US3906178A - Electrical fluid switch with crossing slide chambers - Google Patents

Electrical fluid switch with crossing slide chambers Download PDF

Info

Publication number
US3906178A
US3906178A US516686A US51668674A US3906178A US 3906178 A US3906178 A US 3906178A US 516686 A US516686 A US 516686A US 51668674 A US51668674 A US 51668674A US 3906178 A US3906178 A US 3906178A
Authority
US
United States
Prior art keywords
slide
cross
case
housing
contacts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US516686A
Inventor
Theodore E Fiddler
Arnold G Adams
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US00345977A external-priority patent/US3845257A/en
Application filed by Individual filed Critical Individual
Priority to US516686A priority Critical patent/US3906178A/en
Application granted granted Critical
Publication of US3906178A publication Critical patent/US3906178A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G9/00Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
    • G05G9/08Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlled members being actuated successively by progressive movement of the controlling member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/0065Control members, e.g. levers or knobs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H15/00Switches having rectilinearly-movable operating part or parts adapted for actuation in opposite directions, e.g. slide switch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H15/00Switches having rectilinearly-movable operating part or parts adapted for actuation in opposite directions, e.g. slide switch
    • H01H15/02Details
    • H01H15/06Movable parts; Contacts mounted thereon
    • H01H15/10Operating parts
    • H01H15/102Operating parts comprising cam devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/02Operating parts, i.e. for operating driving mechanism by a mechanical force external to the switch
    • H01H3/0206Combined operation of electric switch and of fluid control device

Definitions

  • ABSTRACT An apparatus for controlling electromotive force (EMF) and/or fluid pressure force (FPF) in a system having a case with walls defining at least one slide chamber and one or more intercommunicating crossslide chambers.
  • the case walls at the chambers carry circuit terminals for connection in the circuits of a system.
  • the circuit terminals may be electrical contacts.
  • the slide and cross-slide carry circuit making and breaking means for connecting and disconnecting circuits in a system.
  • the circuit making and breaking means may be a switch for co-action with the electrical contacts and/or a channel maze for co-action with the fluid ports.
  • the slide carries at least one cam track and each cross-slide carries a cam lying in a cam track. With movement of the slide in one direction each cam track imparts transverse movement to each cross-slide at desired points of travel.
  • the movement of the slide and the transverse movement of the cross-slide actuates the making and breaking means on the slide and/or cross-slide relative to the circuit contacts on the case to open and close circuits as coordinated in the engineering to the position of the slide and/or cross-slide.
  • Control programs for applying EMF and/or'FPF in systems are becoming more complicated and use more circuits while the space allotted to the control devices is becoming smaller. Thus the control devices are being called upon to handle more circuits and to be reduced in size. Also, the programs are becoming more varied in many uses so that the control device is also called upon to be adaptable'to handle many variations in programs in numerous systems.
  • An object of the invention is to provide a case having a slide with relative motion and multiple positions between the slide and the case and a cross-slide with relative motion and various positions between the crossslide and the case.
  • An object of the invention is to use the movement of the slide to actuate'movement of the cross-slides so that they move with coordinated action.
  • An object of the invention is to provide cam tracks on the'slide' and a cam on each cross-slide lying in one of the cam tracks to impart movement to each crossslide in conjunction with movement of the slide.
  • An object of the invention is to provide cam and cam track actuationbetw'een a slide and cross-slides so that a 'portion'of the programmed control of the circuits may be engineered into thecam tracks.
  • FIG. 1 is a top plan view of a control device embodying the invention indicating internal parts in broken lines and showing nipples at the F PF ports and an EMF terminal s't'rip. Y i
  • FIG. 2 i s a back elevational view of the device of FIG. 1 as seen from the bottom of FIG. 1, with the operating levers shown in cross-section, additionally showing an electric cord and connector, and showing internal electrical leads in broken lines.
  • FIG. 3 is a cross-sectional view of the device taken on the line 3-3 of FIG. 2, showing the slide and EMF contacts in elevation and indicating a changedposition of the slide in broken lines.
  • FIG. 4 is a cross-sectional view of the device seen in FIG. 1 taken on the line 4-4 thereof, showing the cross-slides, and indicating the cams on the crossslides, the cam tracks behind the cross-slides and the slide chambers in the case in broken lines and indicating the FPF ports by phantom broken lines.
  • FIG. 5 is a view similar to FIG. -4 showing the cam tracks, cams and cross-slides in different positions upon changed position of the slides.
  • FIG. 6 is a view similar to FIGS. 4 and 5, showing the same parts in different positions.
  • FIG. 7 is a cross-sectional view of the device seen in FIG. 4 taken on the line 77 thereof, showing the slide in cross-section and the cross-slide and cam in elevation, and showing the operating lever in elevation and broken away.
  • FIG. 8 is a cross-sectional view of the deviceseen in FIG. '5 taken on the line 88 thereof showing the slide, cross-slide, cam, nipple, port and channel maze in cross-section.
  • FIG. 9 is a view similar to FIG. 7 showing an embodiment of the invention having EMF contacts actuated by the cross-slide.
  • FIG. 10 is aside view of the device seen in FIG. 9 taken from the right side thereof, partly in cross-section and partly in elevation, showing the spaced disposition of the EMF contacts and terminals on the case.
  • the control apparatus for electrical an'd/or fluid force comprises, FIGS. 14, a case 20 having a cavity defining a first slide chamber 21 and a cavity defining a second slide chamber 22.
  • a first slide 23 lies in the chamber 21 and a second slide 24 lies in the chamber 22.
  • Cam tracks 25 and 27 are carried by the slide 23 and a cam track 26 is carried by the slide 24.
  • An operating lever 28 is connected to the second slide 24 and an operating lever 29 is connected to the first slide 23. Movement of the operating levers 28 and 29 moves the slides 24 and 23 in the slide chambers 22 and 21, respectively.
  • Transverse cavities in the case 20 define cross-slide chambers 30 and 31.
  • a cross-slide 32 lies in the crosschamber 31.
  • a cam 33 on the cross-slide 32 lies in the cam track 27 of the first slide 23.
  • a cross-slide 34 lies in the top of the cross-shamber 30.
  • a cam 35 on the cross-slide 34 lies in the cam track 25 of the first slide 23.
  • a cross-slide 36 lies in the bottom of the crosschamber 30.
  • a cam 37'on the cross-slide 36 lies in the cam track 26 of the second slide 24.
  • nipples 40 on the case 20 at thecross-chambers 30 and 31 surmount ports 41 in the case 20 at the cross-slides 32, 34, and 36.
  • a channel maze 42 on the cross-slide 32 slides against the wall of the case 20 at the ports 41 and is resiliently pressed thereagainst by a spring 43 FIG. 8.
  • the cross-slides 34 and 36 are similarly housed, formed, and equipped and the case 20 has ports 41 similarly integrated therewith.
  • a back wall 50 is mounted on the case 20, FIGS. 1-3.
  • a terminal 51 connects to one side of EMF power supply.
  • Spring switch arms 52 and 53 lead directly from the terminal 51.
  • Cams 54 and 55 on the top slide 23 actuate the switch arms 52 and 53.
  • Switch contact points 56, 57, 58, and 59 are carried by the back wall 50.
  • the switch arms 52 and 53 engage the contact points 56 and 57 respectively when moved by the cams 54 and 55 upon movement by the top slide 23 as indicated by the broken line indication, FIG. 3.
  • a cross-connector 60 is mounted on the back wall 50.
  • Switch arms 61 and 62 are connected to the cross-connector 60 and are actuated similarly by the bottom slide 24 by cams as described relative to the top slide against the contact points 58 and 59. Leads 63 are connected to each contact point 56-59 as illustrated relative to contact point 59. The leads 63 are accumulated in a plug 64.
  • the cross-connector 60 may be fixedly connected to the terminal 51 or it may be engaged by the actuation of a switch arm such as the switch arm 53 as shown. Thus the supply of EMF to the switch arms 61 and 62 may be made dependent on the actuation of another switch such as switch arm 53. This may be programmed in the control system so that an operator-user must first actuate a certain portion of a system before he may actuate another portion. Obviously the terminal 51 may be fixedly connected to the switch arms 61 and 62 rendering them independently operable.
  • - EMF control may also be provided at the cross-slides 32,34 and 36 as shown in FIGS. 9 and 10 relative to bottom cross-slide 36 and it will be understood that the other cross-slides 32 and 34 may be similarly equipped.
  • Contact points 70-73 lie spaced inside the case in the cross-slide chamber at the cross-slide 36 and have exterior terminals 74-77 respectively for receptacle connection.
  • a contactor plate 80 is carried by the cross-slide 36.
  • a spring 8l urges the plate 80 toward the contact points 70-73.
  • Movement of the cross-slide 36 carries the plate 80 relative to the contact points 70-73 to complete and interrupt circuits between the contact points 70-73 as engineered in the design of the system by the spacing and position of the contact points 70-73 and the size and shape of the plate 80 to control EMF ina system.
  • the location of the cams 54 and 55, FIG. 3, on the top and bottom slides 23 and '24, the placement of the switch arms 52, 53, 61 and 62, FIG. 2, the positioning of the contact points 70-73, FIG. 10, are engineered into the device for the system desired together with the location of the ports 41 relative to the channel maze 42 on each cross-slide 32, 34 and 36 and the channeling and blocking configuration of each channel maze 42, FIGS. 4-9, the independency or dependency of the circuits exemplified by the switch arms 52, 53, 61, and 62, and the angles and conformation of the cam tracks 25, 26, and 27, FIGS. 4-6, relative to the cams 33, 35, and 37 on the cross-slides 32, 34, and 36.
  • F PF tubes are connected on the nipples 40 between supply and use and EMF circuits, not shown, are connected to the terminals 51, 63, and 74-77.
  • EMF circuits are connected to the terminals 51, 63, and 74-77.
  • FIGS. 7-10 Upon the user swinging the lever 28 it moves the bottom slide 24 between the positions indicated in broken lines FIGS. 1 and 4-6 and solid line positions shown, FIGS. 7-10, during which like cams 54 and 55, not shown, actuate the switch arms 61, 62, FIG. 2, and the cam track 26 actuates the cross-slide 36 via the cam 37 relative to the ports 41, FIGS. 4-10, and also moves the plate 80 FIGS. 9, 10, relative to the point contacts -73.
  • a control device comprising,
  • said linear slide having a cam track receiving and engaging said cam on said cross-slide so that linear movement of said linear slide in said case effects transverse movement of said cross-slide in said housing,
  • said housing having a face wall
  • a channel maze switch-valve on said cross-slide facing said ports for selectably interconnecting and blocking fluid communication between said ports relative to FPF supply and use coordinated with the position of said cross-slide in said housing;
  • connector means on said housing connected-to said contacts for attaching EMF supply and use lines to said contacts
  • a control device comprising,
  • a channel maze switch-valve on said cross-slide facing said ports for selectably interconnecting and blocking fluid communication between said ports relative to FPF supply and use coordinated with the position of said cross-slide in said housing;
  • connector means leading to said contacts for attaching EMF supply and use lines to said contacts

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Adjustable Resistors (AREA)

Abstract

An apparatus for controlling electromotive force (EMF) and/or fluid pressure force (FPF) in a system having a case with walls defining at least one slide chamber and one or more intercommunicating cross-slide chambers. The case walls at the chambers carry circuit terminals for connection in the circuits of a system. The circuit terminals may be electrical contacts and/or fluid ports connected in a system by wires and tubes, respectively. The slide and cross-slide carry circuit making and breaking means for connecting and disconnecting circuits in a system. The circuit making and breaking means may be a switch for co-action with the electrical contacts and/or a channel maze for co-action with the fluid ports. The slide carries at least one cam track and each cross-slide carries a cam lying in a cam track. With movement of the slide in one direction each cam track imparts transverse movement to each cross-slide at desired points of travel. The movement of the slide and the transverse movement of the cross-slide actuates the making and breaking means on the slide and/or cross-slide relative to the circuit contacts on the case to open and close circuits as coordinated in the engineering to the position of the slide and/or cross-slide.

Description

United States Patent [191 Fiddler et al.
[451 Sept. 16, 1975 ELECTRICAL FLUID SWITCH WITH CROSSING SLIDE CHAMBERS [73] Assignee: Theodore E. Fiddler, Birmingham,
Mich.
221 Filed: Oct. 21, 1974 [21] Appl. No.: 516,686
Related US. Application Data [63] Continuation of Ser. No. 345,977, March 29, 1973, Pat. No. 3,845,257, which is a continuation-in-part of Ser. No. 315,106, Dec. 14, 1972, Pat. No. 3,824,356.
Primary ExaminerJames R. Scott Attorney, Agent, or FirmWil1iam T. Sevald [57] ABSTRACT An apparatus for controlling electromotive force (EMF) and/or fluid pressure force (FPF) in a system having a case with walls defining at least one slide chamber and one or more intercommunicating crossslide chambers. The case walls at the chambers carry circuit terminals for connection in the circuits of a system. The circuit terminals may be electrical contacts.
and/or fluid ports connected in a system by wires and tubes, respectively. The slide and cross-slide carry circuit making and breaking means for connecting and disconnecting circuits in a system. The circuit making and breaking means may be a switch for co-action with the electrical contacts and/or a channel maze for co-action with the fluid ports. The slide carries at least one cam track and each cross-slide carries a cam lying in a cam track. With movement of the slide in one direction each cam track imparts transverse movement to each cross-slide at desired points of travel. The movement of the slide and the transverse movement of the cross-slide actuates the making and breaking means on the slide and/or cross-slide relative to the circuit contacts on the case to open and close circuits as coordinated in the engineering to the position of the slide and/or cross-slide.
2 Claims, 10 Drawing Figures PATENTEU SEP 1 6l975 3.906.178
SHUT 1 BF 3 PATENIEB SEP "6 i975 SHEET 2 BF 3 PATENTEU SEP 1 6 I975 9 O6, 1 TE FLUID SWITCH WITH CROSSING SLIDE CHAMBERS This application is a continuation of application Ser. No. 345,977, filed Mar. 29, 1973, now U.S. Pat. No.
Application 'Ser. No. 345,977 which is a continuation-in-part of our application Ser. No. 315,106 filed Dec. 14, 1972, now U.S. Pat. No. 3,824,356. The applicants are the patentees in U.S. Pat. Nos. 3,637,961 and 3,637,962 for control devices.
BACKGROUND OF THE INVENTION Control programs for applying EMF and/or'FPF in systems are becoming more complicated and use more circuits while the space allotted to the control devices is becoming smaller. Thus the control devices are being called upon to handle more circuits and to be reduced in size. Also, the programs are becoming more varied in many uses so that the control device is also called upon to be adaptable'to handle many variations in programs in numerous systems.
SUMMARY OF THE PRESENT INVENTION With the foregoing in view, it is an object of the invention toprovide a control device which is reduced in size, which has capacity for controlling more circuits in a system, and which may be varied to suit various programs in many systems.
An object of the invention is to provide a case having a slide with relative motion and multiple positions between the slide and the case and a cross-slide with relative motion and various positions between the crossslide and the case.
An object of the invention is to use the movement of the slide to actuate'movement of the cross-slides so that they move with coordinated action.
An object of the invention is to provide cam tracks on the'slide' and a cam on each cross-slide lying in one of the cam tracks to impart movement to each crossslide in conjunction with movement of the slide.
An object of the invention is to provide cam and cam track actuationbetw'een a slide and cross-slides so that a 'portion'of the programmed control of the circuits may be engineered into thecam tracks.
An object of the invention is to provide cam and cam track actuation and program control so that the control ELECTRICAL device can be easily changed in its manufacture to suit DESCRIPTION OF THE DRAWINGS FIG. 1 is a top plan view of a control device embodying the invention indicating internal parts in broken lines and showing nipples at the F PF ports and an EMF terminal s't'rip. Y i
FIG. 2 i s a back elevational view of the device of FIG. 1 as seen from the bottom of FIG. 1, with the operating levers shown in cross-section, additionally showing an electric cord and connector, and showing internal electrical leads in broken lines.
FIG. 3 is a cross-sectional view of the device taken on the line 3-3 of FIG. 2, showing the slide and EMF contacts in elevation and indicating a changedposition of the slide in broken lines.
FIG. 4 is a cross-sectional view of the device seen in FIG. 1 taken on the line 4-4 thereof, showing the cross-slides, and indicating the cams on the crossslides, the cam tracks behind the cross-slides and the slide chambers in the case in broken lines and indicating the FPF ports by phantom broken lines.
FIG. 5 is a view similar to FIG. -4 showing the cam tracks, cams and cross-slides in different positions upon changed position of the slides.
FIG. 6 is a view similar to FIGS. 4 and 5, showing the same parts in different positions. I
FIG. 7 is a cross-sectional view of the device seen in FIG. 4 taken on the line 77 thereof, showing the slide in cross-section and the cross-slide and cam in elevation, and showing the operating lever in elevation and broken away.
FIG. 8 is a cross-sectional view of the deviceseen in FIG. '5 taken on the line 88 thereof showing the slide, cross-slide, cam, nipple, port and channel maze in cross-section.
FIG. 9 is a view similar to FIG. 7 showing an embodiment of the invention having EMF contacts actuated by the cross-slide; and
FIG. 10 is aside view of the device seen in FIG. 9 taken from the right side thereof, partly in cross-section and partly in elevation, showing the spaced disposition of the EMF contacts and terminals on the case.
DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENT Referring now to the drawin s wherein like reference numerals refer to like and corresponding parts throughout the several views, the control apparatus for electrical an'd/or fluid force comprises, FIGS. 14, a case 20 having a cavity defining a first slide chamber 21 and a cavity defining a second slide chamber 22. A first slide 23 lies in the chamber 21 and a second slide 24 lies in the chamber 22. Cam tracks 25 and 27 are carried by the slide 23 and a cam track 26 is carried by the slide 24. An operating lever 28 is connected to the second slide 24 and an operating lever 29 is connected to the first slide 23. Movement of the operating levers 28 and 29 moves the slides 24 and 23 in the slide chambers 22 and 21, respectively.
Transverse cavities in the case 20 define cross-slide chambers 30 and 31. A cross-slide 32 lies in the crosschamber 31. A cam 33 on the cross-slide 32 lies in the cam track 27 of the first slide 23. A cross-slide 34 lies in the top of the cross-shamber 30.'A cam 35 on the cross-slide 34 lies in the cam track 25 of the first slide 23. A cross-slide 36 lies in the bottom of the crosschamber 30. A cam 37'on the cross-slide 36 lies in the cam track 26 of the second slide 24.
Relative to control of FPF, nipples 40 on the case 20 at thecross- chambers 30 and 31 surmount ports 41 in the case 20 at the cross-slides 32, 34, and 36. A channel maze 42 on the cross-slide 32 slides against the wall of the case 20 at the ports 41 and is resiliently pressed thereagainst by a spring 43 FIG. 8. The cross-slides 34 and 36 are similarly housed, formed, and equipped and the case 20 has ports 41 similarly integrated therewith.
Relative to control of EMF, a back wall 50 is mounted on the case 20, FIGS. 1-3. A terminal 51 connects to one side of EMF power supply. Spring switch arms 52 and 53 lead directly from the terminal 51. Cams 54 and 55 on the top slide 23 actuate the switch arms 52 and 53. Switch contact points 56, 57, 58, and 59 are carried by the back wall 50. The switch arms 52 and 53 engage the contact points 56 and 57 respectively when moved by the cams 54 and 55 upon movement by the top slide 23 as indicated by the broken line indication, FIG. 3. A cross-connector 60 is mounted on the back wall 50. Switch arms 61 and 62 are connected to the cross-connector 60 and are actuated similarly by the bottom slide 24 by cams as described relative to the top slide against the contact points 58 and 59. Leads 63 are connected to each contact point 56-59 as illustrated relative to contact point 59. The leads 63 are accumulated in a plug 64. The cross-connector 60 may be fixedly connected to the terminal 51 or it may be engaged by the actuation of a switch arm such as the switch arm 53 as shown. Thus the supply of EMF to the switch arms 61 and 62 may be made dependent on the actuation of another switch such as switch arm 53. This may be programmed in the control system so that an operator-user must first actuate a certain portion of a system before he may actuate another portion. Obviously the terminal 51 may be fixedly connected to the switch arms 61 and 62 rendering them independently operable.
- EMF control may also be provided at the cross-slides 32,34 and 36 as shown in FIGS. 9 and 10 relative to bottom cross-slide 36 and it will be understood that the other cross-slides 32 and 34 may be similarly equipped. Contact points 70-73 lie spaced inside the case in the cross-slide chamber at the cross-slide 36 and have exterior terminals 74-77 respectively for receptacle connection. A contactor plate 80 is carried by the cross-slide 36. A spring 8l urges the plate 80 toward the contact points 70-73. Movement of the cross-slide 36 carries the plate 80 relative to the contact points 70-73 to complete and interrupt circuits between the contact points 70-73 as engineered in the design of the system by the spacing and position of the contact points 70-73 and the size and shape of the plate 80 to control EMF ina system.
The location of the cams 54 and 55, FIG. 3, on the top and bottom slides 23 and '24, the placement of the switch arms 52, 53, 61 and 62, FIG. 2, the positioning of the contact points 70-73, FIG. 10, are engineered into the device for the system desired together with the location of the ports 41 relative to the channel maze 42 on each cross-slide 32, 34 and 36 and the channeling and blocking configuration of each channel maze 42, FIGS. 4-9, the independency or dependency of the circuits exemplified by the switch arms 52, 53, 61, and 62, and the angles and conformation of the cam tracks 25, 26, and 27, FIGS. 4-6, relative to the cams 33, 35, and 37 on the cross-slides 32, 34, and 36.
In operation F PF tubes, not shown, are connected on the nipples 40 between supply and use and EMF circuits, not shown, are connected to the terminals 51, 63, and 74-77. When the user swings the lever 29 it moves the top slide between the dotted line positions indicated and the solid line showings of FIGS. 3-6 during which the cams 54 and 55 actuate the switch arms 52 and 53 and the cam tracks 25 and 27 actuate the crossslides 32 and 34 via the cams 33 and 35 respectively relative to the ports 41. If the circuit to the switch arms 61, 62 is dependent, this also actuates the crossconnector 60.
Upon the user swinging the lever 28 it moves the bottom slide 24 between the positions indicated in broken lines FIGS. 1 and 4-6 and solid line positions shown, FIGS. 7-10, during which like cams 54 and 55, not shown, actuate the switch arms 61, 62, FIG. 2, and the cam track 26 actuates the cross-slide 36 via the cam 37 relative to the ports 41, FIGS. 4-10, and also moves the plate 80 FIGS. 9, 10, relative to the point contacts -73.
It will be understood that due to the interaction between the slides 23 and 24 and cross-slides 32, 34, and 36 that many EMF and FPF circuits can be controlled in coordination with one another in a very small space and that the device is capable of controlling a large plurality of circuits.
The device and elements shown are exemplary and the scope of the protection of the invention is defined in the appended claims.
We claim:
1. A control device comprising,
a case defining an interior linear slide chamber;
a front wall on said case having an opening therein;
a housing on said front wall overlying said opening in said case front wall defining an interior transverse cross-slide chamber in said housing relative to said linear slide chamber in said case;
a cross-slide in said housing for transverse movement in said housing;
a cam on said cross-slide;
a linear slide in said case for linear movement in said case;
said linear slide having a cam track receiving and engaging said cam on said cross-slide so that linear movement of said linear slide in said case effects transverse movement of said cross-slide in said housing,
means for moving said linear slide;
said housing having a face wall;
FPF ports in said face wall of said housing;
means surmounting said ports for connecting said ports to FPF supply and use;
a channel maze switch-valve on said cross-slide facing said ports for selectably interconnecting and blocking fluid communication between said ports relative to FPF supply and use coordinated with the position of said cross-slide in said housing;
EMF contacts on said housing adjacent said crossslide,
connector means on said housing connected-to said contacts for attaching EMF supply and use lines to said contacts, and
means on said cross-slide facing said contacts for se lectably interconnecting and disconnecting electrical communication between said contacts relative to EMF supply and use coordinated with the position of said cross-slide in said housing.
2. A control device comprising,
a case defining an interior linear slide chamber;
a front wall on said case having an opening therein;
a housing on said front wall overlying said opening in said case front wall defining an interior transverse cross-slide chamber in said housing relative to said linear slide chamber in saidcase;
a channel maze switch-valve on said cross-slide facing said ports for selectably interconnecting and blocking fluid communication between said ports relative to FPF supply and use coordinated with the position of said cross-slide in said housing;
EMF contacts in said case adjacent said linear slide,
connector means leading to said contacts for attaching EMF supply and use lines to said contacts,
means on said linear slide facing said contacts for selectably interconnecting and disconnecting electrical communication between said contacts relative to EMF supply and use coordinated with the relative position of said linear slide in said case.

Claims (2)

1. A control device comprising, a case defining an interior linear slide chamber; a front wall on said case having an opening therein; a housing on said front wall overlying said opening in said case front wall defining an interior transverse cross-slide chamber in said housing relative to said linear slide chamber in said case; a cross-slide in said housing for transverse movement in said housing; a cam on said cross-slide; a linear slide in said case for linear movement in said case; said linear slide having a cam track receiving and engaging said cam on said cross-slide so that linear movement of said linear slide in said case effects transverse movement of said crossslide in said housing, means for moving said linear slide; said housing having a face wall; FPF ports in said face wall of said housing; means surmounting said ports for connecting said ports to FPF supply and use; a channel maze switch-valve on said cross-slide facing said ports for selectably interconnecting and blocking fluid communication between said ports relative to FPF supply and use coordinated with the position of said cross-slide in said housing; EMF contacts on said housing adjacent said cross-slide, connector means on said housing connected to said contacts for attaching EMF supply and use lines to said contacts, and means on said cross-slide facing said contacts for selectably interconnecting and disconnecting electrical communication between said contacts relative to EMF supply and use coordinated with the position of said cross-slide in said housing.
2. A control device comprising, a case defining an interior linear slide chamber; a front wall on said case having an opening therein; a housing on said front wall overlying said opening in said case front wall defining an interior transverse cross-slide chamber in said housing relative to said linear slide chamber in said case; a cross-slide in said housing for transverse movement in said housing; a cam on said cross-slide; a linear slide in said case for linear movement in said case; said linear slide having a cam track receiving and engaging said cam on said cross-slide so that linear movement of said linear slide in said case effects transverse movement of said cross-slide in said housing, means for moving said linear slide; said housing having a face wall, FPF ports in said face wall of said housing, means surmounting said ports for connecting said ports to FPF supply and use; a channel maze switch-valve on said cross-slide facing said ports for selectably interconnecting and blocking fluid communication between said ports relative to FPF supply and use coordinated with the position of said cross-slide in said housing; EMF contacts in said case adjacent said linear slide, connector means leading to said cOntacts for attaching EMF supply and use lines to said contacts, means on said linear slide facing said contacts for selectably interconnecting and disconnecting electrical communication between said contacts relative to EMF supply and use coordinated with the relative position of said linear slide in said case.
US516686A 1973-03-29 1974-10-21 Electrical fluid switch with crossing slide chambers Expired - Lifetime US3906178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US516686A US3906178A (en) 1973-03-29 1974-10-21 Electrical fluid switch with crossing slide chambers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US00345977A US3845257A (en) 1972-12-14 1973-03-29 Electrical and fluid switch with crossing slide chambers
US516686A US3906178A (en) 1973-03-29 1974-10-21 Electrical fluid switch with crossing slide chambers

Publications (1)

Publication Number Publication Date
US3906178A true US3906178A (en) 1975-09-16

Family

ID=26994643

Family Applications (1)

Application Number Title Priority Date Filing Date
US516686A Expired - Lifetime US3906178A (en) 1973-03-29 1974-10-21 Electrical fluid switch with crossing slide chambers

Country Status (1)

Country Link
US (1) US3906178A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4126153A (en) * 1977-01-24 1978-11-21 Indak Manufacturing Corp. Combined electrical switch and fluid power control device
US4126344A (en) * 1976-04-02 1978-11-21 Westinghouse Electric Corp. Compressive bumper assembly
US4167659A (en) * 1976-01-06 1979-09-11 Mitsubishi Denki Kabushiki Kaisha Operation mechanism of switch
FR2460536A1 (en) * 1979-06-28 1981-01-23 Disyuntor Regulador Asd Sa MULTIPLE SELECTIVE SWITCH, IN PARTICULAR FOR MOTOR VEHICLES
EP0026555A1 (en) * 1979-10-01 1981-04-08 Alco Electronic Products, Inc. Sub-miniature, multi-pole toggle switch with linear see-saw contacts
US4291725A (en) * 1978-04-06 1981-09-29 Indak Manufacturing Corp. Fluid control switches
US4395609A (en) * 1981-07-24 1983-07-26 General Motors Corporation Cam operated dual switch assembly

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2914629A (en) * 1958-04-23 1959-11-24 Chrysler Corp Control device
US3051801A (en) * 1959-09-22 1962-08-28 Gen Motors Corp Combined switch and valve for parking brake release systems
US3122616A (en) * 1962-01-16 1964-02-25 Robertshaw Controls Co Water temperature selector valve and switch
US3637962A (en) * 1971-03-29 1972-01-25 Theodore E Fiddler A rotary control device for actuating a switch and directing a fluid pressure force
US3637961A (en) * 1970-12-02 1972-01-25 Theodore E Fiddler A control device for actuating a switch and directing a fluid pressure force
US3824356A (en) * 1972-12-14 1974-07-16 T Fiddler Actuator for electro-motive force and fluid pressure force
US3845257A (en) * 1972-12-14 1974-10-29 T Fiddler Electrical and fluid switch with crossing slide chambers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2914629A (en) * 1958-04-23 1959-11-24 Chrysler Corp Control device
US3051801A (en) * 1959-09-22 1962-08-28 Gen Motors Corp Combined switch and valve for parking brake release systems
US3122616A (en) * 1962-01-16 1964-02-25 Robertshaw Controls Co Water temperature selector valve and switch
US3637961A (en) * 1970-12-02 1972-01-25 Theodore E Fiddler A control device for actuating a switch and directing a fluid pressure force
US3637962A (en) * 1971-03-29 1972-01-25 Theodore E Fiddler A rotary control device for actuating a switch and directing a fluid pressure force
US3824356A (en) * 1972-12-14 1974-07-16 T Fiddler Actuator for electro-motive force and fluid pressure force
US3845257A (en) * 1972-12-14 1974-10-29 T Fiddler Electrical and fluid switch with crossing slide chambers

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4167659A (en) * 1976-01-06 1979-09-11 Mitsubishi Denki Kabushiki Kaisha Operation mechanism of switch
US4126344A (en) * 1976-04-02 1978-11-21 Westinghouse Electric Corp. Compressive bumper assembly
US4126153A (en) * 1977-01-24 1978-11-21 Indak Manufacturing Corp. Combined electrical switch and fluid power control device
US4291725A (en) * 1978-04-06 1981-09-29 Indak Manufacturing Corp. Fluid control switches
FR2460536A1 (en) * 1979-06-28 1981-01-23 Disyuntor Regulador Asd Sa MULTIPLE SELECTIVE SWITCH, IN PARTICULAR FOR MOTOR VEHICLES
US4367379A (en) * 1979-06-28 1983-01-04 Disyuntor-Regulador A.S.D.,S.A. Multiple selective switch
EP0026555A1 (en) * 1979-10-01 1981-04-08 Alco Electronic Products, Inc. Sub-miniature, multi-pole toggle switch with linear see-saw contacts
US4395609A (en) * 1981-07-24 1983-07-26 General Motors Corporation Cam operated dual switch assembly

Similar Documents

Publication Publication Date Title
JP2779951B2 (en) Index rotary switch
CN101377981B (en) Trigger switch
US3906178A (en) Electrical fluid switch with crossing slide chambers
US3603757A (en) Adjustable switch device
CA2099688A1 (en) Multiple circuit switch with improved multi-position for joypad actuator
GB1519315A (en) Trigger-locks for hand held power tools
GB1503201A (en) Electrical slide switch assembly
EP0102703A2 (en) Double pole membrane switch having preferred sequence closing feature
US3588411A (en) Power tool switch and speed control with control elements mounted in recesses in the tool handle
US3845257A (en) Electrical and fluid switch with crossing slide chambers
USRE27016E (en) Plkctric limit switch having a diagonally divided housing, a detachable actuator, and mechanisms for causing selected operation of a pushbutton snap switch
GB1490430A (en) Electrical switches
US4448390A (en) Vacuum control valve for automotive heating and airconditioning systems
GB1369897A (en) Push-button switch
US20020079204A1 (en) Foot operated switch for electrical circuits
US3637961A (en) A control device for actuating a switch and directing a fluid pressure force
US2725432A (en) Switch
MX9802589A (en) Switched operator with interlock mechanism.
ES470401A1 (en) Electrical switch
US3944765A (en) Combination turn-signal and hazard-warning switch means for an automobile
US20180082804A1 (en) Electric switch
TW200503032A (en) Electrical switch with limited contact arcing
EP0803938A1 (en) Low insertion force connector
CN215911351U (en) Novel switch slider, core and electromagnetic lock safety switch
JPS6073177A (en) Fluid flow changeover valve