US3909210A - Apparatus for producing a glass-encapsulated reed contact switch - Google Patents
Apparatus for producing a glass-encapsulated reed contact switch Download PDFInfo
- Publication number
- US3909210A US3909210A US461557A US46155774A US3909210A US 3909210 A US3909210 A US 3909210A US 461557 A US461557 A US 461557A US 46155774 A US46155774 A US 46155774A US 3909210 A US3909210 A US 3909210A
- Authority
- US
- United States
- Prior art keywords
- paddle
- contact
- magnetic field
- glass
- glass tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 235000014676 Phragmites communis Nutrition 0.000 title claims abstract description 42
- 239000011521 glass Substances 0.000 claims abstract description 82
- 238000002844 melting Methods 0.000 claims abstract description 17
- 230000008018 melting Effects 0.000 claims abstract description 17
- 238000010438 heat treatment Methods 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 description 32
- 238000004519 manufacturing process Methods 0.000 description 22
- 238000004804 winding Methods 0.000 description 19
- 230000008569 process Effects 0.000 description 13
- 230000003247 decreasing effect Effects 0.000 description 7
- 230000005347 demagnetization Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 239000011261 inert gas Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 239000000156 glass melt Substances 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 229910052740 iodine Inorganic materials 0.000 description 3
- 239000011630 iodine Substances 0.000 description 3
- 230000005415 magnetization Effects 0.000 description 3
- 230000005389 magnetism Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000010309 melting process Methods 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 241001125831 Istiophoridae Species 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H11/00—Apparatus or processes specially adapted for the manufacture of electric switches
- H01H11/005—Apparatus or processes specially adapted for the manufacture of electric switches of reed switches
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S65/00—Glass manufacturing
- Y10S65/12—Reed switch
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49105—Switch making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/53—Means to assemble or disassemble
- Y10T29/53096—Means to assemble or disassemble including means to provide a controlled environment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/53—Means to assemble or disassemble
- Y10T29/5313—Means to assemble electrical device
- Y10T29/532—Conductor
- Y10T29/53248—Switch or fuse
Definitions
- ABSTRACT us CL 29/203 29/203 29/203 Apparatus for producing reed switches, wherein 29/69; 65/155, (SS/DIG means are provided for holding contacts in spaced re- [51] In Cl H0" 11/00 lation within a glass tube, a coil adjacent the tube [58] Field of Search" 29/203 R, 622, 203 P, 203D being capable 'of applying either a magnetizing or a 29/20; S 65/155 DIG 12 32 59 demagnetizing field to the contacts. A heating device l for melting one end of the glass tube to embed one of the contacts is controllable to permit the embedded [s6] References Cited contact to be moved while the glass is still viscous.
- This invention relates to a method and apparatus for producing reed switches. More particularly, the field of art to which the invention relates concerns a method and apparatus in which a first contact paddle is embed ded into a glass tube, a magnetic field corresponding to the operating field of the reed switch is applied to the glass tube, and a second contact paddle is moved relative to the first one. When the two paddles are a certain distance apart, the magnetic field causes the switch to actuate, whereupon the movement of the second contact paddle ceases and it is embedded into the glass tube.
- the contact paddles of reed switches are usually melted into a glass tube so that part of the paddle shaft protrudes to the outside. The rest of the paddle, including the contact area, remains inside the glass tube. In the open position, the contact areas of the two contact paddles are located a certain distance apart.
- the distance between the paddles must be established with high accuracy so that the contact areas of the two paddles touch when a magnetic field of a predetermined strength is applied. In a magnetic field of a given strength, the force of attraction between the contact paddles is inversely proportional to the square of the distance between the paddles. High precision is required in the production of reed switches, since the distance between the paddles may be only several hundredths of a millimeter.
- a contact paddle is embedded in a glass tube, and the exact adjustment of a second contact paddle is made while a magnetic field of the same strength as the operating magnetic field is applied to the glass tube.
- the second contact paddle moves toward the first paddle, until the two contact paddles touch under the influence of the magnetic field. Closure of the contact is used to stop the motion of the second contact paddle. Additional glass is then added around the second contact paddle which is then fixedly embedded into the glass tube.
- Such conventional methods are very convenient for automated production of reed contacts, because the second contact paddle itself determines its distance from the first contact paddle.
- large differences between the magnetic field used to cause contact and the actual operating magnetic field occur, and cannot be eliminated.
- two contact paddles are moved toward each other and are kept in a certain position by the application of a relatively strong magnetic field.
- the strength of the strong magnetic field greatly exceeds the actual operating magnetic field of the reed switch, and serves only as a substitute for the mechanical support of one contact paddle.
- the second contact paddle is supported by mechanical means. While thus supported, the two contact paddles are brought into precise engagement in the contact area by means of fingers embracing the paddles along their lateral edges.
- the glass tube is then pushed over the two contact paddles from the side of the magnetically supported paddle, and this paddle is melted into the glass tube.
- the strong magnetic field is turned off, since the first contact paddle is now supported by the glass tube, and the magnetic field would otherwise interfere with the adjustment of the contact paddles.
- the second contact paddle is then moved to a spaced relationship with respect to the first contact paddle by means of the mechanical support means. This motion mustbe performed with high precision and hence requires expensive equipment.
- both paddles can be moved relative to each other, further increasing the expense of the required mechanism.
- An object of the present invention is to provide an improved method for fabricating reed switches at low cost.
- a further object of the present invention is to provide a method for fabricating reed switches utilizing automatically controlled means for obtaining reed switches having a narrow response that is held within low tolerance limits.
- one of the contact paddles is fixed in one end of a glass tube, while the other is moved relative to the first contact paddle while being embedded in a portion of the glass tube which is already melted and in a viscous state.
- the large, undesirable variations in the strength of the magnetic field required to actuate reed contacts produced according to the prior art are caused by variations in the length of the paddle section within the tube.
- the second paddle engaged the first paddle in a predetermined operating field while a torsion moment was effecitve.
- the torsion mo ment in turn, depended upon the length of the contact paddle section extending beyond the paddle embedding point to the contact area.
- the length of the contact paddle which is later effective in the acutal operation of the reed contact is smaller than the length effective during production of the reed switch.
- the exact position at which the paddle is embedded into the glass tube depends upon several factors which cannot be controlled in the prior art methods.
- the point at which the second-contact paddle is embedded into the molten glass is fixed before the adjustment of the second contact paddle, because the second contact paddle is surrounded by viscous glass during its motion. Only the paddle section protruding from the viscous melted glass into the interior of the glass tube is bent by the applied operating field. The motion of the contact is stopped when it reaches the precise distance at which it is actuated by the operating field. According to the method of the present invention, reed switches are thus produced with a well-defined response range.
- the method of the invention is easy to apply, since only the heating for melting the glass or for cooling the glass need be controlled. Only those processes related to embedding of the second contact paddle must be precisely controlled, because the length of the first embedded contact paddle is the same during the self-adjustment of the second contact paddle as it is during the operation of the finished reed switch.
- the two contact paddles can be demagnetized before the second contact paddle is moved according to this invention, in order to obtain precise adjustment of the paddles in the magnetic field corresponding to the actual operating magnetic field.
- the step of demagnetization eliminates any residual magnetism in the paddles which might cause misadjustment of the distance between the paddles. Demagnetization is particularly important to overcome the residual magnetism resulting from the exposure of the paddles to the very strong magnetic field used during preliminary adjustment of the contact paddles. Demagnetization can be accomplished by applying an alternating, graduallydecreasing magnetic field to the contact paddles. In this manner, the magnetization of the contact paddles follows a series of hysteresis loops which continually decrease in size and finaly vanish.
- the method of the present invention eliminates the influence of undefined variables upon the adjustment of the distance between the contacts by demagnetizing the contact paddles and be melting the second contact paddle into the glass before adjustment of this distance.
- the method of the present invention is executed using an apparatus comprising at least one electrically heated melting device and a contact paddle magnetizing coil surrounding the glass tube of the reed switch.
- the apparatus is provided with an automatic switching unit for adjusting the heating current of the melting de vice and for exciting the coil with appropriate alternating or direct current.
- the viscosity of the melted glass can be adjusted by the switching unit so that the second contact paddle can be moved in the melted glass, so provided by the invention.
- the heater circuit for the melting device can be provided with a conventional rheostat for pre-adjustment of the heating current.
- An additional resistor which can be short circuited when necessary can be inserted between the rheostat and the heater element. This additional resistor reduces the heater current during the process of embedding the second contact paddle in order to lower the viscosity of the glass when the second contact paddle is being moved.
- the automatic switching unit also controls the operation of the magnetizing coil.
- the coil produces a strong magnetic field around the glass tube in order to obtain preliminary adjustment of the position of the contact areas on the contact paddles.
- the coil provides a continuously decreasing alternating field for the demagnetization of the contact paddles.
- the coil provides a magnetic field equivalent to the operating magnetic field of the reed switch while the final adjustment of the distance between the contacts is being made.
- Three sources of current are provided for producing the magnetic fields: l A conventional D.C. source for generating the strong magnetic field, (2) an 21.0. source (in series with a potentiometer) for providing the demagnetizing field, and (3) a constant current DC. source for providing the magnetic field used during adjustment of the contact position.
- a three-level switch connects the coil to one of these three sources.
- the strong D.C. source provides the strong magnetic field used to support one contact paddle during preliminary positioning.
- the a.c. source (including an adjustment potentiometer) generates the gradually decreasing, alternating magnetic field required for demagnetization.
- the constant current DC. source provides the magnetic field used during the final distance adjustment and assures that the adjusting field corresponds exactly to the number of ampere turns of the operating magnetic field used in the actual operation of the reed switch.
- the apparatus of the present invention is characterized by a relatively small increase in the cost of the required equipment and yet produces reed switches which respond within a narrow operating range.
- FIG. 1 shows a device for producing a reed switch in a first production step.
- FIG. 2 shows the device in a second production step, drawn to a different scale.
- FIG. 3 shows the device in still another production Step.
- FIG. 4 shows a portion of the device in still another production step.
- FIG. 5 shows a circuit diagram of the windings used for melting.
- FIG. 6 shows a section of another embodiment of the device, the section generally corresponding to that shown in FIG. 4.
- FIG. 7 shows the device of FIG. 1 in another production step.
- FIG. 8 is a circuit diagram of the coil of the melting device.
- FIG. 9 is the demagnetization diagram.
- FIG. shows a closed reed contact produced according to the method of the present invention.
- the device shown in various production steps in the figures serves for producing a reed switch of the type shown in FIG. 10.
- the device comprises a glass tube 1 into which a first contact paddle 2 and a second contact paddle 3 are embedded by melting during execution of the method of the invention.
- FIG. 1 shows the device in its initial position at the beginning of the process.
- the device comprises a supporting base 4 with a vertical guide column 5 attached to the supporting base, and an arm 7 which is rotatable around pivot 6.
- An embedding device (generally denoted by 8) is fixedly mounted on guide column 5.
- An upper paddle holder 9 and a lower paddle holder 10, both movable in the vertical direction, are also mounted on guide column 5.
- Two equal paddle supports 11 are mounted on arm 7 in mirror-image relationship.
- Each paddle support is provided with a support block 12 containing a groove 12a and with an adjustment block 13 carrying a stop 13a.
- each paddle support 11 is provided with a clamp 14 which can be adjusted in the vertical direction by means of a spring-biased knob 15.
- the insertion device includes a spindle 17 parallel to arm 7 on holder 18 so that the distance and orientation of the spindle 17 relative to arm 7 can be modified by adjustment against a biasing spring.
- Arm 7 is provided with a guide groove 20 for parallel displacement.
- arm 7 ends in a handle 21.
- a pin 22 is inserted in arm 7 and protrudes in a vertical direction from the side at which both paddle support 1 1 and spin dle 17 are located.
- the direction of rotation of arm 7 from the position shown in FIG. 1 into some other position is indicated by arrow A at pivot 6.
- arm 7 is shown in its other limit position, i.e., the arm is then parallel to guidance column 5.
- Embedding device 8 which is mounted at guide column 5 bymeans of a supporting member 23, consists of an electric paddle'magnetizing coil 24, a lower heater winding 25, and an upper heater winding 26.
- Paddle magnetizing coil 24 and the two heater windings 25 and 26 are mounted on supporting member 23 in coaxial relationship so that all their axes are parallel to guide column 5.
- Arms of a holder 27 for the glass tubes are inserted between paddle magnetizing coil 24 and the two heater windings.
- FIG. 5 shows the circuit diagram for heaterwindings 25 and 26. These two heater windings can be switched on separately. Equal circuit elements are denoted by the same reference numerals in the circuit diagram of the two heater windings. Heater windings 25 and 26 are connected to transformer 29 by means of leads 28. The heater current can be adjusted with variac 30. The circuit of lower heater winding 25 is provided with additional adjustment means. A switch 31 is inserted in the circuit of the primary winding of transformer 29. A resistor 32 is connected parallel to switch 31 so that this resistor becomes effective in the primary circuit when switch 31 is opened.
- FIG. 8 shows the circuitry for paddle magnetizing coil 24.
- Coil 24 is connected via leads 33 to a threelevel switch 34 whose three switch arms S1, S2, and S3 can be put into seven positions I to VII:
- paddle-magnetizing coil 24 is excited by direct current supplied from source 35; the very strong magnetic field (having a strength of several hundred ampere-turns) is generated for preliminary adjustment of the contact paddles;
- switch arms S1 and S2 establish connections between paddle-magnetizing coil 24 and one end of potentiometer 36 and its slider 37, respectively.
- An a.c. motor 38 is connected to the secondary winding of transformer 39 by means of switch arm S3.
- the shaft of a.c. motor 38 is mechanically coupled to the shaft of potentiometer 36 and hence rotates slider 37. Consequently, a gradually decreasing a.c. voltage is applied to paddle-magnetizing coil 24 in order to produce a gradually decreasing magnetic field to demagnetize the paddles.
- the mechanical coupling between a.c. motor 38 and potentiometer 36 is such that once slider 37 has traveled its path, a cam mounted on the motor shaft switches a cam contact 40 to the right (as shown in FIG. 8) and hence switches off a.c. motor 38;
- switch arm S3 supplies current via cam contact 40 to a.c. motor 38 which continues to run until cam contact 40 returns into its initial position (switch position a) shown in FIG. 8 and, hence, disconnects the motor. When this occurs, slider 37 is returned into its initial position;
- coil 24 is connected (by means of S1 and S2) to an adjustable constant-current source 41 which produces a magnetic field in paddle-magnetizing coil 24 for final adjustment of paddle 3, the field having a strength equivalent to the ampere-turn figure of the operating magnetic field of the reed switch;
- the upper paddle holder 9 is provided with a carriage 42 which can move along guide column 5.
- Carriage 42 carries a paddle-clamping device 43 with two arms which are kept in crosswise. relationship by rivet 44 and can rotate.
- the figures display a tongue-like clamp 43a on the two arms of paddle-clamping device 43 and an actuating end 43b of the other arm.
- Each end of the actuating arms of paddle-clamping devices 43 is provided with a pole plate 45.
- a paddle-clamping coil 46 is mounted on carriage 42 between the two pole plates of paddle-clamping device 43.
- Lower paddle holder 10 comprises a carriage 47 which can be adjusted in vertical direction along guide column 5 and which consists of a carriage base 47a and a support 47b for the clamping device, the support being rotatable around axis 48.
- the rotation of paddleclamping support 47b is limited by the diameter of an opening 49 surrounding the shaft of carriage base 47a.
- Paddle clamping coils 46 are mounted at support 47b for the lower paddle holder and on carriage 42 for the upper paddle holder 9.
- Paddle-clamping device 43 is constructed in the same way for both the upper and lower paddle holders, and, hence, the same reference numerals are used.
- Carriage base 47a is provided with an arm 50 protruding perpendicular to guide column 5.
- Arm 50 carries a motor (not shown) for cam wheel 52 and an arm-moving electromagnet 53.
- Arm-moving electromagnet 53 includes a coil 53a and an armature 53b connected to the upper portion of an arm 54 which extends perpendicular to support 47b of the paddleclamping device.
- a bevelled portion 55 forms the bottom section of arm 54.
- Arm 54 rests on cam wheel 52 in its rest position, i.e., when arm-moving electromagnet 53 is not excited.
- the process of producing reed switches according to the invention takes place in the following sequence, when the above-described device is used.
- the device is first in the initial position shown in FIG. 1, i.e., arm 7 is in the horizontal position.
- the upper paddle holder 9 and the lower paddle holder 10 are spaced from embedding device 8.
- the components of the reed switch to be assembled i.e., glass tube 1 and the two contact paddles 2 and 3 are set in a preadjustment position on arm 7.
- Glass tube 1 is placed on spindle 17 which is slightly lifted, along with its holder 18, in order to facilitate insertion of the glass tube.
- holder 18 is lowered into the position shown in FIG. 1.
- the two contact paddles 2and 3 are transferred into a predetermined position by means of support block 12 and adjustment block 13.
- Contact paddle 2 is located in the paddle support close to the handle, and contact paddle 3, in the paddle holder far from the handle.
- contact area 2a of the first contact paddle is on the left side and appears turned upward, whereas contact area 3a of the second contact paddle is on the right side and appears turned downward.
- clamps 14 are lifted by means of knob and rotated out of their position by the knob (as indicated by the broken lines at the right paddle support 11). When returned into their initial positions, clamps 14 keep the contact paddles in the pre-adjustment positions.
- Arm 7 is rotated, by means of handle 21, in the directon of the arrow, until the position shown in FIG. 2 has been reached. Arm 7 is fixed in this position by means which are not shown in the figure.
- pin 22 closes a switch 56 which leads to the excitation of paddle-clamping coils 46 at paddle holders 9 and 10 (the corresponding circuitry is not shown). Consequently, pole plates 45 are attracted and paddle-clamping devices 43 close.
- paddle-clamping devices 43 embrace contact paddles 2 and 3 which were supplied by arm 7 in certain positions.
- the circuit for paddle-clamping coils 46 is such that the paddle-clamping devices close even when switch 56 is opened in a later stage of the process.
- knobs 15 are actuated to open clamps 14 and, consequently, the contact paddles are held only by paddle-clamping devices 43.
- I-Iolder 18 for glass tube 1 is shifted upward in the direction of arrow C, until holder 27 for the glass tube carries the same, whereupon holder 18 is moved downward. Arm 7 is then moved back into its initial position (opposite to direction A of rotation) and may receive new contact paddlesand. another glass tube while the actual production process continues.
- FIG. 3 shows a part of the device important forthe further process which continues from that stage. The ensuing steps of the process are determined by electric signals.
- the upper paddle holder 9 is moved downward, along with carriage 42, along guide column 5 (arrow D).
- the motion can be effected by electrical or pneumatic drive means.
- first contact paddle 2 enters into the upper opening of glass tube 1.
- This condition is shown in FIG. 4.
- the process control sends a current through upper heater winding 26 which begins to glow.
- the current can be adjusted by means of variac 30.
- the upper end of glass tube 1 becomes soft and shrinks onto upper contact paddle 2. After switching off the current, heater winding 26 and glass tube 1 become cool embedding contact paddle 2 in the glass tube 1.
- An inert gas can be supplied via nozzle 57 (FIG. 4)
- arm-moving electromagnet 53 is excited so that arm 54 is attracted and hence, support 47b for the paddle-clamping device is moved with respect to carriage base 47a.
- Contact area 3a of lower contact paddle 3 engages in this position contact area 2a of the upper contact paddle 2.
- three-level switch 34 of FIG. 8 is moved into position 11 so that a relatively strong magnetic field is generated in paddlemagnetizing coil 24.
- clamp 43a releases the lower contact paddle 3 for a short time so that the position of the two contact areas can be mechanically pre-adjusted to obtain optimum engagement over the contact areas under the influence of the magnetic field.
- paddle-clamping coil 46 closes paddle-clamping device 43, and three-level switch 34 is moved into position III in which the current through paddle-magnetizing coil 24 is interrupted. Since arm-moving electromagnet 53 continues to keep support 47b for the clamping device in the new position, contact areas 2a and 3a of the two contact paddles remain in engagement at that time.
- the two contact paddles are demagnetized in order to eliminate any residual magnetization.
- the two contact paddles whose contact areas are still in engagement, are exposed to a gradually decreasing magnetic field. This field is generated by paddle-magnetizing coil 24 when three-level switch 34 has been put into position IV.
- Switch arm S3 connects a.c. motor 38 to the secondary winding of transformer 39.
- the shaft of a.c. motor 38 rotates via a reduction gear, and slider 37 of potentiometer 36 moves over the resistance winding of the potentiometer.
- the voltage is applied to paddle-magnetizing coil 24 through arms S1 and S2 of the three-lever switch 34 so that a gradually decreasing alternating magnetic field is generated.
- the magnetization in the contact paddles situated in the alternating magnetic field passes through a hysteresis loop as shown in FIG. 9.
- the coordinate denoted by J .W. in FIG. 9 represents the field strength, and the coordinate denoted by B, represents the magnetic induction.
- the effective alternating current at the beginning of the demagnetization process corresponds to the dc.
- the second contact paddle 3 is removed from the first contact paddle 2.
- arm-moving electromagnet 53 is switched off so that supporting arm 54 is set free.
- Support 47b of the paddle-clamping device swings into the position shown in FIG. 7.
- arm 54 rests with its bevelled portion 55 on cam wheel 52.
- lower heater winding 25 receives current from program-controlled variac 30 and transformer 29 (FIG. so that the glass assumes a viscosity of IO Poise and the second contact paddle can be embedded in the relatively soft glass.
- switch 31 in the circuit of the lower heater winding 25 is opened so that additional resistor 32 becomes effective.
- the heating effect of heater winding 25 decreases to an extent that the glass viscosity increases to Poise.
- Threelevel switch 34 (FIG. 8) for paddlemagnetizing coil 24 is then put into position VI so that paddle-magnetizing coil 24 is connected to the adjustable constant-current source 41 via switch arms S11 and $2. In this way, a magnetic field equivalent to the nominal operating field of the reed switch is generated in the area of glass tube 1.
- the read switch can be removed from the device.
- the production steps can be repeated from the position shown in FIG. 2.
- FIG. 6 shows a section of another embodiment of the device, in which the production process is modified.
- This device serves for the manufacture of reed switches whose glass tubes contain a compressed gas or have been evacuated.
- the contact paddle must be embedded in a high-pressure gas atmosphere or in vacuum.
- the device is equipped with vacuum unit 58 consisting of a base plate 59 with an opening 60, a bell jar 61 resting on the base plate, and a packing 62 between the bell jar and the base plate.
- Bell jar 61 is provided with two spaced windows 63 and 64. After the first contact paddle 2 has been inserted into the glass tube, the bell jar is placed on top of the device and rests on packing 62. After that, bell jar 61 is filled with compressed gas via opening 60, or vacuum is produced in the bell jar by evacuating the air through opening 60.
- FIG. 6 shows, in addition, means used for a modified melting process.
- the contact paddles are embedded with the aid of infrared heating focused on the glass tube.
- Two polished reflecting mirrors 65 and 66 are attached to supporting member 23 of the melting device so that the mirrors are located in the upper and lower areas of glass tube 1, respectively, at the side opposite windows 63 and 64 in the bell jar. The mirror surfaces face the windows.
- a quartz-iodine lamp 68 is mounted in the focal plane of a reflector 67 located outside the bell jar. Lamp 63 can be moved up and down as indicated by double arrow G.
- Lamp 68 whose power comsumption amounts to about 600W, generates a focused infrared beam 69 as indicated by an arrow in the figure.
- infrared beam 69 is directed onto the upper end of glass tube ll (FIG. 6), the beam focused by reflecting mirror 66 heats the glass tube so that it becomes soft and contact paddle 2 is embedded.
- reflector 67 with the quartz-iodine lamp 68 is lowered so that the infrared beam focused by reflecting mirror 65 melts the lower end of glass tube 1 around contact paddle 3.
- a resistor is inserted into the circuit of the quartz-iodine lamp. The intensity of the in. frared beam can be controlled in a fashion similar to the control of the heater current supplied to the lower heater winding 25 (circuit diagram of FIG. 5).
- infrared heating for melting the glass can be used even when no compressed gas is to be introduced into the glass tube or when the glass tube need not be evacuated, i.e., when the device does not comprise the bell jar. It is an advantageous feature of infrared melting that the times required for the melting are reduced and that no disturbing alternating magnetic fields are generated when the lower contact paddie is adjusted by means of the magnetic field generated with paddle-magnetizing coil 24.
- the paddle supporting means can be actuated pneumatically instead of electrically.
- the mechanism for moving the second contact paddle with respect to the first paddle can be driven and controlled in various ways. The important feature is that the contact paddle moves in the paste-like melt and that the motion is-stopped when the two contact paddles are in engagement.
- the method of the invention can be modified insofar as the second contact paddle can be moved away from the first contact paddle in a magnetic field for distance adjustment.
- One of the contact paddles moves in the paste-like glass melt, until the two paddles have separated. Separation of the contact paddles can be used to stop the motion of the second paddle.
- the contact paddles open in a magnetic field which is weaker than that in which the contact is closed, in this modification of the process one must generate an appropriate magnetic field in the coil, with the ampereturn value of that field being necessarily lower than that of the magnetic field used for the actual operation of the reed switch.
- An apparatus for producing reed switches comprising: means for holding at least two contacts in spaced relation within a glass tube, a coil adjacent said glass tube for applying a magnetic field to said contacts, a heating device for melting at least one end of said glass tube whereby one of said contacts can be embedded in viscous glass, means for moving said one contact in said viscous glass to position said one contact relative to the other of said contacts, and a switching unit controlling the current to said coil to create said magnetic field, said switching unit selectively supplying direct current or alternating current to said coil.
- said heating device includes a rheostat, a resistor inserted between said rheostat and said heater, and means for short-circuiting said resistor.
- said switching unit comprises a switch which can selectively connect said coil to: a DC. current source for creating a supporting magnetic field, an ac current source for creating a demagnetizing field, and a constant current DC. source for creating an operative magnetic field which is weaker than said supporting magnetic field.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Manufacture Of Switches (AREA)
Abstract
Description
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US461557A US3909210A (en) | 1971-09-10 | 1974-04-17 | Apparatus for producing a glass-encapsulated reed contact switch |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2145463A DE2145463B2 (en) | 1971-09-10 | 1971-09-10 | Method for producing a protective pipe contact switch and device for carrying out the method |
US00389615A US3828427A (en) | 1971-09-10 | 1973-08-20 | Method for producing a glass-encapsulated reed-contact switch |
US461557A US3909210A (en) | 1971-09-10 | 1974-04-17 | Apparatus for producing a glass-encapsulated reed contact switch |
Publications (1)
Publication Number | Publication Date |
---|---|
US3909210A true US3909210A (en) | 1975-09-30 |
Family
ID=27183700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US461557A Expired - Lifetime US3909210A (en) | 1971-09-10 | 1974-04-17 | Apparatus for producing a glass-encapsulated reed contact switch |
Country Status (1)
Country | Link |
---|---|
US (1) | US3909210A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2431468A1 (en) * | 1978-07-19 | 1980-02-15 | Lafarge Sa | MICROPOROUS MATERIAL FOR USE IN PARTICULAR IN THE CERAMIC INDUSTRY |
US4742610A (en) * | 1985-12-05 | 1988-05-10 | Siemens Aktiengesellschaft | Method for adjustment-free manufacture of an electromagnetic relay |
US6192709B1 (en) * | 1997-02-27 | 2001-02-27 | Texas Instruments Incorporated | Quencher clamping operation using an electromagnet |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2523903A (en) * | 1948-04-15 | 1950-09-26 | Bell Telephone Labor Inc | Jig |
US3155478A (en) * | 1963-02-15 | 1964-11-03 | Bell Telephone Labor Inc | Adjustment of sealed reed contacts |
US3281664A (en) * | 1963-12-17 | 1966-10-25 | Rca Corp | Apparatus for fabricating reed switches with means to automatically set the gap to apreselected value |
US3284876A (en) * | 1961-09-21 | 1966-11-15 | Int Standard Electric Corp | Method of sealing contact reeds in a glass tube |
US3369291A (en) * | 1963-03-14 | 1968-02-20 | Rca Corp | Method of making reed switches |
US3537276A (en) * | 1967-06-08 | 1970-11-03 | Federal Tool Eng Co | Method of and apparatus for producing magnetic reed switches |
US3626571A (en) * | 1967-03-03 | 1971-12-14 | Western Electric Co | Apparatus for assembling sealed contact switches |
-
1974
- 1974-04-17 US US461557A patent/US3909210A/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2523903A (en) * | 1948-04-15 | 1950-09-26 | Bell Telephone Labor Inc | Jig |
US3284876A (en) * | 1961-09-21 | 1966-11-15 | Int Standard Electric Corp | Method of sealing contact reeds in a glass tube |
US3155478A (en) * | 1963-02-15 | 1964-11-03 | Bell Telephone Labor Inc | Adjustment of sealed reed contacts |
US3369291A (en) * | 1963-03-14 | 1968-02-20 | Rca Corp | Method of making reed switches |
US3281664A (en) * | 1963-12-17 | 1966-10-25 | Rca Corp | Apparatus for fabricating reed switches with means to automatically set the gap to apreselected value |
US3626571A (en) * | 1967-03-03 | 1971-12-14 | Western Electric Co | Apparatus for assembling sealed contact switches |
US3537276A (en) * | 1967-06-08 | 1970-11-03 | Federal Tool Eng Co | Method of and apparatus for producing magnetic reed switches |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2431468A1 (en) * | 1978-07-19 | 1980-02-15 | Lafarge Sa | MICROPOROUS MATERIAL FOR USE IN PARTICULAR IN THE CERAMIC INDUSTRY |
US4742610A (en) * | 1985-12-05 | 1988-05-10 | Siemens Aktiengesellschaft | Method for adjustment-free manufacture of an electromagnetic relay |
US6192709B1 (en) * | 1997-02-27 | 2001-02-27 | Texas Instruments Incorporated | Quencher clamping operation using an electromagnet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3909210A (en) | Apparatus for producing a glass-encapsulated reed contact switch | |
US2882648A (en) | Switch manufacture | |
US3828427A (en) | Method for producing a glass-encapsulated reed-contact switch | |
US2523903A (en) | Jig | |
US2473772A (en) | Electric stored energy resistance welding system | |
US2406008A (en) | Jig | |
GB1131254A (en) | Coil terminal tinning apparatus | |
US3857013A (en) | Methods of and apparatus for joining materials | |
US2630780A (en) | Device for depositing thin metallic layers | |
US3369291A (en) | Method of making reed switches | |
US2697307A (en) | Apparatus for making sealed tubes for five piece dry reed switches | |
US3284876A (en) | Method of sealing contact reeds in a glass tube | |
US2577602A (en) | Method for adjusting the sensitivity of contact devices | |
US2792489A (en) | Final sealing apparatus for semiconductor translating devices | |
JPH03131499A (en) | Puunching device and method | |
US2839718A (en) | Autotransformer voltage regulator | |
US1367124A (en) | Electric furnace | |
US3628242A (en) | Manufacture of electric switches | |
US2795687A (en) | Fusing machine | |
US2283158A (en) | Solder connecting apparatus | |
US4224500A (en) | Method for adjusting electrical devices | |
US2990257A (en) | Zone refiner | |
US2303555A (en) | Hot plate device | |
US5525774A (en) | Method and apparatus for fusing lead wires of coils to terminals | |
US2002105A (en) | Key attaching mechanism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ALLIED CORPORATION COLUMBIA ROAD AND PARK AVENUE, Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:BUNKER RAMO CORPORATION A CORP. OF DE;REEL/FRAME:004149/0365 Effective date: 19820922 |
|
AS | Assignment |
Owner name: CANADIAN IMPERIAL BANK OF COMMERCE, NEW YORK AGENC Free format text: SECURITY INTEREST;ASSIGNOR:AMPHENOL CORPORATION;REEL/FRAME:004879/0030 Effective date: 19870515 |
|
AS | Assignment |
Owner name: AMPHENOL CORPORATION, LISLE, ILLINOIS A CORP. OF D Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ALLIED CORPORATION, A CORP. OF NY;REEL/FRAME:004844/0850 Effective date: 19870602 Owner name: AMPHENOL CORPORATION, A CORP. OF DE, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALLIED CORPORATION, A CORP. OF NY;REEL/FRAME:004844/0850 Effective date: 19870602 |
|
AS | Assignment |
Owner name: AMPHENOL CORPORATION A CORP. OF DELAWARE Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:CANADIAN IMPERIAL BANK OF COMMERCE;REEL/FRAME:006147/0887 Effective date: 19911114 |