anvil 68 is lowered into the open end of the container, triangular fingers 70 are caused to rotate about their shafts 72 to engage the triangular segments 15 and. bend the side panels 8 and 9 inwardly as shown in FIG. 2. When the side panels are tucked inwardly between the front and rear panels 6 and 7, respectively, the anvil: 68 is withdrawn and the left-hand finger 70 rotatesin a counterclockwise direction about its shaft 72 and the right-hand finger 70 is rotated in a clockwise direction about its shaft 72 as the tucking mechanism is raised to its inoperative position spaced above the top closure portion of the container C.
The top breaking mechanism also includes front and rear panel breaking mechanism indicated collectively by reference numeral 64. With reference to FIGS. 6 and 20, the mechanism 64 includes an assembly of plates 74, 76 and 78, the plate.78 being sandwiched between the plates 74 and'7 6 and having inwardly projecting triangular segments formed thereon for further urging the side panels S and 9 of the top closure portion of the container inwardly as shown in FIG. 2. The inclined plate 74 overlies the rear panel 7 and the inclined plate 76 overlies the front panel 6 to cause the panels 6 and 7 to move toward each other with the closure flap 26 extending into the space 82 between the triangular segments 80 of the plate 78. The unit 64 of the top breaker unit is mounted integrally with the side tucking unit 62 so that it is raised and lowered to the inoperable and operable positions, respectively, with the side tucking unit 62. Thus, when the side tucking unit 62 is in the operable position with a container C located at the side tucking station, the unit 64 is in an operable position with the preceding container C so that each container C receives a top breaking operation from the side tucking with 62 and the front and rear panel breaking unit 64.
The conveyor chains 58 move the containers step by step along the elongated support member 54 from station to station where each operation is performed. After the top breaking operation is performed at the top breaking station 36, the containers move to the filler station 38 where a filler tube is lowered into the open end of the container (the end being in the prebreak condition illustrated approximately in FIG. 2) and the container is filled with milk or other contents. The container then moves to the skimmer or defoaming station 40 where a conventional defoaming apparatus is lowered into the container to suck away the foam on the top of the milk or other liquid contents of the container and carry it to a container located at a remote position from the conveying assembly. After the container has been filled and defoamed, it is conveyed to the closing station 42.
With reference primarily to FIGS. 9 and 11, the closing station 42 includes a pair of reciprocating closing jaws 86 mounted in opposed relationship with respect to each other. The upper end of each of the closing jaws 86 is connected to the lower end of a piston rod 88 reciprocable in a hydraulic cylinder 92 mounted on a support bracket 94. A guide rod 90 extends from the upper end of each of the jaws 86 through an aperture in the support bracket 94 (FIG. 9). The jaws 86 are reciprocable between the extended position indicated in full lines in FIG. 11 and the retracted position shown approximately in phantom lines in FIG. 11. The closing jaws 86 move in a path extending at an acute angle with respect to the longitudinal axis of the tubular body of the container C. The lower or outer end surfaces 96 of the jaws 86 are consequently inclined with respect to the upper ends97 such that the upper surface 98 of each of the jaws has a greater length than the lower surface lthe jaws being trapezoidal configuration as viewed in FIG. 11. Consequently, since the jaws 86 are reciprocable in opposed, inclined paths with respect to a container C located at the closing station, the lower ends 96, in the extended position, lie in a plane normal to the axis of the tubular body of the container and will force the respective front and rear panels 6 and 7 to the flattened position illustrated in FIG. 42 in which the front and rear panels 6 and 7 of the container C extend at substantially right angles to the body side panels of the container to overlie the upper end of the container body.
Fluid flow to and from the cylinders 92 is controlled by a cam follower 97 engaged with the surface of a cam 99 fixed to a rotating shaft 101. As the cam 99 rotates with the shaft 101, the cam follower 97 pivots about the axis ofa pin 97a as it follows the surface of the cam to actuate a control'device 103. When the cam 99 and cam follower 97 are in the position shown in FIG. 11, the control device 103 causes pnuematic fluid to flow in a direction to cause the ajws 86 to extend from the positions spaced from each other as indicated in phantom lines in FIG. 11 to the extended position indicated in full lines in FIG. 11.
As pointed out previously, the containers C are moved along the support member 54 step by step such that each container has a dwell period in each position. The shaft 101, and hence cam 99, rotate in timed relationship with the conveyor such that each time the conveyor indexes to advance a, container C irltothe closing station 42 between the jaws 86 in their retracted, phantom line positions of FIG. 11, the follower 97 is engaged by surface 99a of the cam to cause the jaws to be actuated toward each other to the extended, full line positions of FIG. 11. When the conveyor again indexes to move the closed container from the closing station 42, surface 99a has moved past the cam follower 97a, which in turn causes the cam follower to pivot clockwise about pin 97a and actuate the jaws 86 to return to the retracted positions to permit .the following open ended container C to move into the closing station between the retracted jaws 86.
When the closing jaws 86 are extended to the full line position shown in FIG. 1 1, the jaws engage panels 6 and 7 and close the end of the container C by folding the front and rear panels 6 and 7 to the positions shown in FIG. 11 and bringing the lower edges of the sealing strips 22 and 25 at the score lines 21 and 24 together. The sealing strips 22 and 25, as well as the closure flap 26, project upwardly from the flattened front and rear panels 6 and 7.
As the container C moves from the closing station 42, the front and rear panels 6 and 7 engage thespaced hold-down members or guide bars 44 to maintain the closure portion in the closed position of FIG. 11. As shown in FIGS. 9 and 18, the guide bar assembly 44 is mounted on a cross-frame member 104 and includes a pair of spaced, flat guide plates 106 secured by conventional fasteners 105 to the cross-frame member 104. The inner edges of the guide bars or plates 106 are flared outwardly at their entrance ends and merge into parallel relationship to define a slot 110 for receiving the upwardly projecting sealing strips 22, 25 and closure flap 26. The guide plates 106 overlie the front and rear panels 6 and 7 of the container C to hold the front and rear panels in the flattened, closed position shown in FIG. 11 until the container is advanced by the conveyor chains 56, 58 to the welding station 46. The outer ends of the guide plates 106, that is the ends remote from the cross-frame member 104, are curved slightly upwardly so that the panels 6 and 7 will engage the underside of the plates 106 even if there is a tendency for the panels 6 and 7 to spring upwardly from the position shown in FIG. 11 after being disengaged by the closing jaws 86. As the containers advance along the guide plates 106, the panels 6 and 7 of the container are held toward the closed position by the guide plates 106 shown in FIG. 19. The sealing strips 22, 25 as well as the closure flap 26 project upwardly through the slot 110 as shown in FIG. 19.
As a container C is advanced by the conveying chains 56, 58 from the guide members 106 of the guide assembly 44, the panel 6 of the container engages the underneath surface of an anvil 1 14 located at the welding station 46 (FIG. 15). The anvil 114 has an upper inclined support surface 116 for supporting the sealing strip 22, 25 and closure flap 26 for a sonic welding operation. The anvil 114 is supported between the cross-frame members 104 and 107 (FIG. 9).
Also supported on the cross-frame members 104 and 107 at the welding station 46 is a sonic welding device which may be an ultrasonic transducer of the type disclosed in US. Pat. No. 3,526,792. The sonic welding device, indicated collectivelyby reference numeral 118, is mounted on a supporting structure 122 which in turn is supported on the cross-frame members 104 and 107. The sonic welding device 118, in the illustrated embodiment of FIG. 15, includes a housing 119 for a converter for converting electrical energy into mechanical energy, and a concentrating horn 120 for concentrating the mechanical energy into vibrations at a desired frequency.
The concentrating horn 120 is shown in its extended operable position for engaging the outer surface of the sealing strip 25 of the carton C located at the welding station, the support surface 116 of the mandrel 114 engaging the outer surface of the sealing strip 22 and serving as a back-up means for the vibrating horn 120. The horn 120 is movable from its extended, operable position to a retracted inoperable position with respect to the support surface 116 when a carton C is not located at the welding station 46. The horn 120 is actuated to move to the extended position shown in FIG. by the engagement of a carton C with a limit switch actuator 123. When the carton is disengaged from the limit switch actuator 123, the horn 120 retracts upwardly from the position shown in FIG. 15.
The shape and configuration of the horn 120 is determined in accordance with the desired frequency of the vibration to produce the desired amount of concentrated, frictional heat at the area to be welded together, namely, the shaded area indicated by reference numeral 28 in FIG. 4. The layers of the carton material between the sealing strips 22 and 25 are welded together by the frictional heat generated by the vibrating horn 120 so that the strips 22, 18, 25, and that portion of the side sealing flap 5 engaged with the sealing strip 25 (FIG. 1) are welded together along the band 28 of FIGS. 4 and 5. As pointed out in greater detail below, the configuration of the support surface 116 is such that a substantially uniform pressure is applied by the horn 120 to the closure portion during the sonic welding operation to accommodate the variations in the thickness along the band 28.
In the preferred form to date, the horn 120 is designed to vibrate at a frequency of 20,000 cycles per second when it is in engagement with the outer surface of the sealing strip 25 of the top closure portion of the carton. The vibration of the horn 120 is converted into frictional heat which melts the thermoplastic coating of the layers of the panels between the sealing strips 22 and 25 to weld the various layers together along the band 28.
When the top of the container is in the closed position illustrated in FIGS 3 and 4, the tips defined by the scored lines 17 on the'sealing strips 18 overlap to assure a complete closure of the space between the strips 22 and 25. Consequently, the thickness of the welded area along the band 28 is increased at substantially its midpoint where the tips 17 overlap. Furthermore, the
sealing flap 5 provides an extra thickness at the edge of the band 28. To accommodate for the extra thickness provided by the sealing flap 5, the support portion 1 16 of the anvil 114 is provided with a recessed portion 124, and a centrally disposed groove 126 is provided for accommodating the extra thickness of the overlapping tips 17. Grooves 126a and 12612 may be provided for receiving the outer edges of sealing strips and layers to be welded together. Longitudinal grooves 125, 125a and l25b are also formed in the surface 1 16 of the anvil 1 14 to assure that the heated thermoplastic material will flow into and fill all spaces between the layers sandwiched between the surface 116 and the end of the horn to assure a complete seal along the band 28 of FIGS. 4 and 5. Consequently, when the end of the horn 120 engages the sealing strip 25 along the bank 28, the groove 126 and recess 124 accommodates the variations in thickness along the band 28 so that a substantially uniform pressure is applied to the material of the carton along the band 28 by the vibrating horn 120. As pointed out previously, the mechanical energy of the vibrating horn is converted into frictional heat to melt the thermoplastic coating of all of the layers sandwiched between the sealing strips 22 and 25 so that a completely sealed joint is provided between the sealing strips 22 and 25. The sealing strips are welded together in such a manner that the front and rear panels 6 and 7 lie substantially flat over the top of the container body.
With the horn 120 designed to vibrate at a frequency of 20,000 cycles per second (or 20I-IZ), sufficient heat is generated in a matter of microseconds to melt the thermoplastic and weld the layers located between the horn 120 and anvil surface 116 together, with the heat dissipated into the paperboard of the container. The heat is concentrated along the band 28 (FIGS. 4 and 5) and is quickly dissipated to eliminate the necessity for elaborate heat removal systems. I
When a carton C engages the actuator 123, a timing sequence is started by a cam 123a. A control device for the sonic welding device 118 is actuated by a cam follower 1230 which is fixed to a pin or shaft 123d. When a carton C engaged actuator 123, rotation of the cam 123a causes the cam follower 123C to rock about the axis of its shaft 123d and energize and deenergize the control device 125 to, in turn, controlthe operation of the sonic welding device 118. Thus, when 'a carton C engages the actuator 123, the rotation of cam 123a, because of the resulting movement of the follower l23c, causes the control device 125 to actuate the horn 120 to sequentially (I) extend into the position shown in FIG. 15 from its retracted position, (2) vibrate for a predetermined period of time, (3) stop vibrating and remain in the extended position shown in FIG. 15 for a predetermined period of time, and (4) return upwardly to its retracted position as the cam 123C completes a full revolution. The amount of time involved in the entire sequence is the same amount of time involved for the conveyor chains to index a carton C from one position to the next along the support member 54 in the direction of arrows 57.
With the horn 120 designed to vibrate at a frequency of 20,000 cycles per second, for each welding operation on the thermoplastic coated paperboard containers C illustrated, a vibration time of from about 0.2 to 0.5 seconds will be required to cause the thermoplastic to flow. Following the vibration time of from 0.2 to 0.5 seconds, the horn 120 is held in contact with the layers 18, 22, 25 for a period of from 0.5 to 1.5 seconds to allow the thermoplastic material to cool and set to complete the seal along the band 28. The cooling time maybe accelerated by circulating cooling fluid through the anvil 114 to cool the surface 116. The foregoing specific figures regarding the vibrating frequency and time, as well as the setting time of the thermoplastic material, are given by way of example only, and may vary depending upon the area to be welded together, the thickness and number of layers to be welded together, the specific properties of the thermoplastic material, and the amount of cooling provided in the anvil 114;
FIGS. 21 and 22 illustrate an alternative, preferred embodiment of an anvil for cooperation with the horn 120 of the sonic welding device 118. Reference numeral 114 collectively designates the anvil of FIGS. 21 and 22, and reference numeral 132 designates the inclined, support portion of the anvil. Formed in the support portion 132 is an elongated groove 134. Received in the groove 134 is a strip 136 of resilient elastomeric material, such as elastomeric urethane. An elongated plate member 138, corresponding in shape to the groove 134 and resilient strip 136, is received in the groove 134 and is supported on the upper surface of the resilient strip 136. In the unstressed condition of the resilient strip 136, the outer surface of the plate 138 projects above the surface 132 for a distance of, for example, 0.0l inches.
The plate member 138 is secured to the anvil 114' by screws 140 having a shank with an enlarged, unthreaded portion 141 and a threaded portion 142. The unthreaded portion 141 is enlarged with respect to the threaded portion 142 to define a shoulder which seats against the bottom of the groove 134 and is received in aligned apertures in the plate member 138 and resilient strip 136. The head of the screw 140 is enlarged with respect to the unthreaded portion 141 of the shank to prevent separation of the plate member 138 from the anvil. However, the plate member 138 can be compressed inwardly toward the bottom of the groove 134 due to the resilient support provided by the strip 136. An elongated groove 125 is formed in the inclined support surface 132 beneath the groove 134, and the anvil 114' is also provided with a recessed portion 124' to accommodate the extra thickness provided by the side sealing flap Sat its connection with the sealing strip 25 (FIGS. 1 and 4). I
When the anvil of FIGS. 21 and 22 is mounted in the position of anvil 114 as shown in FIG. 15, the portion of the sealing strip 22 encompassed by the band 28 of FIGS. 4 and 5 engages the plate 138 and the horn engages the sealing strip 25 along the band 28 to compress the carton material layers along band 28 between the horn 120 and the plate 138. The resilient strip 136 yields sufficiently in the areas along the band 28 having the greatest thickness to provide a substantial uniform pressure along the end of the vibrating horn 120. The resilient padding permits the plate 138 to float with respect to the bottom of the groove 138 which, in turn, permits the paperboard layers to shift around and cause the thermoplastic material to flow into all of the voids and spaces to provide a complete seal along the band 28. The groove 125 and recess 124' assist in accommodating the extra thicknesses of material and minimizing the distortion of the layers as they engage the plate 138. The vibration of the horn 120 in the longitudinal direction causes the hot thermoplastic material, in conjunction with the resilient support of the plate 138, to flow more freely and fill all of the voids between the layers of material along the band 28.
Both of the anvils 114 and 1 14 may be provided with passages for circulating water or other cooling fluid or liquid through the anvil to prevent an excessive buildup of temperature at the surface of the anvil engaged by the carton during repeated operation of the welding apparatus 118, 114 and 114'.
Following the completion of the welding operation at the welding station 46, the conveyor advances the container C from the welding station to the area indicated generally by reference numeral 47 in FIG. 9 where the closure flap 26 of the container is heated, folded flat against the front panel 6 and then cooled to adhesively secure the closure flap 26 in the position shown in FIG.
5. As the carton C leaves the welding station, the end closure panel 7 of the carton engages a guide plate 146, and the closure flap 26 engages a guide rod 144 which urges the closure flap toward the left as viewed in FIG. 16 toward a heating bar 148. The heating bar 148 extends beneath a heat shield 150 for reflecting heat in the direction of the lower surface of the closure flap 26 as viewed in FIG. 16. The heating bar 148 constitutes part of a heating assembly 152 that is shown in its operative, extended position in FIG. 16. The heating assembly 152 remains in the operative, extended position, so long as the conveyor chains 56 and 58 are operating to convey the container C along the support member 54 from station to station. However, in the event of a stoppage, the assembly 152, together with the heating bar 148 retracts to the left as viewed in FIG. 16 so as not to apply an excessive amount of heat to cartons moving through the heating station 48 in proximity to the heating bar 148.
The heating assembly 152 is mounted on a platform 162 which is slidably supported in track members 164 mounted on frame members 107 and 166 (FIG. 17). Mounted on the upper surface of the slidable platform 162 is a bracket 168. Mounted on a support member 169 is a hydraulic piston and cylinder assembly including a cylinder 170 secured to the support member 169, and a piston 172 which extends and retracts hydraulically with respect to the cylinder 170. One end of the piston 172 is secured to the bracket 168 so that movement of the rod 172 causes corresponding movement of the platform 162 in the track members 164. The controls for the hydraulic cylinder-170 are interconnected with the conveyor system in such a manner that the piston 172 is actuated to the extended position shown in FIG. 16 when the conveyor is started into operation. When the conveyor stops for any reason, the hydraulic pressure in the cylinder 170 is automatically reversed to retract the piston rod 172 and move the platform 162, together with the heating rod 148 to the left as viewed in FIG. 16 so that the heating rod 148 will be out of proximity with any cartons C located at the heating station 48. i
The heating assembly 152 includes a connector housing 174 in which is mounted the resistance heating rod 148 and various electrical connections, the housing 174 being connected through an electrical conductor 176 with a source of electrical power indicated by reference numeral 178 in FIG. 16. As the cartons C move through the heating station 48 along the rod 144, the thermoplastic material on the underneath side of the closure flap 26 adjacent its outer end is heated by the heating rod 148 to a temperature sufficient to cause the thermoplastic material to become tacky or in a plastic state.
As each container is advanced by the conveyor past the right end of the heating bar 148 as viewed in FIG. 9, the closure flap 26 engages the curved end 180 of the bottom plate 183 of the cooling bar 160. The cooling bar 160 includes a substantially U-shaped housing portion 179 mounted on the upper surface of the plate 183 to form a chamber 181 for water or other cooling fluid. As the closure flap 26 engages the end portion 180 of plate 183, it is folded downwardly into engagement with the upper surface of the end closure panel 6 and is held in position against the end panel 6 by the bottom plate member 183. The cooling fluid is circulated through the chamber 181 by pipes 184 and 186 (FIG. 7) and the thermoplastic material heated by the heating bar 148 is caused to set and adhesively secure the closure flap 26 to the panel 6 so that the end closure is in the closed and sealed position illustrated in FIG. 5. The movement of the cartons along the length of the cooling bar 160 removes heat from the end closure, and the bottom plate 183 is recessed as indicated by reference numeral 182 in FIG. 8 so that the maximum pressure is applied at the closure flap 26 by portion 183a (FIG. 8) of the bottom plate 183 to insure that the closure flap 26 will be adhesively secured to panel 6 of the end closure as shown in FIG. 5. The operation is completed as a carton C moves past the right end of the bottom plate 183 as viewed in FIG. 7. 2
While a specific form of the invention is described in the foregoing specification and illustrated in the accompanying drawings, it should be understood that the invention is not limited to the exact construction shown. To the contrary, various alterations in the construction and arrangement of parts, as well as the sequence of steps, all falling within the scope and spirit of the invention, will be apparent to those skilled in the art.
.The embodiments of the invention in which an exclusive property or privilege is claimed are defined as fol lows:
1. Apparatus for closing and sealing an end closure of a container having a tubular body, the end closure having front and rear panels joined by side panels, the end closure panels extending axially from the tubular body in its open condition, said front and rear end closure panels each having a sealing strip defined at its outer end by a scored line, said apparatus comprising: closing means operable to fold the end closure panels to a closed position with the side panels folded beneath the front and rear panels with the front and rear panels lying substantially flat and substantially transversely of the tubular body to close the end of the tubular body with said sealing strips of the front and rear panels projecting axially outwardly of the tubular body in opposed face to face engaged relationship with each other; said closing means comprising a pair of closing jaws each mounted for movement in a path extending at an acute angle with respect to the longitudinal axis of the tubular body of a container located between the closing jaws, each of said closing jaws having-an outer end surface lying in a plane extending substantially normal to the longitudinal axis of the tubular body of the container; means for moving said closing jaws toward each other in said paths from retracted positions spaced from each other to extended positions such that when a container with an open end closure is located between the closing jaws, the front and rear end closure panels will be sequentially engaged by the leading edge of the end surface of respective ones of the closing jaws near said sealing strip and then said end surface as the closing jaws extend and be folded by the closing jaws to the closed position with said sealing strips projecting axially from the tubular body between the closing jaws in the fully extended positions of the closing jaws, and
welding means operable to weld the sealing strips together to seal and secure the end closure in its closed condition.
2. Apparatus as claimed in claim 1 wherein said welding means comprises an anvil engageable with one outer surface of the axially outwardly projecting outer end portions of the front and rear end closure panels in the closed condition, and vibrating means engageable with the opposite outer surface thereof and operable to generate heat sufficient to weld the end portions together.
3. Apparatus as claimed in claim 2 wherein said anvil has a support surface engageable with said one outer surface, said vibrating means being movable from an inoperable position spaced from the support surface of said anvil to an operable position in which it sequentially engages said other outer surface and presses said one outer surface into engagement with said support surface.
4. Apparatus as claimed in claim 3 wherein said support surface of said anvil is formed with relieved areas to accommodate variations in the thickness of the end portions being welded together.
5. Apparatus as claimed in claim 3 wherein said support surface includes an elongated plate member engageable by said one outer surface, and means resiliently supporting said plate member to permit the plate member to yield to accommodate variations in the thickness of the end portions lbeing welded together.
,6. Apparatus as claimed in claim 1 wherein said welding means comprises an anvil engageable with one outer surface of the axially outwardly projecting outer end portions of the front and rear end closure panels in the closed condition, and vibrating means engageable with the opposite outer surface thereof and operable to generate heat sufficient to weld the end portions together.
7. Apparatus as claimed in claim 6 wherein said anvil has a support surface engageable with said one outer surface, said vibrating means being movable from an inoperable position spaced from the support surface of said anvil to an operable position in which it sequentially engages said other outer surface and presses said one outer surface into engagement with said support surface.
8. Apparatus as claimed in claim 7 wherein said support surface of said anvil is formed with relieved areas to accommodate variations inffthe thickness of the end portions being welded together.
9. Apparatus as claimed in claim 7 wherein said support surface includes an elongated plate member engageable by said one outer surface, and means resiliently supporting said plate member to permit the plate member to yield to accommodate variations in the thickness of the end portions being welded together.
10. Apparatus as claimed in claim 1 wherein said closing means is located at a closing station, said welding means is located at a weldingstation spaced from said closing station, and further including conveying means for moving containers from said closing station to said welding station.
11. Apparatus as claimed in claim 10 further including hold-down means located between said closing station and said welding station operable to hold the end closure panels of a container in the closed position as the container moves from the closing station to the welding station.
guide bars being engageable with the front end closure panel of such container with the axially projecting outer end portions of the front and rear panels being received in said slot.
13. Apparatus for closing and sealing an end closure of a container having a tubular body to form a closed and sealed flat end closure for the container, the material of the end closure including thermoplastic material and having front, rear and side panels each extending axially from the tubular body in its open position, each of the end closure panels having a sealing strip defined at its outer end by a scored line and the rear panel including a closure flap extending from the outer edge of its sealing strip, said apparatus comprising: closing means operable to fold the end closure panels to a closed position with the side panels folded beneath the front and rear panels with the front and rear panels lying substantially flat and transversely of the tubular body to close the end of the tubular body with the sealing strips and closure flap projecting outwardly of the tubular body; welding means operable to weld the sealing strips together to seal and secure the end closure panels in their closed position; and closure flap folding and welding means operable to fold the axially projecting sealing strips and closure flap over the front panel and weld the closure flap to the front panel such that the closure flap lies flat over the front panel, said flap closure means comprising a guide rod and a heating rod in substantially spaced, parallel relationship with each other, said guide rod being operable to bend the closure flap of a carton'toward said heating rod as said carton moves from said welding means to said closure flap folding and welding means.
14. Apparatus as claimed in claim 13 wherein said closing means, welding means and closure flap folding.
and welding means are respectively located at a closing station, a welding station, and a closure flap folding and welding station spaced sequentially from each other; and further including a conveyor for conveying containers sequentially through said stations.
15. Apparatus as claimed in claim 14 further including a cooling member spaced from the closure flap folding and welding station on the opposite side thereof from said welding station; said cooling member being engageable by each container end closure as it is conveyed to said cooling member from said closure flap folding and welding station to remove heat from the end closure.
16. Apparatus for closing and sealing an end closure of a container having a tubular body to form a closed and sealed flat end closure for the container, the material of the container end closure including a thermoplastic material, the container end closure having front, rear and side panels each extending axially from the tubular body in its open position, each of said panels having a sealing strip defined at its outer end by a scored line, and said rear panel including a closure flap extending from the outer edge of its sealing strip, said apparatus comprising: closing means operable to bend the side panels of the cartons inwardly along the scored lines thereof between the front and rear panels thereof and to fold thefront and rear panels flat over the top edges of the container sides with the sealing strips and closure flap projecting outwardly from the flat front and rear panels; welding means spaced from said closing means operable when a closed container is moved from the closing means to said welding means to weld the sealing strips of such container together to seal the container; flap closure means spaced from the .welding means operable when a container is moved from said welding means to said flap closure means to fold the upstanding sealing strips and closure flap of such container over the front panel and weld the closure flap to the front panel such that the closure flap lies flat over the front panel; and conveying means for moving such containers sequentially to the closing means, welding means, and flap closure means; said closing means comprising: prebreaking jaws operable to prebreak the side panels of a container slightly inwardly along the scored lines thereof; closing jaws spaced from said prebreak jaws operable to fold the front and rear panels flat and bring the lower edges of the sealing strips of such container together such that the sealing strips and closure flap project outwardly from the front and rear panels; and a pair of spaced guide members on the side of the closing jaws opposite the prebreak jaws for holding the front and rear panels fiat with the sealing strips and closure flap projecting through the space between the guide members as the container is conveyed to the welding means.
17. Apparatus as claimed in claim 16 wherein said welding means comprises an anvil engageable with one outer surface of the axially outwardly projecting outer end portions of the front and rear end closure panels in the closed condition, and vibrating means engageable with the opposite outer surface thereof and operable to generate heat sufficient to weld the end portions together.
18. Apparatus as claimed in claim 17 wherein said anvil has a support surface engageable with said one outer surface, said vibrating means being movable from an inoperable position spaced from the support surface of said anvil to an operable position in which it sequentially engages said other outer surface and presses said one outer surface into engagement with said support surface.
19. Apparatus for closing and sealing an end closure of a container having a tubular body to form a closed and sealed flat end closure for the container, the material of the container end closure including a thermoplastic material, the container end closure having front, rear and side panels each extending axially from the tubular body in its open position, each of said panels having a sealing strip defined at its outer end by a scored line, and said rear panel including a closure flap extending from the outer edge of its sealing strip, said apparatus comprising: closing means operable to bend the side panels of the cartons inwardly along the scored.
:lines thereof between the front and rear panels and to fold the front and rear panels flat over the top edges of the container sides with the sealing strips and closure flap projecting outwardly from the flat front and rear panels; welding means spaced from said closing means operable when a closed container is moved from the closing means to said welding means to weld the sealing strips of such container together to seal the container; flap closure means spaced from the welding means operable when a container is moved from said welding means to said flap closure means to fold the upstanding sealing strips and closure flap of such container over the front panel and weld the closure flap to the front panel such that the closure flap lies flat over the front panel; and conveying means for moving such containers sequentially to the closing means, welding means, and flap closure means; said flap closure means comprising a guide rod and a heating rod in substantially spaced, parallel relationship with each other, said guide rod being operable to bend the closure flap of a carton moving from said welding station toward said heating rod to be heated thereby.
20. Apparatus as claimed in claim 19 further including a plate member engageable by the closure flap of a carton moving from said heating bar and guide rod operable to fold the heated closure flap to a flat closed position against the front end closure panel of the container.
21. Apparatus as claimed in claim 20 including means mounted on said plate member defining a chamber for cooling fluid to cool said plate member and the heated closure flaps of containers in contact with said plate member.
22. Apparatus as claimed in claim 21 including pipes connected with said cooling chamber for connection with a source of cooling fluid and operable to circulate cooling fluid through said cooling chamber.
23. Apparatus as claimed in claim 20 including a heating assembly, said heating bar forming a part of said assembly, said assembly being movable toward and away from said guide bar and operable to move away from said guide bar when movement of cartons along said guide bar is stopped.

Claims (23)

1. Apparatus for closing and sealing an end closure of a container having a tubular body, the end closure having front and rear panels joined by side panels, the end closure panels extending axially from the tubular body in its open condition, said front and rear end closure panels each having a sealing strip defined at its outer end by a scored line, said apparatus comprising: closing means operable to fold the end closure panels to a closed position with the side panels folded beneath the front and rear panels with the front and rear panels lying substantially flat and substantially transversely of the tubular body to close the end of the tubular body with said sealing strips of the front and rear panels projecting axially outwardly of the tubular body in opposed face to face engaged relationship with each other; said closing means comprising a pair of closing jaws each mounted for movement in a path extending at an acute angle with respect to the longitudinal axis of the tubular body of a container located between the closing jaws, each of said closing jaws having an outer end surface lying in a plane extending substantially normal to the longitudinal axis of the tubular body of the container; means for moving said closing jaws toward each other in said paths from retracted positions spaced from each other to extended positions such that when a container with an open end closure is located between the closing jaws, the front and rear end closure panels will be sequentially engaged by the leading edge of the end surface of respective ones of the closing jaws near said sealing strip and then said end surface as the closing jaws extend and be folded by the closing jaws to the closed position with said sealing strips projecting axially from the tubular body between the closing jaws in the fully extended positions of the closing jaws, and welding means operable to weld the sealing strips together to seal and secure the end closure in its closed condition.
2. Apparatus as claimed in claim 1 wherein said welding means comprises an anvil engageable with one outer surface of the axially outwardly projecting outer end portions of the front and rear end closure panels in the closed condition, and vibrating means engageable with the opposite outer surface thereof and operable to generate heat sufficient to weld the end portions together.
3. Apparatus as claimed in claim 2 wherein said anvil has a support surface eNgageable with said one outer surface, said vibrating means being movable from an inoperable position spaced from the support surface of said anvil to an operable position in which it sequentially engages said other outer surface and presses said one outer surface into engagement with said support surface.
4. Apparatus as claimed in claim 3 wherein said support surface of said anvil is formed with relieved areas to accommodate variations in the thickness of the end portions being welded together.
5. Apparatus as claimed in claim 3 wherein said support surface includes an elongated plate member engageable by said one outer surface, and means resiliently supporting said plate member to permit the plate member to yield to accommodate variations in the thickness of the end portions being welded together.
6. Apparatus as claimed in claim 1 wherein said welding means comprises an anvil engageable with one outer surface of the axially outwardly projecting outer end portions of the front and rear end closure panels in the closed condition, and vibrating means engageable with the opposite outer surface thereof and operable to generate heat sufficient to weld the end portions together.
7. Apparatus as claimed in claim 6 wherein said anvil has a support surface engageable with said one outer surface, said vibrating means being movable from an inoperable position spaced from the support surface of said anvil to an operable position in which it sequentially engages said other outer surface and presses said one outer surface into engagement with said support surface.
8. Apparatus as claimed in claim 7 wherein said support surface of said anvil is formed with relieved areas to accommodate variations in the thickness of the end portions being welded together.
9. Apparatus as claimed in claim 7 wherein said support surface includes an elongated plate member engageable by said one outer surface, and means resiliently supporting said plate member to permit the plate member to yield to accommodate variations in the thickness of the end portions being welded together.
10. Apparatus as claimed in claim 1 wherein said closing means is located at a closing station, said welding means is located at a welding station spaced from said closing station, and further including conveying means for moving containers from said closing station to said welding station.
11. Apparatus as claimed in claim 10 further including hold-down means located between said closing station and said welding station operable to hold the end closure panels of a container in the closed position as the container moves from the closing station to the welding station.
12. Apparatus as claimed in claim 11 wherein said hold-down means comprises a pair of guide bars spaced to define a slot therebetween extending in the direction of movement of containers from the closing station to the welding station, one of said guide bars being engageable with the rear end closure panel of a container moving from the closing station and the other of said guide bars being engageable with the front end closure panel of such container with the axially projecting outer end portions of the front and rear panels being received in said slot.
13. Apparatus for closing and sealing an end closure of a container having a tubular body to form a closed and sealed flat end closure for the container, the material of the end closure including thermoplastic material and having front, rear and side panels each extending axially from the tubular body in its open position, each of the end closure panels having a sealing strip defined at its outer end by a scored line and the rear panel including a closure flap extending from the outer edge of its sealing strip, said apparatus comprising: closing means operable to fold the end closure panels to a closed position with the side panels folded beneath the front and rear panels with the front and rear panels lying substantially flat and transversely of the tubular body to close the end of the tubular Body with the sealing strips and closure flap projecting outwardly of the tubular body; welding means operable to weld the sealing strips together to seal and secure the end closure panels in their closed position; and closure flap folding and welding means operable to fold the axially projecting sealing strips and closure flap over the front panel and weld the closure flap to the front panel such that the closure flap lies flat over the front panel, said flap closure means comprising a guide rod and a heating rod in substantially spaced, parallel relationship with each other, said guide rod being operable to bend the closure flap of a carton toward said heating rod as said carton moves from said welding means to said closure flap folding and welding means.
14. Apparatus as claimed in claim 13 wherein said closing means, welding means and closure flap folding and welding means are respectively located at a closing station, a welding station, and a closure flap folding and welding station spaced sequentially from each other; and further including a conveyor for conveying containers sequentially through said stations.
15. Apparatus as claimed in claim 14 further including a cooling member spaced from the closure flap folding and welding station on the opposite side thereof from said welding station; said cooling member being engageable by each container end closure as it is conveyed to said cooling member from said closure flap folding and welding station to remove heat from the end closure.
16. Apparatus for closing and sealing an end closure of a container having a tubular body to form a closed and sealed flat end closure for the container, the material of the container end closure including a thermoplastic material, the container end closure having front, rear and side panels each extending axially from the tubular body in its open position, each of said panels having a sealing strip defined at its outer end by a scored line, and said rear panel including a closure flap extending from the outer edge of its sealing strip, said apparatus comprising: closing means operable to bend the side panels of the cartons inwardly along the scored lines thereof between the front and rear panels thereof and to fold the front and rear panels flat over the top edges of the container sides with the sealing strips and closure flap projecting outwardly from the flat front and rear panels; welding means spaced from said closing means operable when a closed container is moved from the closing means to said welding means to weld the sealing strips of such container together to seal the container; flap closure means spaced from the welding means operable when a container is moved from said welding means to said flap closure means to fold the upstanding sealing strips and closure flap of such container over the front panel and weld the closure flap to the front panel such that the closure flap lies flat over the front panel; and conveying means for moving such containers sequentially to the closing means, welding means, and flap closure means; said closing means comprising: prebreaking jaws operable to prebreak the side panels of a container slightly inwardly along the scored lines thereof; closing jaws spaced from said prebreak jaws operable to fold the front and rear panels flat and bring the lower edges of the sealing strips of such container together such that the sealing strips and closure flap project outwardly from the front and rear panels; and a pair of spaced guide members on the side of the closing jaws opposite the prebreak jaws for holding the front and rear panels flat with the sealing strips and closure flap projecting through the space between the guide members as the container is conveyed to the welding means.
17. Apparatus as claimed in claim 16 wherein said welding means comprises an anvil engageable with one outer surface of the axially outwardly projecting outer end portions of the front and rear end closure panels in the closed condition, and vibrating means engageable with the opposite outer surface thereof and operable to generate heat sufficient to weld the end portions together.
18. Apparatus as claimed in claim 17 wherein said anvil has a support surface engageable with said one outer surface, said vibrating means being movable from an inoperable position spaced from the support surface of said anvil to an operable position in which it sequentially engages said other outer surface and presses said one outer surface into engagement with said support surface.
19. Apparatus for closing and sealing an end closure of a container having a tubular body to form a closed and sealed flat end closure for the container, the material of the container end closure including a thermoplastic material, the container end closure having front, rear and side panels each extending axially from the tubular body in its open position, each of said panels having a sealing strip defined at its outer end by a scored line, and said rear panel including a closure flap extending from the outer edge of its sealing strip, said apparatus comprising: closing means operable to bend the side panels of the cartons inwardly along the scored lines thereof between the front and rear panels and to fold the front and rear panels flat over the top edges of the container sides with the sealing strips and closure flap projecting outwardly from the flat front and rear panels; welding means spaced from said closing means operable when a closed container is moved from the closing means to said welding means to weld the sealing strips of such container together to seal the container; flap closure means spaced from the welding means operable when a container is moved from said welding means to said flap closure means to fold the upstanding sealing strips and closure flap of such container over the front panel and weld the closure flap to the front panel such that the closure flap lies flat over the front panel; and conveying means for moving such containers sequentially to the closing means, welding means, and flap closure means; said flap closure means comprising a guide rod and a heating rod in substantially spaced, parallel relationship with each other, said guide rod being operable to bend the closure flap of a carton moving from said welding station toward said heating rod to be heated thereby.
20. Apparatus as claimed in claim 19 further including a plate member engageable by the closure flap of a carton moving from said heating bar and guide rod operable to fold the heated closure flap to a flat closed position against the front end closure panel of the container.
21. Apparatus as claimed in claim 20 including means mounted on said plate member defining a chamber for cooling fluid to cool said plate member and the heated closure flaps of containers in contact with said plate member.
22. Apparatus as claimed in claim 21 including pipes connected with said cooling chamber for connection with a source of cooling fluid and operable to circulate cooling fluid through said cooling chamber.
23. Apparatus as claimed in claim 20 including a heating assembly, said heating bar forming a part of said assembly, said assembly being movable toward and away from said guide bar and operable to move away from said guide bar when movement of cartons along said guide bar is stopped.
US443594A 1974-02-19 1974-02-19 Apparatus for closing and sealing containers Expired - Lifetime US3910014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US443594A US3910014A (en) 1974-02-19 1974-02-19 Apparatus for closing and sealing containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US443594A US3910014A (en) 1974-02-19 1974-02-19 Apparatus for closing and sealing containers

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05559869 Division 1975-03-19

Publications (1)

Publication Number Publication Date
US3910014A true US3910014A (en) 1975-10-07

Family

ID=23761418

Family Applications (1)

Application Number Title Priority Date Filing Date
US443594A Expired - Lifetime US3910014A (en) 1974-02-19 1974-02-19 Apparatus for closing and sealing containers

Country Status (1)

Country Link
US (1) US3910014A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3996724A (en) * 1975-10-16 1976-12-14 Ex-Cell-O Corporation Rotary carton closing and sealing apparatus
US4012997A (en) * 1974-07-15 1977-03-22 Nimco Corporation Method for forming a liquid-tight flat top container
JPS5382595A (en) * 1976-10-08 1978-07-21 Ex Cell O Corp Method of and apparatus for sealing closed ends of carton made of card board coated with thermoplastic material
US4159220A (en) * 1976-01-28 1979-06-26 Ex-Cell-O Corporation Apparatus and method for vibration sealing
DE2812137A1 (en) * 1978-03-20 1979-09-27 Jagenberg Werke Ag METHOD FOR PRODUCING A STITCH SEAM SEAL ON A FOLDING BOX, IN PARTICULAR, HAVING A GABLE
WO1979000972A1 (en) * 1978-04-24 1979-11-29 J Young Ultrasonic packaging machine
FR2473014A1 (en) * 1979-12-26 1981-07-10 Toppan Printing Co Ltd LAMINATED CARDBOARD CONTAINER WITH PLASTIC MATERIAL AND METHOD OF MAKING SAME
JPS56169503A (en) * 1980-05-31 1981-12-26 Sato Zoki Co Ltd Direction controller of combined harvester
US5517801A (en) * 1994-09-28 1996-05-21 Persells; David L. Lifter mechanism employing a carton gripper and carton bottom seal configuration for use therewith
US5918441A (en) * 1995-10-06 1999-07-06 Advanced Poly-Packaging, Inc. Apparatus for sealing perforated flexible bags
US20070065662A1 (en) * 2005-09-16 2007-03-22 Ludlow Coated Products Infrared activated thermoplastic bonding substrate
US20170313459A1 (en) * 2014-10-31 2017-11-02 Sig Technology Ag Device, In Particular for Closing a Head Region of a Foodstuffs Container Made of a Laminate Having an Edge Region Which is Skived and Partially Folded Over Itself

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US663133A (en) * 1899-10-04 1900-12-04 J W Sefton Mfg Company Paper box.
US2433176A (en) * 1944-10-18 1947-12-23 Thompson Prod Inc Sealing machine
US2575544A (en) * 1949-01-26 1951-11-20 Jr Julius A Zinn Method and apparatus for closing and sealing containers
US2822653A (en) * 1954-02-19 1958-02-11 Zinn Apparatus for closing and sealing containers
US2890554A (en) * 1956-05-21 1959-06-16 Brecknell Dolman & Rogers Ltd Machine for filling foldable containers
US3114226A (en) * 1961-02-07 1963-12-17 American Can Co Apparatus for heat sealing
US3200557A (en) * 1961-09-25 1965-08-17 Int Paper Co Method and apparatus for sealing milk containers and the like
US3307325A (en) * 1964-10-21 1967-03-07 Pre O Form Corp Carton forming and filling machine
US3309841A (en) * 1964-05-18 1967-03-21 Ex Cell O Corp Selective top heater for plastic coated paperboard container packaging machines
US3417543A (en) * 1965-08-02 1968-12-24 Savannah Sugar Refining Corp Bag closing machine
US3468731A (en) * 1966-07-01 1969-09-23 Branson Instr Method and apparatus for sonically sealing the end portion of thermoplastic tubular containers
US3531908A (en) * 1967-03-06 1970-10-06 Tetra Pak Ab Method of sterilizing and in aseptic conditions filling a flexible container with a sterile liquid
US3562041A (en) * 1967-10-26 1971-02-09 Cavitron Corp Method and apparatus for the ultrasonic joining of materials according to a pattern
US3579958A (en) * 1969-08-15 1971-05-25 Haskon Inc Machine for forming, filling, and sealing containers
US3671366A (en) * 1970-06-19 1972-06-20 Northern Electric Co Ultrasonic welding of thermoplastics
US3681167A (en) * 1970-07-13 1972-08-01 Richard E Moore Method of making acrylic-polycarbonate laminate
US3717539A (en) * 1968-05-27 1973-02-20 E Systems Inc Ultrasonic welding apparatus

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US663133A (en) * 1899-10-04 1900-12-04 J W Sefton Mfg Company Paper box.
US2433176A (en) * 1944-10-18 1947-12-23 Thompson Prod Inc Sealing machine
US2575544A (en) * 1949-01-26 1951-11-20 Jr Julius A Zinn Method and apparatus for closing and sealing containers
US2822653A (en) * 1954-02-19 1958-02-11 Zinn Apparatus for closing and sealing containers
US2890554A (en) * 1956-05-21 1959-06-16 Brecknell Dolman & Rogers Ltd Machine for filling foldable containers
US3114226A (en) * 1961-02-07 1963-12-17 American Can Co Apparatus for heat sealing
US3200557A (en) * 1961-09-25 1965-08-17 Int Paper Co Method and apparatus for sealing milk containers and the like
US3309841A (en) * 1964-05-18 1967-03-21 Ex Cell O Corp Selective top heater for plastic coated paperboard container packaging machines
US3307325A (en) * 1964-10-21 1967-03-07 Pre O Form Corp Carton forming and filling machine
US3417543A (en) * 1965-08-02 1968-12-24 Savannah Sugar Refining Corp Bag closing machine
US3468731A (en) * 1966-07-01 1969-09-23 Branson Instr Method and apparatus for sonically sealing the end portion of thermoplastic tubular containers
US3531908A (en) * 1967-03-06 1970-10-06 Tetra Pak Ab Method of sterilizing and in aseptic conditions filling a flexible container with a sterile liquid
US3562041A (en) * 1967-10-26 1971-02-09 Cavitron Corp Method and apparatus for the ultrasonic joining of materials according to a pattern
US3717539A (en) * 1968-05-27 1973-02-20 E Systems Inc Ultrasonic welding apparatus
US3579958A (en) * 1969-08-15 1971-05-25 Haskon Inc Machine for forming, filling, and sealing containers
US3671366A (en) * 1970-06-19 1972-06-20 Northern Electric Co Ultrasonic welding of thermoplastics
US3681167A (en) * 1970-07-13 1972-08-01 Richard E Moore Method of making acrylic-polycarbonate laminate

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4012997A (en) * 1974-07-15 1977-03-22 Nimco Corporation Method for forming a liquid-tight flat top container
US3996724A (en) * 1975-10-16 1976-12-14 Ex-Cell-O Corporation Rotary carton closing and sealing apparatus
US4159220A (en) * 1976-01-28 1979-06-26 Ex-Cell-O Corporation Apparatus and method for vibration sealing
JPS5382595A (en) * 1976-10-08 1978-07-21 Ex Cell O Corp Method of and apparatus for sealing closed ends of carton made of card board coated with thermoplastic material
US4145236A (en) * 1976-10-08 1979-03-20 Ex-Cell-O Corporation Carton sealing method and apparatus
JPS5740002B2 (en) * 1976-10-08 1982-08-25
US4251303A (en) * 1978-03-20 1981-02-17 Jagenberg Werke Aktiengesellschaft Method and apparatus for making a fillet-seam closure on a folding carton, particularly a peaked-top carton
DE2812137A1 (en) * 1978-03-20 1979-09-27 Jagenberg Werke Ag METHOD FOR PRODUCING A STITCH SEAM SEAL ON A FOLDING BOX, IN PARTICULAR, HAVING A GABLE
US4193833A (en) * 1978-04-24 1980-03-18 Ex-Cell-O Corporation Ultrasonic packaging machine
WO1979000972A1 (en) * 1978-04-24 1979-11-29 J Young Ultrasonic packaging machine
FR2473014A1 (en) * 1979-12-26 1981-07-10 Toppan Printing Co Ltd LAMINATED CARDBOARD CONTAINER WITH PLASTIC MATERIAL AND METHOD OF MAKING SAME
JPS56169503A (en) * 1980-05-31 1981-12-26 Sato Zoki Co Ltd Direction controller of combined harvester
JPS6322764B2 (en) * 1980-05-31 1988-05-13 Mitsubishi Agricult Mach
US5517801A (en) * 1994-09-28 1996-05-21 Persells; David L. Lifter mechanism employing a carton gripper and carton bottom seal configuration for use therewith
US5918441A (en) * 1995-10-06 1999-07-06 Advanced Poly-Packaging, Inc. Apparatus for sealing perforated flexible bags
US20070065662A1 (en) * 2005-09-16 2007-03-22 Ludlow Coated Products Infrared activated thermoplastic bonding substrate
US20170313459A1 (en) * 2014-10-31 2017-11-02 Sig Technology Ag Device, In Particular for Closing a Head Region of a Foodstuffs Container Made of a Laminate Having an Edge Region Which is Skived and Partially Folded Over Itself
US11001403B2 (en) * 2014-10-31 2021-05-11 Sig Technology Ag Device, in particular for closing a head region of a foodstuffs container made of a laminate having an edge region which is skived and partially folded over itself

Similar Documents

Publication Publication Date Title
US4145236A (en) Carton sealing method and apparatus
US3910014A (en) Apparatus for closing and sealing containers
CA1055294A (en) Apparatus for ultrasonic sealing of non-uniform folded carton bottom closure
US3956975A (en) Packaging method and apparatus
AU719745B2 (en) Flat-top container with an opening fitment
US3817018A (en) Method for forming a package
US4072089A (en) Two station sonic sealing apparatus and method
AU685679B2 (en) Apparatus and method for sealing gabled containers
US10676232B2 (en) Packaging
US5642606A (en) Sealing apparatus for packaging containers
US5867966A (en) Method and apparatus for forming the top of a container
US4279675A (en) Method and apparatus for packaging
EP0222511B1 (en) Sealing of container closures
US3905280A (en) Apparatus for welding thermoplastic coated paperboard cartons
US4193833A (en) Ultrasonic packaging machine
EP0108086B1 (en) Tray-type cartons erecting method and apparatus
US4046308A (en) Packaging
WO1996009933A1 (en) Apparatus for sealing fin of gabled carton
US4189986A (en) Method and apparatus for heat sealing a package blank
EP0014560A1 (en) Apparatus and method for folding the end closures for cartons
US4104849A (en) Container sealing apparatus
JPH0534140B2 (en)
FI57911B (en) FOERPACKNINGSFOERFARANDE OCH APPARAT
JPH0333575B2 (en)
EP1123236A1 (en) Rotatable flap folder

Legal Events

Date Code Title Description
AS Assignment

Owner name: ELOTRADE A.G., A SWISS CORP.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:EX-CELL-O CORPORATION, A DE CORP.;REEL/FRAME:004767/0750

Effective date: 19870331

Owner name: EX-CELL-O CORPORATION, A CORP. OF DE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:EX-CELL-O CORPORATION, A MI CORP;REEL/FRAME:004721/0183

Effective date: 19870323