US3909777A - Fault recorder for trigger mechanism of motor vehicle safety device - Google Patents

Fault recorder for trigger mechanism of motor vehicle safety device Download PDF

Info

Publication number
US3909777A
US3909777A US330669A US33066973A US3909777A US 3909777 A US3909777 A US 3909777A US 330669 A US330669 A US 330669A US 33066973 A US33066973 A US 33066973A US 3909777 A US3909777 A US 3909777A
Authority
US
United States
Prior art keywords
safety device
transistor
vehicle
collision
normally
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US330669A
Other languages
English (en)
Inventor
Kosaku Baba
Akio Hosaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Application granted granted Critical
Publication of US3909777A publication Critical patent/US3909777A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/017Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including arrangements for providing electric power to safety arrangements or their actuating means, e.g. to pyrotechnic fuses or electro-mechanic valves
    • B60R21/0173Diagnostic or recording means therefor
    • B60R21/0176Diagnostic or recording means therefor for firing circuits using only mechanical switches as collision detecting means, in series with pyrotechnic fuses

Definitions

  • ABSTRACT A fault recorder which counts the time lapsed from the beginning of partial faulty conditions of the trigger of a vehicle safety device to an undesired actuation of the device and also the time from the former to a collision of the vehicle. It includes a unit for detecting the faulty conditions and a normally nonconducting transistor which is rendered conductive upon detection of such conditions. A transistor switch is provided which is connected to a trigger mechanism of the safety device to be opened upon actuation of the safety device.
  • a recording device for recording the amount of electric charge flowing therethrough is connected in series with the normally nonconducting transistor and the transistor switch.
  • a col lision sensor is provided including a switch adapted to be opened upon sensing a collision of the vehicle.
  • the collision switch is also connected in series with the normally nonconducting transistor and another rccording device of the same type so as to determine the time lapsed from the detection of the beginning of faulty conditions to the sensing of the collision.
  • This invention relates to'vehicle safety devices and, more particularly, to a fault recorder for such devices that counts the time lapsed from the beginning of mal functioning of the device to an undesired actuation of the device which is not caused by a collision of the vehicle and also the time from the former to a collision of the vehicle but without being accompanied by actuation of the safety device.
  • Such devices usually comprise an inflatable confinement called gas bag which, when actuated, is expanded to a protective condition to avoid injuries including whip-lash injuries to vehicle occupants.
  • the gas bag is spread out around the occupants in such a manner as to envelop their heads and shoulders, tending to obstruct the drivers view.
  • the safety device has become faulty and is suddenly actuated without a collision condition being sensed, then, since the drivers view is restricted, it may happen that the vehicle deviates from its intended course and comes into collision with another vehicle or a structure in the path of advance.
  • the safety device is left faulty without subject to inspection and repair, it may fail to successfully protect the occupants from injuries at the time of a collision. The vehicle driver or owner is thus required to have the safety device repaired immediately when the device is found faulty.
  • the fault recorders heretofore available can provide information only on the presence or absence of malfunctioning of a safety device or on the time lapsed from the beginning of such malfunctioning to the point of time at which the recorder is examined after an undesired actuation of the safety device takes place.
  • recorders of the latter type difficulties are experienced in determining the length of time between the beginning of malfunctioning and the undesired actuation of the device, since the examination of the recorder would usually be made a relatively long time after the safety device is undesirably actuated. It is the time lapsed from the beginning of malfunctioning to an undesired actuation of the safety device that governs placing of responsibility either on the manufacturer or the vehicle owner for an accident caused by the undesired actuation of the safety device.
  • FIG. 1 is a block diagram of the trigger mechanism and the fault recorder of the invention.
  • FIG. 2 is a circuit diagram of the trigger mechanism and the fault recorder shown in FIG. 1.
  • reference numeral designates a trigger mechanism for a vehicle safety device (not shown) that is responsive to a collision condition of the vehicle, for actuating the safety device.
  • the safety device may be an inflatable confinement called the gas bag, an expansible netting or any other suitable device for protecting vehicle occupants from injuries resulting from a collision.
  • a fault detector 11 is provided for detecting malfunctioning of the trigger mechanism and for generating a signal 8, upon detection of such malfunctioning.
  • the signal 8, which indicates that the safety device trigger becomes faulty, is
  • the signal S is also furnished to a first memory unit 13 which is connected to a power source 14 such as a battery through a first switch unit 15.
  • the first switch unit 15 is normally closed and is operatively or electrically associated with the safety device so that it is opened upon actuation of the device.
  • the first switch unit 15 comprises an electronic switch which is connected to the trigger mechanism 10 so that upon triggering of the safety device the switch 15 is opened.
  • the first switch unit 15 may be a pneumatically actuated switch which is moved to the open position by the action of pressurized gas from a gas source upon instantaneous inflation of a gas bag mounted in the vehicle.
  • the first memory unit 13 is of the type capable of recording the amount of electric charge flowing therethrough by electrolysis, and is commercially available. If the current flowing through the unit 13 is kept constant, the time during which the current flows is obtained by dividing the recorded amount of electric charge by the magnitude of the current.
  • the signal S that is indicative of the safety device trigger being faulty is further supplied to a second memory unit 20 of the same type as the first memory unit 13.
  • the second memory unit 20 is connected to the power source 14 through a second switch unit 22 of the normally closed type.
  • the second switch unit 22 is adapted to be opened upon sensing a collision condition of the vehicle, and comprises, for example, a glass tube coated with an electrically conductive coating, which is liable to breakage when subjected to an impact resulting from a collision.
  • the second memory unit 20 is set for recording the current flow from the power source 14 through the second switch unit 22, until the second switch unit 22 is opened due to a collision of the vehicle.
  • the time lapsed from the beginning of malfunctioning of a safety device to actuation of the device as well as the time from the former to the exact time at which a collision takes place are recorded in the first and second memory units 13 and 20, respectively. It will be appreciated that by examining the first and second memory units 13 and 20, it is possible to determine whether the manufacturer or the vehicle owner is responsible for an accident resulting from malfunctioning of the safety device trigger.
  • FIG. 2 there is illustrated a typical example of the fault recorder of the present invention.
  • the trigger mechanism 10 is shown as enclosed within a dash rectangle, and comrpises two electrically actuable detonation elements RS and RS which are connected in parallel to each other. While only two detonation elements are herein shown for simplicity of illustration, it should be understood that the present invention is not restricted thereto.
  • the detonation elements are electrically actuable to explode so as to, e.g.-, release pressurized gas from a gas source for instantaneous inflation of the gas bag.
  • the detonation elements RS, and RS are connected to diodes D, and D respectively.
  • the trigger mechanism 10 further includes two collision sensors A and B which are connected in series with the parallel-connected detonation elements RS, and RS and diodes D, and D across the battery 14.
  • the collision sensors A and B are adapted to be closed upon sensing a collision of the vehicle and both comprise, for example, a weight of magnetic material which is'normally kept in contact with a stationary magnet but, at the time of a collision, is moved to engage two contacts against the attractive force of the magnet due to arapid deceleration caused by the collision.
  • the collision sensors A and B may comprise two tape-like contacts facing each other and mounted on a collapsable protruding portion of the vehicle, such as a bumper, from side to side.
  • Resistors R, and R are respectively connected across their associated collision sensors A and B so as to enable the detection of the burning-out of any of the detonation elements RS, and RS caused by explosion.
  • the values of resistance of the resistors R, and R are so selected that R,-R RS,, RS
  • the voltages appearing at points (a), (b), (c) and (d) are approximately 6 volts, for example.
  • the detector 11 Connected to the trigger mechanism 10 is the fault detector 11 that serves to detect malfunctioning of the trigger mechanism 10.
  • the detector 11 includes three comparators C,, C and C which are connected to the points (a), (b) and respectively, and have their respective reference levels equal to 8, 4 and 4 volts as indicated in the drawing.
  • the output of the comparator C is connected through an invertor I, to one input of a NAND gate NA, and, on the other hand, those of the comparators C and C are connected directly to the other inputs of the NAND gate NA,.
  • the output of the NAND gate NA is connected through a resistor R to the base of a transistor Q, which is of the NPN type.
  • the transistor Q has its collector connected to an electric fuse F which is connected to a bus line 30 leading to the positive electrode of the battery 14.
  • a resistor R is connected between the collector and emitter of transistor Q,.
  • the point, indicated at (e), between the collector of the transistor Q, and the electric fuse F is connected through a resistor R to the base of a transistor Q which is of the PNP type.
  • the tranistor O is connected at its emitter to the bus line 30 and at its collector to an electric lamp P.
  • the electric lamp P forms a part of the warning unit 12 and is connected to the negative electrode of the battery 14 as well as to the emitter of the transistor Q,.
  • An invertor I is provided having its input connected to the point (e) leading to the collector of the transistor Q,.
  • the output of the invertor I is connected through a resistor R to the base of a transistor 0;, of the NPN type, the emitter thereof being connected to the emitter of the transistor Q,.
  • the collector of the transistor 0; is connected through resistors R and R to the first and second memory units 13 and 20, respectively.
  • the first switch unit 15 Shown as enclosed within a dash rectangle 15 is the first switch unit which includes a comparator C having its input connected to the point (d) in the trigger mechanism 10.
  • the first switch unit 15 also includes a NOR gate NOR, having one input connected to the output of the comparator C and the other input connected to the output of the invertor l,.
  • the output of the NOR gate NOR is connected through a resistor R to the base of a transistor O, which is of the PNP type.
  • the transistor Q has its emitter connected to the bus line 30 and its collector connected to the first memory unit 13.
  • the second switch unit 22 which is adapted to be opened upon sensing a collision of the vehicle is shown as connected between the bus line 30 and the second memory unit 20.
  • the operation of the fault recorder is as follows: If, now, the safety device trigger mechanism becomes faulty in that one of the collision sensors A and B is short-circuited, or one of the detonation elements RS, and RS is broken without causing an explosion, or one of the collision sensors and the detonation elements is grounded, the NAND gate NA, has a true output which renders the transistor Q, conductive. This will cause a flow of current through the electric fuse F so that the fuse is broken. Also, since the voltage at the point (e) drops to near zero, the transistor O is rendered conductive, causing the electric lamp P to be lighted. This means that there is a need to have the safety device repaired as soon as possible.
  • the transistor Q Upon conduction of the transistor 0,, the transistor Q also is rendered conductive. If, at this time, the first and second switch units 15 and 22 are closed, the conduction of thetransistor Q causes an electric current of a given magnitude to flow through the first and second memory units 13 and 20. Since the memory units are of the type capable of recording the amount of electric charge flowing therethrough, it will be readily possible to determine the length of time during which current flows.
  • the safety device is actuated by explosion of one of the operable detonation elements RS, and RS the NOR gate NOR, has a true output which renders the transistor Q nonconductive. This means that the first switch unit 15 is opened, thus interrupting the flow of current through the first memory unit 13. Similarly, if a collision is encountered by the vehicle, the second switch unit 22 is opened so that no further current flows through the second memory unit 20.
  • the time recorded in the first memory unit 13 is longer than the time specified by the manufacturer, it may safely be stated that since the vehicle owner failed to have the trigger of the safety device repaired within the time limit specified by the manufacturer, the owner is responsible for the accident which would have been brought about by the undesired actuation of the safety device. If the safety device trigger is faulty in that no actuation of the device takes place at the time of a collision, it may safely be stated that the vehicle owner is responsible for the lack of actuation, provided that the time recorded in the second memory unit is longer than the time specified by the manufacturer.
  • a fault recorder for use with a vehicle safety device triggering mechanism connected across a power source for triggering a safety device of a vehicle, which provides information of the time lapsed from the beginning of a partial malfunction of the safety device triggering mechanism to an undesired actuation of the safety device and also information of the time from the former to a collision of the vehicle, the fault recorder comprising:
  • fault detector means connected to said safety device triggering mechanism and adapted to detect partial malfunctioning thereof to generate a signal indicative thereof;
  • first normally closed condition switch means connected to said safety device triggering mechanism and also to said fault detector means and responsive to actuation of the safety device to reverse switch conditions;
  • second normally closed condition switch means connected to said power source and responsive to a collision condition of the vehicle to reverse switch conditions
  • first memory means connected to the first switch means and adapted to record the time lapsed from the beginning of the signal to the actuation of the safety device
  • second memory means connected to said second switch means and adapted to record the time lapsed from the beginning of the signal to the collision of the vehicle.
  • fault detector means comprises:
  • first, second and third comparators each having an input connected to said safety device triggering mechanism for detecting malfunctioning thereof
  • a normally nonconducting transistor having a base connected to an output of the NAND gate and adapted to be rendered conductive upon detection of the partial malfunctioning of said safety device triggering mechanism.
  • said first normally closed condition switch means comprises:
  • a comparator having an input connected to the safety device triggering mechanism
  • each of said first and second memory means comprises a recording device adapted to record an amount of electric charge flowing therethrough;
  • the fault recorder further comprises:
  • an electrical warning device connected in series with the normally nonconductive transistor of the warning unit and said power source, and energized in response to conducting condition of the normally nonconductive transistor of the warning unit.
  • Fig. 1 should appear as the illustrative figure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air Bags (AREA)
US330669A 1972-02-09 1973-02-08 Fault recorder for trigger mechanism of motor vehicle safety device Expired - Lifetime US3909777A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP47014120A JPS5212456B2 (ja) 1972-02-09 1972-02-09

Publications (1)

Publication Number Publication Date
US3909777A true US3909777A (en) 1975-09-30

Family

ID=11852247

Family Applications (1)

Application Number Title Priority Date Filing Date
US330669A Expired - Lifetime US3909777A (en) 1972-02-09 1973-02-08 Fault recorder for trigger mechanism of motor vehicle safety device

Country Status (8)

Country Link
US (1) US3909777A (ja)
JP (1) JPS5212456B2 (ja)
AU (1) AU456356B2 (ja)
CA (1) CA1010531A (ja)
DE (1) DE2306307A1 (ja)
FR (1) FR2171797A5 (ja)
GB (1) GB1387375A (ja)
IT (1) IT977233B (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4477732A (en) * 1982-08-26 1984-10-16 Robert Bosch Gmbh Sensor for acceleration
US4943690A (en) * 1989-03-06 1990-07-24 Fifth Dimension, Inc. Position insensitive shock sensor with closure delay
US4968965A (en) * 1988-06-01 1990-11-06 Nippondenso Co., Ltd. Apparatus for recording an operating condition of a vehicle safety device
US5187465A (en) * 1990-09-27 1993-02-16 Trw Inc. Method and apparatus for testing a dual airbag passive restraint system
US5293153A (en) * 1991-04-09 1994-03-08 Trw, Inc. Method and apparatus for testing an airbag restraint system with parallel sensors
US8997673B1 (en) * 2013-10-30 2015-04-07 Steve G. Moseley Power boat emergency floatation device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636093B2 (ja) * 1973-03-16 1981-08-21
JPS5195331A (ja) * 1975-02-17 1976-08-20
IT1211536B (it) * 1986-11-26 1989-11-03 Breed Automotive Corp Indicatore di sequenza di un evento
JPH0710972Y2 (ja) * 1988-09-30 1995-03-15 株式会社カンセイ エアバックシステム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3622974A (en) * 1970-05-11 1971-11-23 Gen Motors Corp Air cushion actuation and failure warning circuit
US3629816A (en) * 1970-08-10 1971-12-21 Gen Motors Corp Air cushion actuation and monitoring circuit
US3714627A (en) * 1971-10-20 1973-01-30 Gen Motors Corp Vehicle inflatable cushion actuation and monitoring circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3622974A (en) * 1970-05-11 1971-11-23 Gen Motors Corp Air cushion actuation and failure warning circuit
US3629816A (en) * 1970-08-10 1971-12-21 Gen Motors Corp Air cushion actuation and monitoring circuit
US3714627A (en) * 1971-10-20 1973-01-30 Gen Motors Corp Vehicle inflatable cushion actuation and monitoring circuit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4477732A (en) * 1982-08-26 1984-10-16 Robert Bosch Gmbh Sensor for acceleration
US4968965A (en) * 1988-06-01 1990-11-06 Nippondenso Co., Ltd. Apparatus for recording an operating condition of a vehicle safety device
US4943690A (en) * 1989-03-06 1990-07-24 Fifth Dimension, Inc. Position insensitive shock sensor with closure delay
US5187465A (en) * 1990-09-27 1993-02-16 Trw Inc. Method and apparatus for testing a dual airbag passive restraint system
US5293153A (en) * 1991-04-09 1994-03-08 Trw, Inc. Method and apparatus for testing an airbag restraint system with parallel sensors
US8997673B1 (en) * 2013-10-30 2015-04-07 Steve G. Moseley Power boat emergency floatation device

Also Published As

Publication number Publication date
JPS4882542A (ja) 1973-11-05
DE2306307A1 (de) 1973-08-30
AU5195773A (en) 1974-08-08
FR2171797A5 (ja) 1973-09-21
CA1010531A (en) 1977-05-17
IT977233B (it) 1974-09-10
GB1387375A (en) 1975-03-19
JPS5212456B2 (ja) 1977-04-07
AU456356B2 (en) 1974-12-19

Similar Documents

Publication Publication Date Title
US4950914A (en) Collision detection system for a vehicle
US3863208A (en) Vehicle safety system control circuit having a malfunction indicator
US4381829A (en) Collision detection system with safety devices
EP0396265B1 (en) Air bag firing circuit
US3714627A (en) Vehicle inflatable cushion actuation and monitoring circuit
US3851305A (en) Collision detecting system for a motor vehicle
US4893109A (en) Airbag electrical igniter readiness detector
US6036224A (en) Impact sensor configuration for a motor vehicle
JP2577139B2 (ja) 自動車の安全装置に対する作動回路
KR950001813B1 (ko) 3개의 충돌감지기를 갖는 탑승자속박장치용 점화회로
US5068640A (en) Method of operating a safety device for vehicle occupants
US5058920A (en) Method for actuating a safety device for vehicle occupants
US6052634A (en) Vehicle safety device
US3916376A (en) Actuating and monitoring device for inflatable occupant restraint system
US3909777A (en) Fault recorder for trigger mechanism of motor vehicle safety device
JPS6157219B2 (ja)
EP0343579B1 (en) Releasing circuit for actuating vehicular safety device
EP0708925B1 (en) Impact sensing system
US4438424A (en) Electric apparatus for a vehicle safety device
US3849759A (en) Fault detector for motor vehicle safety device
US3949357A (en) Operation recorder for motor vehicle safety device
US3890594A (en) Operation recorder for motor vehicle safety device
US4016426A (en) Air cushion actuation and malfunction detection and recording circuit
US3818431A (en) Fault detector for motor vehicle safety device
Bergfried et al. Electronic crash sensors for restraint systems