US3907922A - Process for dimerizing vinylidene compounds - Google Patents

Process for dimerizing vinylidene compounds Download PDF

Info

Publication number
US3907922A
US3907922A US525720A US52572074A US3907922A US 3907922 A US3907922 A US 3907922A US 525720 A US525720 A US 525720A US 52572074 A US52572074 A US 52572074A US 3907922 A US3907922 A US 3907922A
Authority
US
United States
Prior art keywords
vinylidene
mixture
percent
product
tetramer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US525720A
Inventor
William J Heilman
Thomas J Lynch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chevron USA Inc
Gulf Research and Development Co
Original Assignee
Gulf Research and Development Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US274319A external-priority patent/US3876720A/en
Application filed by Gulf Research and Development Co filed Critical Gulf Research and Development Co
Priority to US525720A priority Critical patent/US3907922A/en
Application granted granted Critical
Publication of US3907922A publication Critical patent/US3907922A/en
Assigned to CHEVRON RESEARCH COMPANY, SAN FRANCISCO, CA. A CORP. OF DE. reassignment CHEVRON RESEARCH COMPANY, SAN FRANCISCO, CA. A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: GULF RESEARCH AND DEVELOPMENT COMPANY, A CORP. OF DE.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M3/00Liquid compositions essentially based on lubricating components other than mineral lubricating oils or fatty oils and their use as lubricants; Use as lubricants of single liquid substances
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/14Catalytic processes with inorganic acids; with salts or anhydrides of acids
    • C07C2/20Acids of halogen; Salts thereof ; Complexes thereof with organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/06Halogens; Compounds thereof
    • C07C2527/08Halides
    • C07C2527/12Fluorides
    • C07C2527/1213Boron fluoride
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • C10M2203/022Well-defined aliphatic compounds saturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • C10M2203/024Well-defined aliphatic compounds unsaturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/04Well-defined cycloaliphatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/025Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with condensed rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • C10M2215/065Phenyl-Naphthyl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/067Polyaryl amine alkanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • C10M2215/226Morpholines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/30Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • C10M2219/068Thiocarbamate metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/041Triaryl phosphates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/041Siloxanes with specific structure containing aliphatic substituents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/12Gas-turbines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/12Gas-turbines
    • C10N2040/13Aircraft turbines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/135Steam engines or turbines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy

Definitions

  • This patent application is a continuation-in-part of our patent application Ser. No. 274,319, filed July 24. 1972, which is directed to the novel internal olefins prepared by the process to which this patent application is directed.
  • This invention relates to a process for dimerizing certain vinylidene compounds and mixtures of vinylidene compounds to produce internal olefins which are particularly useful under extreme conditions of temperature as engine lubricants, hydraulic fluids, bases for greases, and the like. More particularly, the invention relates to a novel method for forming these internal olefins by coupling the vinylidene compounds in the presence of boron trifluoride complexed with a lower alkyl alcohol.
  • the specifications for the lubricants and related working fluids become more rigorous. Particularly demanding are the specifications relating to stability, evaporation loss, pour point and viscosity.
  • the lubricant must meet specific requirements on viscosity over a wide temperature range if it is to function as a useful lubricant. It must possess an exceptionally low pour point so that cold engines can be started in northern winters and to permit sump storage at great altitudes without excessive thickening of the lubricant. It must be stable to decomposition at the high engine temperatures of modern jet engines and it must resist evaporation at the low pressures encountered at the high altitudes conventionally flown by these aircraft.
  • Type II jet turbine lubricant is used as a general term to refer to a class of materials which meets several closely related specifications.
  • Pratt and Whitney Aircraft Corp. specification No. PWA 521-8 and MlL-L-23699A are specifications for Type I! aircraft jet engine lubricants. Although these specifications do not restrict the source of the lubricant, it has been found that naturally occurring materials from petroleum cannot meet the rigid specifications, therefore, synthetically prepared materials are required for jet engine and other high performance ap- "cants.
  • Olefinically unsaturated molecules have been found to be chemically unstable under the conditions at which the high temperature lubricant is normally used. This instability of olefins is due to the high reactivity of the olefinic double bond with atmospheric oxygen at the high operating temperatures in jet engines resulting in cleavage at the double bond and leading to acid groups on the molecular fragments. The cleavage of the molecules results in a reduction in the oils viscosity while the acid groups resulting from the oxidation are highly corrosive to engine components. Those skilled in the field of extreme temperature lubricants have stated that synthetic hydrocarbon lubricants must be completely hydrogenated to provide oxidation and thermal stability for use as aircraft jet engine lubricants.
  • Our novel compound which includes a double bond located within the structure in the one position in which it is substantially free from attack is made substantially quantitatively by our novel method of preparing it without significant contamination by undesired isomeric molecular structures which would be subject to oxidative attack.
  • the resulting product is directly usable as a high temperature lubricant without requiring expensive hydrogenation or purification procedures.
  • l-olefins and mixtures of l-olefins can be dimerized in good conversion and selectivity to vinylidene compounds.
  • US. Pat. No. 2,695,327 disclosed the dimerization of l-olefins in the presence of a catalyst such as a trialkyl aluminum.
  • a catalyst such as a trialkyl aluminum.
  • l-decene dimerizes to 2- octyl-l-dodecene.
  • the vinylidene compound can then be easily recovered in good yield by a procedure which includes fractional distillation. This vinylidene compound can be further reacted using aluminum chloride as described in US. Pat. No.
  • vinylidene dimer of l-decene is reacted in the presence of anhydrous aluminum chloride in nitromethane, not only tetramers of the l-decene, but also substantial amounts of pentamer-like material are produced.
  • the tetramers are a mixture of olefinic isomers having a substantial-proportion of the olefinic unsaturation in side chains where it is readily attacked under oxidizing conditions.
  • the pentamer-like material which is evidence of significant isomerization and dealkylation or fragmentation during the reaction, effects 'a substantial increase in the viscosity of the tetramer product and is very difficult to remove from the tetramer product.
  • the l-olefin is dimerized by known methods and the vinylidene dimer is purified in a conventional manner.
  • the vinylidene dimer of the l-olefin which is the starting material in our process possesses the structural formula:
  • each R group is an alkyl group independently having from four to 12 carbon atoms.
  • This vinylidene compound is dimerized by our process to produce a dimer of the vinylidene compound, which is a tetramer of the starting l-olefin, having the structural formula:
  • each R group is an alkyl group independently having from four to 12 carbon atoms as described above.
  • each R group possesses two less carbon atoms than the starting olefin from which it originated.
  • R is CH;,(CH
  • substantially pure l-olefin tetramer or substantially pure vinylidene dimer as used herein. we mean a reaction product consisting of one or more molecular spe cies conforming with the above structural formula (2) and substantially free of molecular species which do not conform with the above structural formula (2). Therefore, a substantially pure mixture of l-olefin tetramers conforming with structural formula (2) and varying only in the alkyl groups is produced when a mixture of l-olefins is used to make the vinylidene dimer.
  • the catalyst which we have discovered to be required for the specific dimerization of the vinylidene compound of formula (1 to produce the l-olefin tetramer in substantial purity as represented by the above structural formula (2) is boron trifluoride in a l:l molar complex with a lower alkyl alcohol, namely, methanol, ethanol. n-propanol. n-butanol, n-pentanol. n-hexanol. their branched chained isomers, such as isopropanol and the like. and mixtures of these alcohols.
  • These BF lower alcohol complexes are conveniently prepared by passing BF gas through the liquid alcohol.
  • the molar ratio of BF alcohol complex to vinylidene compound for the dimerization to the tetramer can conveniently be between about 0.01:1 to about 1:1 and preferably about 0.05:1 to about 0.2: l.
  • the dimerization of the vinylidene compound can be successfully carried out using a molar ratio of BF; alcohol complex to vinylidene compound even broader than the above ratios but less effectively. In broad terms it is necessary to use a catalytic amount of BF;;' alcohol complex or an amount which is catalytically effective to dimerize the vinylidene compound.
  • the dimerization of the vinylidene compound using the BF alcohol complex is carried out at moderate temperatures.
  • the reaction can be carried out at a tem- I C., and most preferably a temperature between about C. and about 70 C.
  • the reaction vessel is preferably closed or separated from the atmosphere to keep moisture from contacting the BB; alcohol complex and interfering with its catalytic effectiveness. Pressure does not have a significant effect on the reaction, therefore, the reactor can conveniently be about atmospheric pressure or a lower or higher pressure if such is convenient, however. there is no advantage to excessively low or excessively high pressures.
  • the process of the present invention is directed to the dimerization of vinylidene dimers of lolefins having from about six to about 14 carbon atoms. If a pure l-olefin is used, the ultimate tetramer will be a compound having from about 24 to about 56 carbon atoms, depending on the starting olefin. If a mixture of l-olefins is used, the tetramer product will be a mixture of isomers and homologs having a carbon number within the specified range.
  • the tetramer product obtained by the dimerization of a mixture of loctene and l-decene and the dimerization of the resulting mixture of vinylidene compounds by the process as described herein will contain a mixture'of olefinically unsaturated molecules including isomers having 32, 34, 36, 38 and 40 carbon atoms.
  • any composition coming within the above formula (2) for l-olefin tetramers or mixtures thereof is stable as a lubricant against oxidative and other degradation, we have found that specific formulations are preferred to meet specific lubricant formulations. For example, we have found that about a :40 molar ratio of l-octene to l-decene produces a mixed tetramer product which is particularly effective in accordance with Pratt and Whitney Aircraft Corporation specifica.- tion No. PWA 52l-B for Type II jet engine lubricants.
  • the organic prod-i uct can be recovered and separated from the aqueous phase with water washing, decantation and/or vacuum distillation. Unreacted vinylidene compound, if any, and l-olefin dimer impurities are separated by distillation. The resulting product is the tetramer of the initial l-olefin substantially free of impurities which do not come within the above formula (2).
  • the dimerization of the l-olefin to form the vinyli dene compound is well described in the prior art.
  • the dimerization is conveniently carried out at a temperature between about 60 C. and about 350 C., preferably about 100 to about 250 C. in the presence of a catalytic amount of a compound of a metal such as aluminum, gallium, indium and beryllium with monovalent aliphatic radicals, hydrogen or mixtures of these.
  • a metal such as aluminum, gallium, indium and beryllium with monovalent aliphatic radicals, hydrogen or mixtures of these.
  • l-olefin dimer impurities can be removed from the tetramer product by distillation or other convenient separative procedure.
  • the reaction to produce the tetrameras described herein can be substantially quantitative based on the vinylidene compound or compounds in the vinylidene feed mixture which have reacted. Regardless of the method of preparation of the vinylidene compound it is important that it be substantially free of any compound. including any compound of undesired carbon number which would result in an undesired fraction which would be difficult to separate from the desired tetramer product.
  • compositions as defined by formula (2) are directly usable as base stocks for engine lubricants or in other high temperature applications without requiring the considerable expense of hydrogenation. Not only is hydrogenation expensive due to the capital equipment and labor required, but also as a result of the significant reduction in ultimate yield occasioned by this additional processing step.
  • Specific compositions coming within the broad class defined by structural formula (2) are able to meet the particular requirements of various specifications for jet engine lubricants. They are as stable against oxidation, cracking and other degradation as determined by Type II specifications, as the saturated composition corresponding with structural formula (2).
  • conventional additives are added to provide specific properties as desired or as required by the specifications.
  • additives can be an anti-wear agent such as tricresyl phosphate, oxidation inhibitors. and the like.
  • the l-olefin tetramer described herein will comprise from about 90 to about 98 percent of the total jet lubricant and preferably about percent.
  • the substantially pure l-olefin tetramer has been thoroughly characterized from the reaction mechanism and by infrared spectroscopy, nuclear magnetic resonance analysis, gas chromatography and vapor pressure osmometry.
  • the infrared and nuclear magnetic resonance analysis identifies the location of the double bond and identifies other functional groups, if any.
  • Gas chromatography establishes carbon number purity.
  • Vapor pressure osmometry establishes the molecular weight of the product.
  • EXAMPLE 1 Thirty cc. of ethanol are placed in a 100 ml. flask under a nitrogen atmosphere. The flask is placed in a wet ice bath to dissipate the 17K cal/mol of heat evolved in the reaction. BF gas is introduced into the ethanol at a rate such that the heat of reaction can be controlled. The bubbling'was reduced as BFg gas appeared at the vent and was stopped when it was no longer absorbed by the ethanol. The product was 0.51 mol of BF -and ethanol in a 1:1 molar complex.
  • EXAMPLEYZI Fifty grams of 2-octyl-l-dodecenewere introduced into a 250 cc. flask under nitrogen at atmospheric pressure.
  • the 2-octyl-l-dodecenewas prepared by dimerizing l-decene in the presence of triisobutyl aluminum. It analyzed 85.2 mol percent 2-octyl-l-dodecene, 7.1 percent 2-octyldodecane, and 7.6 percent C internal olefins.
  • Thesa'turat'ed compound was inert in the di merization reaction and the internal'olefins exhibited substantially no reactivity in the second dimcrization reaction.
  • EXAMPLE 3 The previous example was repeated except that the reaction was carried out at a constant temperature of 67 C. for 21.5 hours.
  • the yield of 11,13-dioctyl-l3- methyl-l l-tricosene was 70 percent based on the'total feed and 82 percent based on the 2-octyl-l-dodecene in the feed.
  • Example 2 was repeated except that the reaction was carried out at a constant temperature of 101 C. for 22 hours.
  • the yield of 1 1,l3-diocty1-13-methyl-1 1- tricosene was 63 percent. based on the total feed and 74 percent based on the 2-octyl-1-dodecene in the feed.
  • EXAMPLE 5 In the same procedures used in the preceding examples 400 grams of Z-hexyl-l-decene were mixed with cc. of the BF ethanol complex and the reaction was carried out at a constant temperature of 48 C. for21.5 hours. The yield of 9-1 l-dihexyl-l 1methyl-9- nonadecene was 77 percent based on the total feed and about 90 percent based on the 2-hexy1-1-decene in the feed.
  • EXAMPLE 6 A mixture of vinylidene dimers was prepared by dimerizing a l-octene and 'l'-decene mixture containing 60 mol percent l-octene using triisobutyl aluminum-as the catalyst. After removing unreacted monomer, the mixture was determined to contain 31.9 weight percent of 16-carbon compounds, 47.1 percent of l8-carbon compounds and 21.0 percent of 20-earbon compounds by gas chromatographic analysis. A six kilogram portion of this mixture was introduced into a 12 liter resinflask under a nitrogen atmosphere. The resin-flask was equipped with a thermometer. a heating mantle and a mechanical stirrer. Without supplemental heating, 450 cc.
  • the sample also passed the Pratt and Whitney rubber deterioration test (AMS-7280).
  • EXAMPLE 7 A vinylidene dimer mixture (7,523.6 grams) prepared from a mixture containing 60 mol percent 1- octene and 40 mo1 percent l-decene was charged to a 12 liter pot under a nitrogen atmosphere. The BF;,- ethanol catalyst (376 cc.) was added with stirring over a 24 minute period. Stirring was continued while a reaction temperature of C. was maintained for four hours. At the end of the 4-hour period 1.500 cc. of distilled water was added to stop the reaction. The hydrocarbon phase was washed with water until the wash water was neutral. The tetramer product, separated from the unreacted vinylidene reaction mixture. was obtained in 65.7 percent yield based on the total feed to the reactor.
  • the mixture of tetramer isomers and ho- A tetramcr product was made using the same procedure described in Example 6 starting with 8,296 grams of the vinylidene mixture and 415 cc. of the BE; ethanol catalyst at 45 C for 20 hours.
  • the product containing homologous and isomeric olefin tetramers with molecular weights of 32, 34, 36, 38 and 40 and conforming with structural formula (2) was obtained in 70 percent yield based on the initial mixture containing the vinylidene compounds.
  • the pale straw-yellow tetramer product mixture was clay treated by passing it through a column of attapulgus clay to remove any impurities conventionally removed by clay treating.
  • the tetramer product was made water white by this treat- .ment.
  • the specifications for the product before and after clay treating are set out in Table 111.
  • EXAMPLE 10 Three 50 gram samples of the vinylidene mixture as described in Example 9 were reacted at C., 45 C., and 70 C. for- 22, 21.5, and 21.5 hours, respectively, using 2.5 cc. of BF; ethanol complex with each sample. The yields of the tetramers conforming with structural formula (2) from each of the three samples was 67, 73 and 65 weight percent, respectively, based on the vinylidene reaction mixture.
  • EXAMPLE 1 l A tetramer product was made from a vinylidene mixture which was prepared from a mixture of 70 mol percent l-octene and 30 mol percent l-decene as described in Example 2. A 300 gram sample of the vinylidene mixture and 22.5 cc. of BF;,' ethanol complex were reacted at45 C. for 21.5 hours. The yield of tetramer product mixture conforming with structural formula (2) was 69 percent based on the vinylidene reaction mixture. The tetramer product mixture had a viscosity of 6,148 cs. at 40 F., 28.95 cs. at 100 F., 5.21 cs. at 210 F., and 1.29 cs. at 400 F., and a pour point of 85 F.
  • EXAMPLE 12 A tetramer product was made by reacting 26.3 cc. of a BF ethanol complex with 175 grams of a vinylidene mixture, obtained from a mixture of l-octe'ne and decene, containing 43.8 weight percent of 16-carbon compounds, 45.2 percent 18-carbon compounds and 1 1.0 percent 20-c arbon compounds. The reaction was carried out at 45 C. for 21 hours.
  • the tetramer pr'oduct conforming with structural formula (2) was 72 percent based on the vinylidene mixture and it possessed a 210 F. viscosity of 5.46 cs.
  • EXAMPLE 13 A vinylidene mixture containing 16-. 18-. and 20- carbon vinylidene compounds was made from a 50/50 molar mixture of l-octene and l-decene. A 600 gram portion of this vinylidene mixture was dimerized in the presence of 45 cc. of BF;,- ethanol complex at a temperature of 49 C. for 21.5 hours. The reaction yielded 73 weight percent of the tetramers defined by structural formula (2) based on the total vinylidene mixture reacted.
  • EXAMPLE 14 The 18-carbon fraction was fractionated from a vinylidene mixture which had been prepared from a mixture of mol percent l-octene and 30 mol percent 1- decene. Seventy-five grams of this l8-carbon fraction were dimerized in the presence of l 1.2 cc. of BF; ctha n01 complex at 45 C. for 21.5 hours. The yield of 36- carbon tetramer isomers was 74 percent based on the vinylidene reaction mixture. The product had a 210 F. viscosity of 5.86 cs.
  • Example 15 In like manner Example 14 was repeated using 26.3 cc. of BF; ethanol complex and grams of the 18- carbon fraction fractionated from the vinylidene mixture. The yield of the tetramer isomers was 74 percent based on the vinylidene feed mixture. The isomer mixture exhibited a 210 F. viscosity of 5.69 cs.
  • EXAMPLE 16 A 1: 1 complex of boron trifluoride and n-butanol was prepared by bubbling boron trifluoride into n-butanol. The introduction of the boron trifluoride was stopped after the reaction to the 1:1 BF butanol complex was completed. Three 50 gram portions of a vinylidene dimer mixture prepared from a 50/50 mixture of loctene and l-decene were separately dimerized'in the presence of 4.21 g., 2.1 1 g. and 1.40 g., respectively, of the BE, n-butanol complex at 45 C. for 21.5 hours. The yields of product conforming with structural formula (2) and based on the vinylidene reaction mixture were 69, 36 and 14 percent, respectively.
  • EXAMPLE 17 Two 50 gram portions of the vinylidene mixture prepared from a mixture containing 60 mol percent 1- octene and 40 mol percent l-decene were separately dimerized in the presence of 2.5 g. and 1.9 g. of the BF:,- n-butanol complex at 45 C. for 22 and 22.5 hours, respectively.
  • the yields of product tetramer conforming with structural formula (2) were 70 and 34 percent
  • EXAMPLE 18 1 Four 50 gram portions of a vinylidene mixture prepared by dimerization from a mixture containing 50 mol percent l-octene and 50 mol percent l-decene were separately dimerized in the presence of 4.63 g.,
  • EXAMPLE l9 Fifty grams of the vinylidene mixture used in the preceding example was dimerized in the presence of 5.04 grams of a BE, n-hexanol complex at a temperature of 45 C. for 21.5 hours. The yield of tetramer product conforming with structural formula (2) was 70 weight percent based on the vinylidene reaction mixture.
  • EXAMPLE 1 4,629 gram portion of the vinylidene dimer mixture from l-decene as described in Example 2 was dimerized in the presence of 240 cc. of BB; ethanol complex at a temperature of 51 C. for 22.5 hours. The yield to l1.13-dioctyl-l3-methyl-l l-tricosene was 73 weight percent based on the feed mixture. The viscosity of the tetramer was 6.67 cs. at 210 F.
  • Example 20 was repeated except that 10 kilograms of the vinylidene dimer were dimerized in the presence of 500 cc. of BB; ethanol complex for 23 hours. The yield of l 1.13-dioctyl-l 3-methyl-l l-tricosene was 74 weight percent based on the feed mixture. This product was compared with Ford Motor Company specifications for primary mover turbine oils.
  • 2-Butyl-l-octene was prepared by dimerizing lhexene in the presence of triisobutyl aluminum. After removing unreacted l-hexene, the product analyzed about 85 percent 2-butyl-l-octene with the remainder being 2-butyl0ctane and 12 carbon internal olefins. A 150 gram portion of the 2-butyl-l-octene product was dimerized in the presence of BF;;- n-butanol complex for 22 hours at 45 C. After washing and separating out the 12 carbon hydrocarbons, the 7,9-dibutyl-9-methyl- 7-pentadecene product was subjected to analysis.
  • the infrared spectra revealed that the product possessed only one type of double bond with no unhindered double bond detected and further showed that no hydroxyl group was present in the product.
  • Nuclear magnetic resonance spectroscopy revealed that there was only one type of double bond present in the product and that only one proton was present on the double bond.
  • Gas chromatography and vapor pressure osmometry verified the carbon number of the product at 24.
  • EXAMPLE 23 The reaction was carried out in a 500 ml. four necked flask equipped with a stirrer. a thermocouple and a nitrogen bubbler. After purging the reaction flask for 24 hours with dry nitrogen. 100 ml. of nitromethane was first added and then 13.3 grams of aluminum chloride was added with stirring while maintaining the reactors contents at 5 C. in an ice bath. After solution was obtained. a 168 gram portion of 2-butylloctene. as described in the preceding example. was slowly added over a period of 30 minutes at 3 to 5 C. After addition ofthe dimer was completed. the temperature was maintained at a temperature of 5 C. with stirring for 3.5 hours.
  • the mixture was then poured into 500 ml. of water followed by 100 ml. of hexane.
  • the organic layer was washed in succession with 500 cc. of water.
  • the organic phase was then separated out. filtered and distilled to remove hexane and 12 carbon compounds.
  • the resulting product was 95.7 grams ofa 24-carbon tetramer cut boiling at 162 C. at 1 mm. Hg. and having a refractive index of 1.4556.
  • the bottom fraction of 36.8 grams was identified as a tetramer-pentamer mixture by gas chromatography.
  • the yield of tetramer and pentamer based on the dimer feed material was 78.9 percent with about 7 percent being pentamer.
  • the product was subjected to infrared spectroscopy and found to have a strong showing of hydroxyl groups and a strong carbon to carbon double bond showing in an unhindered position.
  • Nuclear magnetic resonance analysis disclosed double bond in the product with two protons on the double bond and four protons on carbon adjacent to the double bond with no showing percent limit of detection) of a double bond with only one proton on the double bond.
  • Example 23 was repeated except that 277.7 grams of the 20-carbon vinylidene compound mixture prepared from l-decene as described in Example 2 was introduced into the reactor instead of the l-hexene dimer. A product was obtained which analyzed by gas chromatographic analysis as about nine percent l-decene trimer. about 31 percent l-decene tetramer and at least about one percent l-decene pentamer. The infrared and nuclear magnetic resonance spectra of this product were similar to those described in the preceding example at reduced intensity. This experiment was duplicated several times with erratic results including lower yields than described in this example.
  • EXAMPLE 25 A 50 gram portion of a l-decene dimer as described in Example 2 was placed in a m1. flask under a nitrogen atmosphere. A 1:1 BF diethyl ether complex was made from diethyl ether which had been purified from ketone. aldehyde, peroxide and alcohol and five cc. were added to the flask. A temperature of 45 C. was maintained on the contents of the flask by a heating mantle. After 21.5 hours the contents of the flask were analyzed showing a yield to tetramer of less than one percent. In contrast when diethyl ether containing a significant amount of ethyl alcohol as an impurity is used in making the complex.
  • R is a saturated alkyl group having eight carbon atoms.
  • each R group is a saturated alkyl group having six or eight carbon atoms.

Abstract

An internal olefin or mixture of internal olefins having the formula R-(CH2)2-C(R) CH-C(R) (CH3)-(CH2)2-R, where each R group is an alkyl group having from four to 12 carbon atoms, is prepared substantially free of olefin isomers by dimerizing a vinylidene compound or a mixture of vinylidene compounds in the presence of boron trifluoride complexed with a lower alkyl alcohol. The vinylidene compound is the dimer of one or more 1olefins having six to 14 carbon atoms.

Description

United States Patent [191 Heilman et al.
[451 Sept. 23, 1975 PROCESS FOR DIMERIZING VINYLIDENE COMPOUNDS [75] Inventors: William J. Heilman, Allison Park;
Thomas J.- Lynch, Pittsburgh, both of Pa.
[73] Assignee: Gulf Research & Development Company, Pittsburgh, Pa.
[22] Filed: Nov. 21, 1974 [21] Appl. No.: 525,720
Related U.S. Application Data [63] Continuation-in-part of Ser. No. 274,319, July 24,
[52] U.S. Cl. 260/683.15 B [51] Int. Cl. C07C 3/18 [58] Field of Search 260/683.l5 B; 252/59 [56] References Cited UNITED STATES PATENTS 3,382,291 5/1968 Brennan 260/683.l5 B
4/1971 Blake et al 252/59 12/1973 Shubkin 260/683.l5 B
Primary ExaminerPaul M. Coughlan, Jr.
[57] ABSTRACT 7 Claims, No Drawings PROCESS FOR DIMERIZING VINYLIDENE COMPOUNDS This patent application is a continuation-in-part of our patent application Ser. No. 274,319, filed July 24. 1972, which is directed to the novel internal olefins prepared by the process to which this patent application is directed.
This invention relates to a process for dimerizing certain vinylidene compounds and mixtures of vinylidene compounds to produce internal olefins which are particularly useful under extreme conditions of temperature as engine lubricants, hydraulic fluids, bases for greases, and the like. More particularly, the invention relates to a novel method for forming these internal olefins by coupling the vinylidene compounds in the presence of boron trifluoride complexed with a lower alkyl alcohol.
Recent years have seen an increasing demand for lubricants and other working fluids which are able to function satisfactorily at extreme conditions of temperature such as encountered in gas turbine engines and in aircraft jet engines. Not only must these high perfor mance materials possess suitable viscosity properties to perform their intended function at temperatures above 350 F. and below 4() F., but in addition they must possess additional desirable characteristics which are required for continued use, including low volatility at the high temperatures encountered, relative inertness in an oxidizing environment, noncorrosiveness to the metallic and nonmetallic components contacted, and the like. The modern jet aircraft engines are particularly demanding in the severity of conditions encountered.
As aircraft jet engines are designed for and are used at increasingly more rigorous conditions including high operating temperatures and high altitudes, the specifications for the lubricants and related working fluids become more rigorous. Particularly demanding are the specifications relating to stability, evaporation loss, pour point and viscosity. The lubricant must meet specific requirements on viscosity over a wide temperature range if it is to function as a useful lubricant. It must possess an exceptionally low pour point so that cold engines can be started in northern winters and to permit sump storage at great altitudes without excessive thickening of the lubricant. It must be stable to decomposition at the high engine temperatures of modern jet engines and it must resist evaporation at the low pressures encountered at the high altitudes conventionally flown by these aircraft. For example, theviscosity specification for Type ll jet turbine lubricants is determined from 40 F. to 400 F., and the evaporation loss is determined at 5.5 inches Hg. and 450 F. Type II jet turbine lubricant is used as a general term to refer to a class of materials which meets several closely related specifications. Pratt and Whitney Aircraft Corp. specification No. PWA 521-8 and MlL-L-23699A are specifications for Type I! aircraft jet engine lubricants. Although these specifications do not restrict the source of the lubricant, it has been found that naturally occurring materials from petroleum cannot meet the rigid specifications, therefore, synthetically prepared materials are required for jet engine and other high performance ap- "cants. Olefinically unsaturated molecules have been found to be chemically unstable under the conditions at which the high temperature lubricant is normally used. This instability of olefins is due to the high reactivity of the olefinic double bond with atmospheric oxygen at the high operating temperatures in jet engines resulting in cleavage at the double bond and leading to acid groups on the molecular fragments. The cleavage of the molecules results in a reduction in the oils viscosity while the acid groups resulting from the oxidation are highly corrosive to engine components. Those skilled in the field of extreme temperature lubricants have stated that synthetic hydrocarbon lubricants must be completely hydrogenated to provide oxidation and thermal stability for use as aircraft jet engine lubricants.
Notwithstanding the expressed requirement that olefinic unsaturation be avoided in high temperature lubricants, we have unexpectedly discovered an excellent synthetic lubricant that possesses an olefinic double bond in the molecule yet is as stable to degradation and oxidation, as determined by rigid specifications. as related molecular structures without olefinic unsaturation. We have discovered that the double bond in the molecule of our novel compound is substantially inert to degradation and oxidation as a result of the molecular structure and its position within the molecule. Any other location of the double bond in the molecule would subject it to easy oxidative attack. Our novel compound which includes a double bond located within the structure in the one position in which it is substantially free from attack, is made substantially quantitatively by our novel method of preparing it without significant contamination by undesired isomeric molecular structures which would be subject to oxidative attack. The resulting product is directly usable as a high temperature lubricant without requiring expensive hydrogenation or purification procedures.
It is known that l-olefins and mixtures of l-olefins can be dimerized in good conversion and selectivity to vinylidene compounds. For example, US. Pat. No. 2,695,327 disclosed the dimerization of l-olefins in the presence of a catalyst such as a trialkyl aluminum. By this method, for example, l-decene dimerizes to 2- octyl-l-dodecene. The vinylidene compound can then be easily recovered in good yield by a procedure which includes fractional distillation. This vinylidene compound can be further reacted using aluminum chloride as described in US. Pat. No. 3,576,898 to produce a material having a greater molecular weight than the vinylidene compound. The direct product of this second reaction is then hydrogenated and purified to remove substantial amounts of undesired structures which degrade its properties. Alpha-olefin oligomers which are produced by other processes are also hydrogenated for use as extreme temperature lubricants.
We have found that when 2-octyl-l-dodecene, the
vinylidene dimer of l-decene, is reacted in the presence of anhydrous aluminum chloride in nitromethane, not only tetramers of the l-decene, but also substantial amounts of pentamer-like material are produced. The tetramers are a mixture of olefinic isomers having a substantial-proportion of the olefinic unsaturation in side chains where it is readily attacked under oxidizing conditions. The pentamer-like material, which is evidence of significant isomerization and dealkylation or fragmentation during the reaction, effects 'a substantial increase in the viscosity of the tetramer product and is very difficult to remove from the tetramer product. We have also found the presence of a substantial amount of hydroxyl groups in the product of this method. The presence of hydroxyl groups in the molecule is undesired because hydroxyl tends to directly oxidize to the acid or dehydrate to olefin which can then cleave and oxidize to acid. as described. This olefinic isomerization and hydroxylation requires that the composition be hydrogenated to substantially remove this unsaturation and hydroxylation inherent in the process otherwise the resulting composition is unstable under oxidizing conditions. Consistent results were not obtained with repeated experiments by this method.
Unexpectedly, we have discovered a novel process for dimerizing the vinylidene compound in which a novel dimer of the vinylidene compound. that is. a tetramer of the lolefin. is routinely and consistently produced in substantially quantitative yield and substantially free of any pentamer. Furthermore, we have discovered that this novel dimer of the vinylidene compound, which is produced by our process in substantially quantitative yield, contains the double bond in a position within the molecule at which it is essentially free from degradation and oxidative attack. We have also found that this l-olefin tetramer is substantially completely free of hydroxyl contaminant. Thus, we have discovered a novel process which unexpectedly produces a sterically hindered l-olefin tetramer, in substantially pure form. that is. it is free of unhindered isomers or other undesired molecular structures and is free of nontetramer products. This unsaturated l-olefin tetramer as prepared by our process is itself a novel composition of matter which unexpectedly is useful without hydrogenation as an extreme temperature lu bricant such as in aircraft jet engines. The substantially pure. hydroxyl-free. unsaturated dimer of 2-octyl-ldodecene produced by our novel process is 11.13- dioetyl-l 3-methyl-l l-tricosene.
We have discovered that our process can be used as the second step in a twostage dimerization process for producing substantially pure. unsaturated tetramers from l-olcfins having from about six to about 14 carbon atoms including olefins having an odd number of carbon atoms and mixtures of these l-olefins. These starting l-olefins can either be straight chain olefins or branched chain olefins provided that there is at least one hydrogen atom on the two-carbon atom. The preferred starting olefins have from eight to 12 carbon atoms. The most preferred olefins are l-octene, ldecene and mixtures of these.
The l-olefin is dimerized by known methods and the vinylidene dimer is purified in a conventional manner. The vinylidene dimer of the l-olefin which is the starting material in our process possesses the structural formula:
in which each R group is an alkyl group independently having from four to 12 carbon atoms. This vinylidene compound is dimerized by our process to produce a dimer of the vinylidene compound, which is a tetramer of the starting l-olefin, having the structural formula:
in which each R group is an alkyl group independently having from four to 12 carbon atoms as described above. In this formula and the formula l for the vinylidene compound each R group possesses two less carbon atoms than the starting olefin from which it originated. Thus. when l-decene is the starting olefin. R is CH;,(CH
When the starting olefin is a mixture. such as a 50/50 molar mixture of l-octene and l-decene. R is either CH (CH or CH (CH- The likelihood of an alkyl group occurring in any specific position is directly related to the molar proportion of the l-olefin from which the group is derived in the initial olefin mixture. By substantially pure l-olefin tetramer or substantially pure vinylidene dimer as used herein. we mean a reaction product consisting of one or more molecular spe cies conforming with the above structural formula (2) and substantially free of molecular species which do not conform with the above structural formula (2). Therefore, a substantially pure mixture of l-olefin tetramers conforming with structural formula (2) and varying only in the alkyl groups is produced when a mixture of l-olefins is used to make the vinylidene dimer.
The catalyst which we have discovered to be required for the specific dimerization of the vinylidene compound of formula (1 to produce the l-olefin tetramer in substantial purity as represented by the above structural formula (2) is boron trifluoride in a l:l molar complex with a lower alkyl alcohol, namely, methanol, ethanol. n-propanol. n-butanol, n-pentanol. n-hexanol. their branched chained isomers, such as isopropanol and the like. and mixtures of these alcohols. These BF lower alcohol complexes are conveniently prepared by passing BF gas through the liquid alcohol. When the alcohol stops absorbing BF the formation of the 1:1 molar complex of the alcohol with BF is completed. If the absorption of BF;; is incomplete, a 1:2 molar BF to lower alcohol can be produced. However, we have found the 1:2 BF lower alcohol complex to be substantially inert for the desired dimerization reaction. The 1:] molar complex will catalyze the reaction when mixed with the 1:2 molar complex, however, the latter is generally avoided as being of no particular advantage.
The molar ratio of BF alcohol complex to vinylidene compound for the dimerization to the tetramer can conveniently be between about 0.01:1 to about 1:1 and preferably about 0.05:1 to about 0.2: l. The dimerization of the vinylidene compound can be successfully carried out using a molar ratio of BF; alcohol complex to vinylidene compound even broader than the above ratios but less effectively. In broad terms it is necessary to use a catalytic amount of BF;;' alcohol complex or an amount which is catalytically effective to dimerize the vinylidene compound.
The dimerization of the vinylidene compound using the BF alcohol complex is carried out at moderate temperatures. The reaction can be carried out at a tem- I C., and most preferably a temperature between about C. and about 70 C.
The reaction vessel is preferably closed or separated from the atmosphere to keep moisture from contacting the BB; alcohol complex and interfering with its catalytic effectiveness. Pressure does not have a significant effect on the reaction, therefore, the reactor can conveniently be about atmospheric pressure or a lower or higher pressure if such is convenient, however. there is no advantage to excessively low or excessively high pressures.
As indicated, the process of the present invention is directed to the dimerization of vinylidene dimers of lolefins having from about six to about 14 carbon atoms. If a pure l-olefin is used, the ultimate tetramer will be a compound having from about 24 to about 56 carbon atoms, depending on the starting olefin. If a mixture of l-olefins is used, the tetramer product will be a mixture of isomers and homologs having a carbon number within the specified range. For example, the tetramer product obtained by the dimerization of a mixture of loctene and l-decene and the dimerization of the resulting mixture of vinylidene compounds by the process as described herein will contain a mixture'of olefinically unsaturated molecules including isomers having 32, 34, 36, 38 and 40 carbon atoms.
Although any composition coming within the above formula (2) for l-olefin tetramers or mixtures thereof is stable as a lubricant against oxidative and other degradation, we have found that specific formulations are preferred to meet specific lubricant formulations. For example, we have found that about a :40 molar ratio of l-octene to l-decene produces a mixed tetramer product which is particularly effective in accordance with Pratt and Whitney Aircraft Corporation specifica.- tion No. PWA 52l-B for Type II jet engine lubricants.
The dimerization of the vinylidene compound in the presence of the BF;,- lower alkyl alcohol complex is time dependent. With increasing time the reaction rate decreases. At the time that the reaction is substantially completed or that further reaction is not desired, the catalyst is deactivated with a base such as by the addi= tion of a sodium hydroxide solution. The organic prod-i uct can be recovered and separated from the aqueous phase with water washing, decantation and/or vacuum distillation. Unreacted vinylidene compound, if any, and l-olefin dimer impurities are separated by distillation. The resulting product is the tetramer of the initial l-olefin substantially free of impurities which do not come within the above formula (2).
The dimerization of the l-olefin to form the vinyli dene compound is well described in the prior art. The dimerization is conveniently carried out at a temperature between about 60 C. and about 350 C., preferably about 100 to about 250 C. in the presence of a catalytic amount of a compound of a metal such as aluminum, gallium, indium and beryllium with monovalent aliphatic radicals, hydrogen or mixtures of these. We have found that this procedure for making the vinylidene compound consistently results in a dimer fraction comprising about to about percent or more of the desired vinylidene structure with the remainder being saturated dimer and an internal unsaturated dimer fraction which is substantially nonreactivein the second stage reaction. These l-olefin dimer impurities can be removed from the tetramer product by distillation or other convenient separative procedure. The reaction to produce the tetrameras described herein can be substantially quantitative based on the vinylidene compound or compounds in the vinylidene feed mixture which have reacted. Regardless of the method of preparation of the vinylidene compound it is important that it be substantially free of any compound. including any compound of undesired carbon number which would result in an undesired fraction which would be difficult to separate from the desired tetramer product.
These olefinically unsaturated l-olefin tetramer compositions as defined by formula (2) are directly usable as base stocks for engine lubricants or in other high temperature applications without requiring the considerable expense of hydrogenation. Not only is hydrogenation expensive due to the capital equipment and labor required, but also as a result of the significant reduction in ultimate yield occasioned by this additional processing step. Specific compositions coming within the broad class defined by structural formula (2) are able to meet the particular requirements of various specifications for jet engine lubricants. They are as stable against oxidation, cracking and other degradation as determined by Type II specifications, as the saturated composition corresponding with structural formula (2). When used as lubricants in jet engines, conventional additives are added to provide specific properties as desired or as required by the specifications. These additives can be an anti-wear agent such as tricresyl phosphate, oxidation inhibitors. and the like. The l-olefin tetramer described herein will comprise from about 90 to about 98 percent of the total jet lubricant and preferably about percent.
The substantially pure l-olefin tetramer has been thoroughly characterized from the reaction mechanism and by infrared spectroscopy, nuclear magnetic resonance analysis, gas chromatography and vapor pressure osmometry. The infrared and nuclear magnetic resonance analysis identifies the location of the double bond and identifies other functional groups, if any. Gas chromatography establishes carbon number purity. Vapor pressure osmometry establishes the molecular weight of the product.
The following examples are set out to illustrate the novel process of the present invention and to provide a better understanding of its details and advantages.
EXAMPLE 1 Thirty cc. of ethanol are placed in a 100 ml. flask under a nitrogen atmosphere. The flask is placed in a wet ice bath to dissipate the 17K cal/mol of heat evolved in the reaction. BF gas is introduced into the ethanol at a rate such that the heat of reaction can be controlled. The bubbling'was reduced as BFg gas appeared at the vent and was stopped when it was no longer absorbed by the ethanol. The product was 0.51 mol of BF -and ethanol in a 1:1 molar complex.
EXAMPLEYZI Fifty grams of 2-octyl-l-dodecenewere introduced into a 250 cc. flask under nitrogen at atmospheric pressure. The 2-octyl-l-dodecenewas prepared by dimerizing l-decene in the presence of triisobutyl aluminum. It analyzed 85.2 mol percent 2-octyl-l-dodecene, 7.1 percent 2-octyldodecane, and 7.6 percent C internal olefins. Thesa'turat'ed compound was inert in the di merization reaction and the internal'olefins exhibited substantially no reactivity in the second dimcrization reaction.
At room temperature (25 C.) 7.5 cc. of BB; ethanol complex was added to the flask. The solution immediately heated about to C. and additional heat was added to maintain a constant temperature of about 45 C. The mixture was continuously stirred for the full time of the reaction. The reaction was stopped after about 21.5 hours by the addition of about 2.5 cc. of a 10 percent sodium hydroxide solution and the stirring was continued. The hydrocarbon and aqueous layers were separated by decantation and the hydrocarbon oil was then vacuum distilled in a rotating disk molecular still at 120 C. and 50 microns pressure. This procedure separated unreacted 2-octyl-l-dodecene. the C internal olefins and the 2-octyldodecane from the product. The yield of l 1.13-dioctyl-13-methyl-l l-tricosene was 71 percent based on the total feed and 83.3 percent based on the 2-octyl-l-dodecene in the feed. No compounds having more than 40 carbon atoms were detected in the product.
EXAMPLE 3 The previous example was repeated except that the reaction was carried out at a constant temperature of 67 C. for 21.5 hours. The yield of 11,13-dioctyl-l3- methyl-l l-tricosene was 70 percent based on the'total feed and 82 percent based on the 2-octyl-l-dodecene in the feed.
EXAMPLE 4 Example 2 was repeated except that the reaction was carried out at a constant temperature of 101 C. for 22 hours. The yield of 1 1,l3-diocty1-13-methyl-1 1- tricosene was 63 percent. based on the total feed and 74 percent based on the 2-octyl-1-dodecene in the feed.
EXAMPLE 5 In the same procedures used in the preceding examples 400 grams of Z-hexyl-l-decene were mixed with cc. of the BF ethanol complex and the reaction was carried out at a constant temperature of 48 C. for21.5 hours. The yield of 9-1 l-dihexyl-l 1methyl-9- nonadecene was 77 percent based on the total feed and about 90 percent based on the 2-hexy1-1-decene in the feed.
EXAMPLE 6 A mixture of vinylidene dimers was prepared by dimerizing a l-octene and 'l'-decene mixture containing 60 mol percent l-octene using triisobutyl aluminum-as the catalyst. After removing unreacted monomer, the mixture was determined to contain 31.9 weight percent of 16-carbon compounds, 47.1 percent of l8-carbon compounds and 21.0 percent of 20-earbon compounds by gas chromatographic analysis. A six kilogram portion of this mixture was introduced into a 12 liter resinflask under a nitrogen atmosphere. The resin-flask was equipped with a thermometer. a heating mantle and a mechanical stirrer. Without supplemental heating, 450 cc. of a BF ethanol complex was added to the flask. The temperature was maintained at 45 C. for 22 hours with stirring during reaction. The. hydrocarbon and aqueous layers were separated by decantation following treatment of the reaction product mixture with aqueous sodium hydroxide. Unreacted C to C dimer was removed from the hydrocarbon portion by vacuum distillation in a rotating disk molecular still. The product was a mixture of unsaturated compounds having 32. 34. 36. 38 and carbon atoms and conforming with structural formula (21in which the R group was randomly either n-hexyl or n-octyl. This product was recovered in 76 weight percent yield based on the initial vinylidene mixture.
This tetramcr mixture was compared with specification No. PWA 521-B according to Table I:
The sample also passed the Pratt and Whitney rubber deterioration test (AMS-7280).
EXAMPLE 7 A vinylidene dimer mixture (7,523.6 grams) prepared from a mixture containing 60 mol percent 1- octene and 40 mo1 percent l-decene was charged to a 12 liter pot under a nitrogen atmosphere. The BF;,- ethanol catalyst (376 cc.) was added with stirring over a 24 minute period. Stirring was continued while a reaction temperature of C. was maintained for four hours. At the end of the 4-hour period 1.500 cc. of distilled water was added to stop the reaction. The hydrocarbon phase was washed with water until the wash water was neutral. The tetramer product, separated from the unreacted vinylidene reaction mixture. was obtained in 65.7 percent yield based on the total feed to the reactor. The mixture of tetramer isomers and ho- A tetramcr product was made using the same procedure described in Example 6 starting with 8,296 grams of the vinylidene mixture and 415 cc. of the BE; ethanol catalyst at 45 C for 20 hours. The product containing homologous and isomeric olefin tetramers with molecular weights of 32, 34, 36, 38 and 40 and conforming with structural formula (2) was obtained in 70 percent yield based on the initial mixture containing the vinylidene compounds. The pale straw-yellow tetramer product mixture was clay treated by passing it through a column of attapulgus clay to remove any impurities conventionally removed by clay treating. The tetramer product was made water white by this treat- .ment. The specifications for the product before and after clay treating are set out in Table 111.
Five 50 gram samples of the vinylidene mixture made from a 60 mol percent l-octene 40 mol percent 1- decene mixture in the manner described in Example 2 were separately treated with 10, 5, 2.5, 1.0 and 0.5 cc. of BF ethanol complex for 21.5 hours at 45 C. The yields of the mixture of the tetramers conforming with structural formula (2) from each of the five samples of vinylidene mixture were 73, 74, 73, 48 and 22 weight percent, respectively, based on the vinylidene reaction mixture.
EXAMPLE 10 Three 50 gram samples of the vinylidene mixture as described in Example 9 were reacted at C., 45 C., and 70 C. for- 22, 21.5, and 21.5 hours, respectively, using 2.5 cc. of BF; ethanol complex with each sample. The yields of the tetramers conforming with structural formula (2) from each of the three samples was 67, 73 and 65 weight percent, respectively, based on the vinylidene reaction mixture.
EXAMPLE 1 l A tetramer product was made from a vinylidene mixture which was prepared from a mixture of 70 mol percent l-octene and 30 mol percent l-decene as described in Example 2. A 300 gram sample of the vinylidene mixture and 22.5 cc. of BF;,' ethanol complex were reacted at45 C. for 21.5 hours. The yield of tetramer product mixture conforming with structural formula (2) was 69 percent based on the vinylidene reaction mixture. The tetramer product mixture had a viscosity of 6,148 cs. at 40 F., 28.95 cs. at 100 F., 5.21 cs. at 210 F., and 1.29 cs. at 400 F., and a pour point of 85 F.
EXAMPLE 12 A tetramer product was made by reacting 26.3 cc. of a BF ethanol complex with 175 grams of a vinylidene mixture, obtained from a mixture of l-octe'ne and decene, containing 43.8 weight percent of 16-carbon compounds, 45.2 percent 18-carbon compounds and 1 1.0 percent 20-c arbon compounds. The reaction was carried out at 45 C. for 21 hours. The tetramer pr'oduct conforming with structural formula (2) was 72 percent based on the vinylidene mixture and it possessed a 210 F. viscosity of 5.46 cs.
EXAMPLE 13 A vinylidene mixture containing 16-. 18-. and 20- carbon vinylidene compounds was made from a 50/50 molar mixture of l-octene and l-decene. A 600 gram portion of this vinylidene mixture was dimerized in the presence of 45 cc. of BF;,- ethanol complex at a temperature of 49 C. for 21.5 hours. The reaction yielded 73 weight percent of the tetramers defined by structural formula (2) based on the total vinylidene mixture reacted.
EXAMPLE 14 The 18-carbon fraction was fractionated from a vinylidene mixture which had been prepared from a mixture of mol percent l-octene and 30 mol percent 1- decene. Seventy-five grams of this l8-carbon fraction were dimerized in the presence of l 1.2 cc. of BF; ctha n01 complex at 45 C. for 21.5 hours. The yield of 36- carbon tetramer isomers was 74 percent based on the vinylidene reaction mixture. The product had a 210 F. viscosity of 5.86 cs.
EXAMPLE 15 In like manner Example 14 was repeated using 26.3 cc. of BF; ethanol complex and grams of the 18- carbon fraction fractionated from the vinylidene mixture. The yield of the tetramer isomers was 74 percent based on the vinylidene feed mixture. The isomer mixture exhibited a 210 F. viscosity of 5.69 cs.
EXAMPLE 16 A 1: 1 complex of boron trifluoride and n-butanol was prepared by bubbling boron trifluoride into n-butanol. The introduction of the boron trifluoride was stopped after the reaction to the 1:1 BF butanol complex was completed. Three 50 gram portions of a vinylidene dimer mixture prepared from a 50/50 mixture of loctene and l-decene were separately dimerized'in the presence of 4.21 g., 2.1 1 g. and 1.40 g., respectively, of the BE, n-butanol complex at 45 C. for 21.5 hours. The yields of product conforming with structural formula (2) and based on the vinylidene reaction mixture were 69, 36 and 14 percent, respectively.
EXAMPLE 17 Two 50 gram portions of the vinylidene mixture prepared from a mixture containing 60 mol percent 1- octene and 40 mol percent l-decene were separately dimerized in the presence of 2.5 g. and 1.9 g. of the BF:,- n-butanol complex at 45 C. for 22 and 22.5 hours, respectively. The yields of product tetramer conforming with structural formula (2) were 70 and 34 percent,
respectively, based on the vinylidene reaction mixture.
EXAMPLE 18 1 Four 50 gram portions of a vinylidene mixture prepared by dimerization from a mixture containing 50 mol percent l-octene and 50 mol percent l-decene were separately dimerized in the presence of 4.63 g.,
-3.24 g., 2.32 g., and 1.53 g. of a BB; n-pentanol complex at a temperature of 45 C. for 21.5, 21.5, 22 and 22 hours, respectively. The yields of tetramer product conforming with structural formula (2) were 69, 56, 29
and 12 weight percent. respectively. based on the vinylidene mixture used.
EXAMPLE l9 Fifty grams of the vinylidene mixture used in the preceding example was dimerized in the presence of 5.04 grams of a BE, n-hexanol complex at a temperature of 45 C. for 21.5 hours. The yield of tetramer product conforming with structural formula (2) was 70 weight percent based on the vinylidene reaction mixture.
EXAMPLE A 4,629 gram portion of the vinylidene dimer mixture from l-decene as described in Example 2 was dimerized in the presence of 240 cc. of BB; ethanol complex at a temperature of 51 C. for 22.5 hours. The yield to l1.13-dioctyl-l3-methyl-l l-tricosene was 73 weight percent based on the feed mixture. The viscosity of the tetramer was 6.67 cs. at 210 F.
EXAMPLE 2] Example 20 was repeated except that 10 kilograms of the vinylidene dimer were dimerized in the presence of 500 cc. of BB; ethanol complex for 23 hours. The yield of l 1.13-dioctyl-l 3-methyl-l l-tricosene was 74 weight percent based on the feed mixture. This product was compared with Ford Motor Company specifications for primary mover turbine oils.
2-Butyl-l-octene was prepared by dimerizing lhexene in the presence of triisobutyl aluminum. After removing unreacted l-hexene, the product analyzed about 85 percent 2-butyl-l-octene with the remainder being 2-butyl0ctane and 12 carbon internal olefins. A 150 gram portion of the 2-butyl-l-octene product was dimerized in the presence of BF;;- n-butanol complex for 22 hours at 45 C. After washing and separating out the 12 carbon hydrocarbons, the 7,9-dibutyl-9-methyl- 7-pentadecene product was subjected to analysis. The infrared spectra revealed that the product possessed only one type of double bond with no unhindered double bond detected and further showed that no hydroxyl group was present in the product. Nuclear magnetic resonance spectroscopy revealed that there was only one type of double bond present in the product and that only one proton was present on the double bond. Gas chromatography and vapor pressure osmometry verified the carbon number of the product at 24.
The tetramer produced from 2-hexyl-l-dodecene in other experiments showed similar spectra at reduced intensity. In many dozens of experiments using a vinylidenc dimer of a l-olelin and .1 BF; alcohol complex as described herein. we obtained consistent results including yield of product with no showing of trimer or pentamer of the initial olefin.
EXAMPLE 23 The reaction was carried out in a 500 ml. four necked flask equipped with a stirrer. a thermocouple and a nitrogen bubbler. After purging the reaction flask for 24 hours with dry nitrogen. 100 ml. of nitromethane was first added and then 13.3 grams of aluminum chloride was added with stirring while maintaining the reactors contents at 5 C. in an ice bath. After solution was obtained. a 168 gram portion of 2-butylloctene. as described in the preceding example. was slowly added over a period of 30 minutes at 3 to 5 C. After addition ofthe dimer was completed. the temperature was maintained at a temperature of 5 C. with stirring for 3.5 hours.
The mixture was then poured into 500 ml. of water followed by 100 ml. of hexane. The organic layer was washed in succession with 500 cc. of water. 500 cc. of 10 percent HCl in water. 500 cc. of 10 percent NaOH in water and 500 cc. water. The organic phase was then separated out. filtered and distilled to remove hexane and 12 carbon compounds.
The resulting product was 95.7 grams ofa 24-carbon tetramer cut boiling at 162 C. at 1 mm. Hg. and having a refractive index of 1.4556. The bottom fraction of 36.8 grams was identified as a tetramer-pentamer mixture by gas chromatography. The yield of tetramer and pentamer based on the dimer feed material was 78.9 percent with about 7 percent being pentamer.
The product was subjected to infrared spectroscopy and found to have a strong showing of hydroxyl groups and a strong carbon to carbon double bond showing in an unhindered position. Nuclear magnetic resonance analysis disclosed double bond in the product with two protons on the double bond and four protons on carbon adjacent to the double bond with no showing percent limit of detection) of a double bond with only one proton on the double bond.
EXAMPLE 24 Example 23 was repeated except that 277.7 grams of the 20-carbon vinylidene compound mixture prepared from l-decene as described in Example 2 was introduced into the reactor instead of the l-hexene dimer. A product was obtained which analyzed by gas chromatographic analysis as about nine percent l-decene trimer. about 31 percent l-decene tetramer and at least about one percent l-decene pentamer. The infrared and nuclear magnetic resonance spectra of this product were similar to those described in the preceding example at reduced intensity. This experiment was duplicated several times with erratic results including lower yields than described in this example.
EXAMPLE 25 A 50 gram portion of a l-decene dimer as described in Example 2 was placed in a m1. flask under a nitrogen atmosphere. A 1:1 BF diethyl ether complex was made from diethyl ether which had been purified from ketone. aldehyde, peroxide and alcohol and five cc. were added to the flask. A temperature of 45 C. was maintained on the contents of the flask by a heating mantle. After 21.5 hours the contents of the flask were analyzed showing a yield to tetramer of less than one percent. In contrast when diethyl ether containing a significant amount of ethyl alcohol as an impurity is used in making the complex. a substantial yield to the tetramer is obtained due to the small but catalytically effective amount of the alcohol complex. In like manner we have attempted to convert the vinylidene dimer dimer of a vinylidene compound which comprises reacting a composition having the formula R-(CH2)2 C(R) CH2 wherein each R group is a saturated alkyl group independently having from about four to about 12 carbon atoms in the presence of a catalytic amount of a 1:1 molar complex of boron trifluoride with a lower alkyl alcohol having from one to six carbon atoms or mixtures thereof at a temperature between about 1 0 and about 200 C. and recovering a composition having the formula in which each R group is independently selected from alkyl groups having from four to 12 carbon atoms.
2. A method in accordance with claim 1 in which R is a saturated alkyl group having eight carbon atoms.
3. A method in accordance with claim 1 in which each R group is a saturated alkyl group having six or eight carbon atoms.
4. A method in accordance with claim 1 in which the temperature is between about 0 C. and about 150 C.
5. A method in accordance with claim 1 in which the temperature is between about 30 C. and about C.
6. A method in accordance with claim 1 in which the molar ratio of boron trifluoride-lower alcohol complex to vinylidene compound is between about 0.01:1 and about 1:1.
7. A method in accordance with claim 1 in which the molar ratio of boron trifluoride-lower alcohol complex to vinylidene compound in between about 0.05:1 and about'0.2: 1.

Claims (7)

1. THE PROCESS FOR PREEPARING A SUBSTANTIALLY PURE DIMER OF A VINYLIDENE COMPOUND WHICH COMPRISES REACTING A COMPOSITION HAVING THE FORMULA
2. A method in accordance with claim 1 in which R is a saturated alkyl group having eight carbon atoms.
3. A method in accordance with claim 1 in which each R group is a saturated alkyl group having six or eight carbon atoms.
4. A method in accordance with claim 1 in which the temperature is between about 0* C. and about 150* C.
5. A method in accordance with claim 1 in which the temperature is between about 30* C. and about 70* C.
6. A method in accordance with claim 1 in which the molar ratio of boron trifluoride-lower alcohol complex to vinylidene compound is between about 0.01:1 and about 1:1.
7. A method in accordance with claim 1 in which the molar ratio of boron trifluoride-lower alcohol complex to vinylidene compound in between about 0.05:1 and about 0.2:1.
US525720A 1972-07-24 1974-11-21 Process for dimerizing vinylidene compounds Expired - Lifetime US3907922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US525720A US3907922A (en) 1972-07-24 1974-11-21 Process for dimerizing vinylidene compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US274319A US3876720A (en) 1972-07-24 1972-07-24 Internal olefin
US525720A US3907922A (en) 1972-07-24 1974-11-21 Process for dimerizing vinylidene compounds

Publications (1)

Publication Number Publication Date
US3907922A true US3907922A (en) 1975-09-23

Family

ID=26956738

Family Applications (1)

Application Number Title Priority Date Filing Date
US525720A Expired - Lifetime US3907922A (en) 1972-07-24 1974-11-21 Process for dimerizing vinylidene compounds

Country Status (1)

Country Link
US (1) US3907922A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0010372A1 (en) * 1978-10-16 1980-04-30 Allied Corporation Recyclable boron trifluoride catalyst and method of using same
US5120901A (en) * 1991-06-27 1992-06-09 Ethyl Corporation Olefin purification process
US5284988A (en) * 1991-10-07 1994-02-08 Ethyl Corporation Preparation of synthetic oils from vinylidene olefins and alpha-olefins
US5498815A (en) * 1991-12-13 1996-03-12 Albemarle Corporation Preparation of synthetic oils from vinylidene olefins and alpha-olefins
WO1998020053A1 (en) * 1996-11-04 1998-05-14 Basf Aktiengesellschaft Polyolefins and their functionalized derivatives
US20080146469A1 (en) * 2005-05-12 2008-06-19 Idemitsu Kosan Co., Ltd. Process for producing saturated aliphatic hydrocarbon compound, and lubricant composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3382291A (en) * 1965-04-23 1968-05-07 Mobil Oil Corp Polymerization of olefins with bf3
US3576898A (en) * 1961-08-03 1971-04-27 Monsanto Co Synthetic hydrocarbons
US3780128A (en) * 1971-11-03 1973-12-18 Ethyl Corp Synthetic lubricants by oligomerization and hydrogenation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3576898A (en) * 1961-08-03 1971-04-27 Monsanto Co Synthetic hydrocarbons
US3382291A (en) * 1965-04-23 1968-05-07 Mobil Oil Corp Polymerization of olefins with bf3
US3780128A (en) * 1971-11-03 1973-12-18 Ethyl Corp Synthetic lubricants by oligomerization and hydrogenation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0010372A1 (en) * 1978-10-16 1980-04-30 Allied Corporation Recyclable boron trifluoride catalyst and method of using same
US5120901A (en) * 1991-06-27 1992-06-09 Ethyl Corporation Olefin purification process
US5284988A (en) * 1991-10-07 1994-02-08 Ethyl Corporation Preparation of synthetic oils from vinylidene olefins and alpha-olefins
US5498815A (en) * 1991-12-13 1996-03-12 Albemarle Corporation Preparation of synthetic oils from vinylidene olefins and alpha-olefins
WO1998020053A1 (en) * 1996-11-04 1998-05-14 Basf Aktiengesellschaft Polyolefins and their functionalized derivatives
US6133209A (en) * 1996-11-04 2000-10-17 Basf Aktiengesellschaft Polyolefins and their functionalized derivatives
AU747797B2 (en) * 1996-11-04 2002-05-23 Basf Aktiengesellschaft Polyolefins and their functionalized derivatives
US20080146469A1 (en) * 2005-05-12 2008-06-19 Idemitsu Kosan Co., Ltd. Process for producing saturated aliphatic hydrocarbon compound, and lubricant composition
US8373011B2 (en) * 2005-05-12 2013-02-12 Idemitsu Kosan Co., Ltd. Process for producing saturated aliphatic hydrocarbon compound, and lubricant composition

Similar Documents

Publication Publication Date Title
US3876720A (en) Internal olefin
US3957664A (en) Lubricant and hydraulic fluid compositions
US5068487A (en) Olefin oligomerization with BF3 alcohol alkoxylate co-catalysts
CA2046937C (en) Olefin oligomerization processes and products and use of dimer products
JP2740332B2 (en) Vinylidene dimer method
US4032591A (en) Preparation of alpha-olefin oligomer synthetic lubricant
US5250750A (en) Apparatus and oil compositions containing olefin dimer products
US4317948A (en) Production of branched hydrocarbons
EP0077113B1 (en) Olefin oligomerization using boron trifluoride and a three-component cocatalyst
US3907922A (en) Process for dimerizing vinylidene compounds
EP0449453B1 (en) Process for oligomerizing olefins to prepare base stocks for synthetic lubricants
US5171905A (en) Olefin dimer products
US5929297A (en) Olefin oligomerization process
US4319064A (en) Olefin dimerization
US4417082A (en) Thermal treatment of olefin oligomers via a boron trifluoride process to increase their molecular weight
US3793203A (en) Lubricant comprising gem-structured organo compound
US5817899A (en) Polyalphaolefin dimers having low kinematic viscosities
US5053569A (en) Process for oligomerizing olefins to prepare base stocks for synthetic lubricants
EP0678493B1 (en) Controlled formation of olefin oligomers using boron trifluoride and a hydroxy carbonyl
US4469910A (en) Method for the oligomerization of alpha-olefins
US4395578A (en) Oligomerization of olefins over boron trifluoride in the presence of a transition metal cation-containing promoter
US5146030A (en) Process for oligomerizing olefins using halogen-free titanium salts or halogen-free zirconium salts on clays
US4386229A (en) Olefin dimerization
US5322633A (en) Preparation of branched chain carboxylic esters
US3035104A (en) Process for the production of alpha olefins

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHEVRON RESEARCH COMPANY, SAN FRANCISCO, CA. A COR

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:GULF RESEARCH AND DEVELOPMENT COMPANY, A CORP. OF DE.;REEL/FRAME:004610/0801

Effective date: 19860423

Owner name: CHEVRON RESEARCH COMPANY, SAN FRANCISCO, CA. A COR

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GULF RESEARCH AND DEVELOPMENT COMPANY, A CORP. OF DE.;REEL/FRAME:004610/0801

Effective date: 19860423

STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)