US3905417A - Electromagnetic rabbling mechanism for continuously pouring molten metal - Google Patents

Electromagnetic rabbling mechanism for continuously pouring molten metal Download PDF

Info

Publication number
US3905417A
US3905417A US422128A US42212873A US3905417A US 3905417 A US3905417 A US 3905417A US 422128 A US422128 A US 422128A US 42212873 A US42212873 A US 42212873A US 3905417 A US3905417 A US 3905417A
Authority
US
United States
Prior art keywords
tank
annular
liquid
rabbling mechanism
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US422128A
Inventor
Jean Delassus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie Electro Mecanique SA
Original Assignee
Compagnie Electro Mecanique SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Electro Mecanique SA filed Critical Compagnie Electro Mecanique SA
Application granted granted Critical
Publication of US3905417A publication Critical patent/US3905417A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/122Accessories for subsequent treating or working cast stock in situ using magnetic fields

Definitions

  • An electromagnetic rabbling mechanism associated with continuously poured molten metal forming an ingot comprises an inductor coil mounted on a stationary annular laminated magnetic structure providing a rotating magnetic field which surrounds the slowly descending column of solidifying metal and induces rotation of the central and still liquid metal within the solidified outer crust portion of the ingot. Cooling of the inductor coil and its rotary magnetic field producing structure is effected by immersion thereof within a water-filled annular tank co-axially surrounding the descending metal column, the water or other liquid coolant being continuously circulated through the tank along a path designed to establish an optimum amount of heat transfer contact surfaces with all exposed parts of the magnetic structure and the coil.
  • the present invention relates to mechanisms for continuously pouring molten metals and wherein the ingot 5 leaving the ingot mold where it was shaped continuously descends at a constant and very low speed, the ingot then consisting of an outer crust already solidified at the mold exit and of a central, still liquid part, called the molten well or shaft, ofwhich the cross-section progressively narrows during ingot descent into a so-called secondary cooling zone.
  • Such a rotary magnetic field may be achieved by means of a wound magnetic toroid, which functions as an inductor, of the type used in the stators for electric rotating field motors, with a hollowed central part traversed by the ingot being solidified and transversely crossed by the rotating magnetic field.
  • a magnetic toroid is subjected to the in tense radiation from the partially solid ingot still at very high temperature and passing through said toroid, which therefore is in danger of being very rapidly de stroyed unless effective means are provided to ensure its cooling.
  • the magnetic toroid is mounted in an impermeable annular tank provided with a cooling water inlet and an outlet for the water having provided the cooling, the tank being so designed, that the water will first circulate from top to bottom through an annular passage provided between the outer wall of the tank and the periphery of the stack of annular laminations comprising along their inner rims the slots holding the inductor winding, then horizontally and radially inward around the conductors at the lower winding heads, then from the bottom towards the top through these winding slots and through the narrow annular passage provided between the lower rim of the lamination stack and the inner tank wall, and lastly horizontally and radially outward above the stack around the conductors at the upper winding heads and out through the outlet.
  • winding conductors consist of a flexible conductor comprising a central stranded conductor covered by an insulator impermeable to water; one may for instance use a flexible conductor structure of circular cross-section and 6mm in diameter, comprising a 3 mm copper core; while such conductor will not efficiently fill the slots, they do allow obtaining the desired field intensity and ensure effective cooling water passage be tween them in the remaining clear spaces between their cylindrical walls, even though they are adjoining.
  • Another difficulty consists in achieving conductor cable lead-outs that are impermeable with respect to the cooling water; to that end, and in conformity with a characteristic of the present invention, the lead-outs are solid conductors traversing an insulating plate provided in the wall of the tank and connected inside the latter to the carefully insulated ends of the winding.
  • the bared cable ends will be soldered into bores fashioned in the solid and massive conductors.
  • heat-setting sleeves surrounding the cable ends and the corresponding ones of the solid conductors the whole being immersed in a filling resin or potting compound inside an insulating sleeve of which the outer rim is sunk in a corresponding groove made to that end in the lower side of the insulating plate; furthermore, the solid and massive conductors are provided with an inner shoulder which is pressed against an interposed toroidal seal against the lower side of the insulating plate by means of a tightening screw.
  • the tank is so designed that it may be easily dismantled to permit inside cleaning and to provide easy access to the cables and connections.
  • FIG. 1 is a vertical cross-section of the electromagnetic rabbling mechanism for the continuous pouring of a molten metal
  • FIG. 2 is a top view of a cross-section along line llll of FIG. 1',
  • FIG. 3 is a diametrical section of the electromagnetic mechanism being used
  • FIG. 4 is a section along line lVlV of FIG. 3;
  • FIG. 5 is a cross-section on a larger scale, of the winding cable terminals.
  • the column of molten metal leaving a ladle (not shown) and which descends slowly along a vertical path comprises first an already solid part of ingot 1 within which liquid metal 2 forms a fusion well or shaft; the ingot passes through the interior hollow part of an annular tank 3 within which is mounted an inductor coil L with lower and upper heads 6 and 7 resp., in the circumferentially spaced slots 5 of an annular magnetic lamination stack 4.
  • Cooling water flowing in the tank from top to bottom passes through inlet 8 and reaches tank 3; it then passes between the outer rim of the annular lamination stack 4 and the outer wall 9 of tank 3 to the lower part of the tank, then flows horizontally radially inward while cooling the lower winding heads 6, next moving from bottom to top in slots 5 of lamination stack 4 and also in the annular clear space 10 left between the inner rim of the annular lamination stack 4 and inner wall 11 of the tank, and lastly horizontally and radially outward at the upper tank part, where it cools the conductors of the upper winding heads 7, and finally discharges through outlet 12.
  • FIG. 3 shows in greater detail several radial passages 14 in the lower clamping plate 13 of lamination stack 4, which supply cooling water to the center and direct it towards the winding terminals 6 through orifices 15 designed for that purpose; the figure also shows the radial spaces 16 provided between plates separating the various winding heads 6 from one another; similarly, as regards the upper part of the tank, after the water has come up through slots 5 holding the conductor winding and through space 10 between the inner surface of lamination stack 4 and inner wall 11 of the tank, it will cool the upper winding heads 7, passing through the radial 3 spaces 19 between the plates separating the several upper winding heads 7, then discharging through outlet 12. Direct through-holes 17 of small diameter and drilled in upper clamping plate 18 prevent formation of air pockets in the upper annular space between tank 9 and lamination stack 4.
  • the annular tank 3 is sectionalized in order to permit easy access to the space between the inner and outer walls for inspection of the electrical components as well as to facilitate cleaning of the interior of the tank.
  • the inner wall ll is continuous from the top to the bottom.
  • the outer wall 9 is divided into upper and lower sections joined together by means of connection flanges provided with sealing rings 22 therebetween and which are fastened by means of cir cumferentially spaced bolt-and-nut connections 20.
  • the upper end of the outer wall 9 terminates in a radially inward wall reaching to the inner wall 11 and which is joined to the latter by means of a sealing ring 23 and circumferentially spaced connection screws 21. Upon removal of the connection bolts and screws 21, the upper part of the tank may be lifted off, thereby providing full access to the interior of the tank.
  • winding conductor lead-outs may be designed in the manner shown in FIGS. 4 and 5, namely. as solid and massive conductors 24 which traverse an insulating plate 25 installed in a junction neck 26 extending outward from the tank 3 as illustrated in FIG. 4. As illustrated in a larger scale in FIG.
  • each of the massive conductor parts 24 includes bores 29 in the upper portions 30 for receiving and sol dering the bared ends 27 of the flexible inductor con ductors 28, hermeticity of the assembly being achieved by means of heat-shrinking sleeves 31; the whole is immersed in a potting resin 32 inside a circular insulating sleeve 33 of which the end 34 is pushed into a circular groove in insulating plate 25', a tightening nut 35 screwed onto a threaded stern portion of the conductor part 24 clamps the integrated set of cable lead-outs 28 to insulating plate 25 by compressing a toroidal seal ring 36 which provides the desired hermeticity; cablelugs 37 may thereafter be tightened by nuts 38.
  • a liquid-cooled electromagnetic rabbling mecha nism associated with a continuously poured and descending column of molten metal forming an ingot which comprises an annular cooling tank adapted to co-axially surround the descending column of metal an annular laminated magnetic structure located coaxially within said cooling tank and having a cylindric array of axially extending coil-receiving slots located at the inner periphery thereof, an inductor coil located in said slots, said inductor coil being constituted by a winding of an electrical conductor covered by a sheath which is impermeable to the liquid coolant, a lead-out structure from the terminal ends of said coil through the wall of said cooling tank to an energizing source thereby enabling production of a rotating magnetic field which induces rotation of the centrally located and still molten metal within the outer crust portion of the ingot being formed, and means for effecting forced circulation of a liquid coolant through said tank which includes means establishing a flow path therefor which provides passage of the coolant from an inlet downward

Abstract

An electromagnetic rabbling mechanism associated with continuously poured molten metal forming an ingot comprises an inductor coil mounted on a stationary annular laminated magnetic structure providing a rotating magnetic field which surrounds the slowly descending column of solidifying metal and induces rotation of the central and still liquid metal within the solidified outer crust portion of the ingot. Cooling of the inductor coil and its rotary magnetic field producing structure is effected by immersion thereof within a water-filled annular tank co-axially surrounding the descending metal column, the water or other liquid coolant being continuously circulated through the tank along a path designed to establish an optimum amount of heat transfer contact surfaces with all exposed parts of the magnetic structure and the coil.

Description

United States Patent Delassus [451 Sept. 16, 1975 ELECTROMAGNETIC RABBLING MECHANISM FOR CONTINUOUSLY POURING MOLTEN METAL [75] Inventor: Jean Delassus, Montmorency.
France [73] Assignee: Compagnie Electro-Mecanique, Paris, France 122] Filed: Dec. 6, 1973 [21] Appl. No.: 422,128
[30] Foreign Application Priority Data Dec. 21. 1972 France 72.45725 7 I It "14pm 4 "1 g [52] US. Cl. 164/147; 164/250; 335/300 [51] Int. Cl? B22D 11/12; B22D 27/02 [58] Field of Search 164/49, I47, 250, 251. 164/273 R; 335/300 [56] References Cited UNITED STATES PATENTS 2,877,525 3/1959 Schaaber 164/49 3,056,071 9/1962 Baker et al. 335/300 Primary Examiner-Robert D. Baldwin Attorney, Agent, or Firm-Pierce, Scheffler & Parker 5 7 ABSTRACT An electromagnetic rabbling mechanism associated with continuously poured molten metal forming an ingot comprises an inductor coil mounted on a stationary annular laminated magnetic structure providing a rotating magnetic field which surrounds the slowly descending column of solidifying metal and induces rotation of the central and still liquid metal within the solidified outer crust portion of the ingot. Cooling of the inductor coil and its rotary magnetic field producing structure is effected by immersion thereof within a water-filled annular tank co-axially surrounding the descending metal column, the water or other liquid coolant being continuously circulated through the tank along a path designed to establish an optimum amount of heat transfer contact surfaces with all exposed parts of the magnetic structure and the coil.
8 Claims, 5 Drawing Figures PATENTED SEP 1 6 I975 SHEET 3 BF 3 ELECTROMAGNETIC RABBLING MECHANISM FOR CONTINUOUSLY POURING MOLTEN METAL The present invention relates to mechanisms for continuously pouring molten metals and wherein the ingot 5 leaving the ingot mold where it was shaped continuously descends at a constant and very low speed, the ingot then consisting of an outer crust already solidified at the mold exit and of a central, still liquid part, called the molten well or shaft, ofwhich the cross-section progressively narrows during ingot descent into a so-called secondary cooling zone.
It is known that by setting this liquid metal in motion during its solidification, a technique known as rabbling, the structure and homogeneity of the solidified product will be improved; proposals already have been advanced to make use of a rotating magnetic field to stir and cause the liquid column to revolve at moderate speed about the longtitudinal pouring axis.
Such a rotary magnetic field may be achieved by means of a wound magnetic toroid, which functions as an inductor, of the type used in the stators for electric rotating field motors, with a hollowed central part traversed by the ingot being solidified and transversely crossed by the rotating magnetic field.
However, a magnetic toroid is subjected to the in tense radiation from the partially solid ingot still at very high temperature and passing through said toroid, which therefore is in danger of being very rapidly de stroyed unless effective means are provided to ensure its cooling.
To that end, and in conformity with the present invention, adequate cooling is ensured by completely immersing the toroidal inductor in a tank subjected to strong circulation of a liquid coolant preferably water; in order to achieve this result, the magnetic toroid is mounted in an impermeable annular tank provided with a cooling water inlet and an outlet for the water having provided the cooling, the tank being so designed, that the water will first circulate from top to bottom through an annular passage provided between the outer wall of the tank and the periphery of the stack of annular laminations comprising along their inner rims the slots holding the inductor winding, then horizontally and radially inward around the conductors at the lower winding heads, then from the bottom towards the top through these winding slots and through the narrow annular passage provided between the lower rim of the lamination stack and the inner tank wall, and lastly horizontally and radially outward above the stack around the conductors at the upper winding heads and out through the outlet.
To prevent that the winding conductors be degraded by the cooling water, they consist of a flexible conductor comprising a central stranded conductor covered by an insulator impermeable to water; one may for instance use a flexible conductor structure of circular cross-section and 6mm in diameter, comprising a 3 mm copper core; while such conductor will not efficiently fill the slots, they do allow obtaining the desired field intensity and ensure effective cooling water passage be tween them in the remaining clear spaces between their cylindrical walls, even though they are adjoining.
Another difficulty consists in achieving conductor cable lead-outs that are impermeable with respect to the cooling water; to that end, and in conformity with a characteristic of the present invention, the lead-outs are solid conductors traversing an insulating plate provided in the wall of the tank and connected inside the latter to the carefully insulated ends of the winding.
In order to ensure the desired hermeticity and insulation of the connections between the ends of the cables and those of the solid and massive conductors, the bared cable ends will be soldered into bores fashioned in the solid and massive conductors. heat-setting sleeves surrounding the cable ends and the corresponding ones of the solid conductors, the whole being immersed in a filling resin or potting compound inside an insulating sleeve of which the outer rim is sunk in a corresponding groove made to that end in the lower side of the insulating plate; furthermore, the solid and massive conductors are provided with an inner shoulder which is pressed against an interposed toroidal seal against the lower side of the insulating plate by means of a tightening screw.
Lastly, the tank is so designed that it may be easily dismantled to permit inside cleaning and to provide easy access to the cables and connections.
The accompanying drawings illustrate a preferred embodiment of the present invention wherein:
FIG. 1 is a vertical cross-section of the electromagnetic rabbling mechanism for the continuous pouring of a molten metal;
FIG. 2 is a top view of a cross-section along line llll of FIG. 1',
FIG. 3 is a diametrical section of the electromagnetic mechanism being used;
FIG. 4 is a section along line lVlV of FIG. 3; and
FIG. 5 is a cross-section on a larger scale, of the winding cable terminals.
With reference now to FIG. 1, the column of molten metal leaving a ladle (not shown) and which descends slowly along a vertical path comprises first an already solid part of ingot 1 within which liquid metal 2 forms a fusion well or shaft; the ingot passes through the interior hollow part of an annular tank 3 within which is mounted an inductor coil L with lower and upper heads 6 and 7 resp., in the circumferentially spaced slots 5 of an annular magnetic lamination stack 4.
Cooling water flowing in the tank from top to bottom passes through inlet 8 and reaches tank 3; it then passes between the outer rim of the annular lamination stack 4 and the outer wall 9 of tank 3 to the lower part of the tank, then flows horizontally radially inward while cooling the lower winding heads 6, next moving from bottom to top in slots 5 of lamination stack 4 and also in the annular clear space 10 left between the inner rim of the annular lamination stack 4 and inner wall 11 of the tank, and lastly horizontally and radially outward at the upper tank part, where it cools the conductors of the upper winding heads 7, and finally discharges through outlet 12.
FIG. 3 shows in greater detail several radial passages 14 in the lower clamping plate 13 of lamination stack 4, which supply cooling water to the center and direct it towards the winding terminals 6 through orifices 15 designed for that purpose; the figure also shows the radial spaces 16 provided between plates separating the various winding heads 6 from one another; similarly, as regards the upper part of the tank, after the water has come up through slots 5 holding the conductor winding and through space 10 between the inner surface of lamination stack 4 and inner wall 11 of the tank, it will cool the upper winding heads 7, passing through the radial 3 spaces 19 between the plates separating the several upper winding heads 7, then discharging through outlet 12. Direct through-holes 17 of small diameter and drilled in upper clamping plate 18 prevent formation of air pockets in the upper annular space between tank 9 and lamination stack 4.
The annular tank 3 is sectionalized in order to permit easy access to the space between the inner and outer walls for inspection of the electrical components as well as to facilitate cleaning of the interior of the tank. For this purpose the inner wall ll is continuous from the top to the bottom. but the outer wall 9 is divided into upper and lower sections joined together by means of connection flanges provided with sealing rings 22 therebetween and which are fastened by means of cir cumferentially spaced bolt-and-nut connections 20. The upper end of the outer wall 9 terminates in a radially inward wall reaching to the inner wall 11 and which is joined to the latter by means of a sealing ring 23 and circumferentially spaced connection screws 21. Upon removal of the connection bolts and screws 21, the upper part of the tank may be lifted off, thereby providing full access to the interior of the tank.
In order to achieve good electrical insulation simultaneously with satisfactory hermeticity with respect to the cooling water. the winding conductor lead-outs may be designed in the manner shown in FIGS. 4 and 5, namely. as solid and massive conductors 24 which traverse an insulating plate 25 installed in a junction neck 26 extending outward from the tank 3 as illustrated in FIG. 4. As illustrated in a larger scale in FIG. 5, each of the massive conductor parts 24 includes bores 29 in the upper portions 30 for receiving and sol dering the bared ends 27 of the flexible inductor con ductors 28, hermeticity of the assembly being achieved by means of heat-shrinking sleeves 31; the whole is immersed in a potting resin 32 inside a circular insulating sleeve 33 of which the end 34 is pushed into a circular groove in insulating plate 25', a tightening nut 35 screwed onto a threaded stern portion of the conductor part 24 clamps the integrated set of cable lead-outs 28 to insulating plate 25 by compressing a toroidal seal ring 36 which provides the desired hermeticity; cablelugs 37 may thereafter be tightened by nuts 38.
While the embodiment of the invention described herein and referring to the accompanying drawings is preferred, it is considered illustrative only and hence verious modifications may be resorted to without thereby departing from the scope of the appended claims.
I claim:
1. A liquid-cooled electromagnetic rabbling mecha nism associated with a continuously poured and descending column of molten metal forming an ingot which comprises an annular cooling tank adapted to co-axially surround the descending column of metal an annular laminated magnetic structure located coaxially within said cooling tank and having a cylindric array of axially extending coil-receiving slots located at the inner periphery thereof, an inductor coil located in said slots, said inductor coil being constituted by a winding of an electrical conductor covered by a sheath which is impermeable to the liquid coolant, a lead-out structure from the terminal ends of said coil through the wall of said cooling tank to an energizing source thereby enabling production of a rotating magnetic field which induces rotation of the centrally located and still molten metal within the outer crust portion of the ingot being formed, and means for effecting forced circulation of a liquid coolant through said tank which includes means establishing a flow path therefor which provides passage of the coolant from an inlet downwardly through an annular passage provided between the outer wall of said tank and the outer periphery of said annular magnetic structure to the bottom of the coil. thence inwardly to the inner periphery of said annular magnetic structure. thence upwardly through said slots and an annular passage provided between the inner periphery of said annular magnetic structure and the inner wall of said tank to the top of the coil, and thence outwardly from said tank through a discharge outlet.
2. A liquid-cooled electromagnetic rabbling mechanism as defined in claim 1 wherein said annular laminated magnetic structure includes clamping plates at the upper and lower ends thereof, said lower clamping plate including radially extending passages therein for directling the liquid coolant radially inward to the inner periphery of said annular magnetic structure and said upper clamping plate including a multiplicity of through-holes to prevent formation of air pockets in the upper annular space between said tank and said annular laminated magnetic structure.
3. A liquid-cooled electromagnetic rabbling mechanism as defined in claim 1 wherein the conductor from which said inductor coil is wound has a flexible characteristic and is constituted by stranded cable covered by the sheath of material impermeable to the liquid coolant.
4. A liquid-cooled electromagnetic rabbling mecha nism as defined in claim 3 wherein said flexible stranded cable which forms the coil conductor has a circular cross-section of 6mm in diameter and includes a 3 mm diameter copper core.
5. A liquid-cooled electromagnetic rabbling mechanism as defined in claim I wherein said tank includes a junction neck and a transversely extending insulator plate therein through which are passed and supported the lead-out terminal structures for the various parts of said inductor coil.
6. A liquid-cooled electromagnetic rabbling mecha' nism as defined in claim 5 wherein the lead-out structures for the various conductor members of said inductor coil include massive parts of conductive material including bores for receiving and connection by soldering of the bared ends of the conductor parts. heat shrinkable sleeves enclosing and sealing off the connections between the conductor ends and said bored massive parts, said sealed-off connections being immersed in a potting resin and covered by an insulating sleeve the end of which is embedded in a corresponding groove provided in said insulator plate.
7. A liquid-cooled electromagnetic rabbling mechanism as defined in claim 6 wherein said massive conductor part includes a threaded stem portion projecting through said insulator plate and secured thereto by a out, said stern portion establishing a shouldered portion and a sealing ring surrounding said stem portion and which forms a seal between said shouldered portion and the adjacent surface of said insulator plate.
8. A liquid-cooled electromagnetic rabbling mechanism as defined in claim 1 wherein said annular tank is sectionalized into upper and lower parts which are disconnectible to permit removal of the upper part for access to the interior of the tank.

Claims (8)

1. A liquid-cooled electromagnetic rabbling mechanism associated with a continuously poured and descending column of molten metal forming an ingot which comprises an annular cooling tank adapted to co-axially surround the descending column of metal, an annular laminated magnetic structure located co-axially within said cooling tank and having a cylindric array of axially extending coil-receiving slots located at the inner periphery thereof, an inductor coil located in said slots, said inductor coil being constituted by a winding of an electrical conductor covered by a sheath which is impermeable to the liquid coolant, a lead-out structure from the terminal ends of said coil through the wall of said cooling tank to an energizing source thereby enabling production of a rotating magnetic field which induces rotation of the centrally located and still molten metal within the outer crust portion of the ingot being formed, and means for effecting forced circulation of a liquid coolant through said tank which includes means establishing a flow path therefor which provides passage of the coolant from an inlet downwardly through an annular passage provided between the outer wall of said tank and the outer periphery of said annular magnetic structure to The bottom of the coil, thence inwardly to the inner periphery of said annular magnetic structure, thence upwardly through said slots and an annular passage provided between the inner periphery of said annular magnetic structure and the inner wall of said tank to the top of the coil, and thence outwardly from said tank through a discharge outlet.
2. A liquid-cooled electromagnetic rabbling mechanism as defined in claim 1 wherein said annular laminated magnetic structure includes clamping plates at the upper and lower ends thereof, said lower clamping plate including radially extending passages therein for directling the liquid coolant radially inward to the inner periphery of said annular magnetic structure and said upper clamping plate including a multiplicity of through-holes to prevent formation of air pockets in the upper annular space between said tank and said annular laminated magnetic structure.
3. A liquid-cooled electromagnetic rabbling mechanism as defined in claim 1 wherein the conductor from which said inductor coil is wound has a flexible characteristic and is constituted by stranded cable covered by the sheath of material impermeable to the liquid coolant.
4. A liquid-cooled electromagnetic rabbling mechanism as defined in claim 3 wherein said flexible stranded cable which forms the coil conductor has a circular cross-section of 6mm in diameter and includes a 3 mm diameter copper core.
5. A liquid-cooled electromagnetic rabbling mechanism as defined in claim 1 wherein said tank includes a junction neck and a transversely extending insulator plate therein through which are passed and supported the lead-out terminal structures for the various parts of said inductor coil.
6. A liquid-cooled electromagnetic rabbling mechanism as defined in claim 5 wherein the lead-out structures for the various conductor members of said inductor coil include massive parts of conductive material including bores for receiving and connection by soldering of the bared ends of the conductor parts, heat shrinkable sleeves enclosing and sealing off the connections between the conductor ends and said bored massive parts, said sealed-off connections being immersed in a potting resin and covered by an insulating sleeve the end of which is embedded in a corresponding groove provided in said insulator plate.
7. A liquid-cooled electromagnetic rabbling mechanism as defined in claim 6 wherein said massive conductor part includes a threaded stem portion projecting through said insulator plate and secured thereto by a nut, said stem portion establishing a shouldered portion and a sealing ring surrounding said stem portion and which forms a seal between said shouldered portion and the adjacent surface of said insulator plate.
8. A liquid-cooled electromagnetic rabbling mechanism as defined in claim 1 wherein said annular tank is sectionalized into upper and lower parts which are disconnectible to permit removal of the upper part for access to the interior of the tank.
US422128A 1972-12-21 1973-12-06 Electromagnetic rabbling mechanism for continuously pouring molten metal Expired - Lifetime US3905417A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR7245725A FR2211305B1 (en) 1972-12-21 1972-12-21

Publications (1)

Publication Number Publication Date
US3905417A true US3905417A (en) 1975-09-16

Family

ID=9109122

Family Applications (1)

Application Number Title Priority Date Filing Date
US422128A Expired - Lifetime US3905417A (en) 1972-12-21 1973-12-06 Electromagnetic rabbling mechanism for continuously pouring molten metal

Country Status (10)

Country Link
US (1) US3905417A (en)
JP (1) JPS535846B2 (en)
BE (1) BE807812A (en)
BR (1) BR7309962D0 (en)
DE (1) DE2362720A1 (en)
ES (1) ES421704A1 (en)
FR (1) FR2211305B1 (en)
GB (1) GB1403480A (en)
IT (1) IT1002132B (en)
SE (1) SE404496B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4030534A (en) * 1973-04-18 1977-06-21 Nippon Steel Corporation Apparatus for continuous casting using linear magnetic field for core agitation
US4137961A (en) * 1976-01-20 1979-02-06 Creusot-Loire Vallourec Continuous casting of metals
US4155398A (en) * 1977-05-18 1979-05-22 Institut De Recherches De La Siderurgie Francaise Method and apparatus for continuous centrifugal casting of metal products
EP0005820A1 (en) * 1978-06-01 1979-12-12 Concast Holding Ag Process and device for the continuous casting of metals by one or several lines
US4294304A (en) * 1976-06-14 1981-10-13 Cem - Compagnie Electro-Mecanique Electromagnetic centrifuging inductor for rotating a molten metal about its casting axis
AU611797B2 (en) * 1988-05-13 1991-06-20 Institut De Recherches De La Siderurgie Francaise (Irsid) Process for cooling a continuously cast metal product
US5047720A (en) * 1986-12-30 1991-09-10 Centre National De La Recherche Scientifique Correction device using magnetic elements for correcting unhomogeneities of the magnetic field in a magnet
CN107350442A (en) * 2017-06-28 2017-11-17 江苏省沙钢钢铁研究院有限公司 Improve the method for slab internal soundness using electromagnetic agitation
CN110340319A (en) * 2019-08-02 2019-10-18 燕山大学 A kind of bar shaped winding M-emss

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422737Y2 (en) * 1974-02-08 1979-08-07
FR2315344A1 (en) * 1975-06-27 1977-01-21 Siderurgie Fse Inst Rech ELECTROROTATIVE CONTINUOUS CASTING LINGOTIER
FR2409808A1 (en) * 1977-11-29 1979-06-22 Rotelec Sa Continuous casting of metals, esp. steel billets - using magnetic stirring in the sec. cooling zone below the chilled mould (BE 16.5.79)
FR2426516A1 (en) * 1978-05-23 1979-12-21 Cem Comp Electro Mec ELECTROMAGNETIC BREWING PROCESS OF CONTINUOUS FLOWING BILLETS OR BLOOMS
EP0013840B1 (en) * 1979-01-29 1983-03-02 C E M COMPAGNIE ELECTRO MECANIQUE Société Anonyme Mould for continuously casting billets with an electromagnetic stirring inductor
JPS5921256B2 (en) * 1979-12-07 1984-05-18 株式会社東芝 electromagnetic stirring device
EP0165793A3 (en) * 1984-06-20 1986-09-17 Co-Steel International Limited Electromagnetic rotary stirring stator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2877525A (en) * 1953-08-27 1959-03-17 Schaaber Otto Casting process
US3056071A (en) * 1959-02-12 1962-09-25 William R Baker Electrical coil structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2877525A (en) * 1953-08-27 1959-03-17 Schaaber Otto Casting process
US3056071A (en) * 1959-02-12 1962-09-25 William R Baker Electrical coil structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4030534A (en) * 1973-04-18 1977-06-21 Nippon Steel Corporation Apparatus for continuous casting using linear magnetic field for core agitation
US4137961A (en) * 1976-01-20 1979-02-06 Creusot-Loire Vallourec Continuous casting of metals
US4294304A (en) * 1976-06-14 1981-10-13 Cem - Compagnie Electro-Mecanique Electromagnetic centrifuging inductor for rotating a molten metal about its casting axis
US4155398A (en) * 1977-05-18 1979-05-22 Institut De Recherches De La Siderurgie Francaise Method and apparatus for continuous centrifugal casting of metal products
EP0005820A1 (en) * 1978-06-01 1979-12-12 Concast Holding Ag Process and device for the continuous casting of metals by one or several lines
US5047720A (en) * 1986-12-30 1991-09-10 Centre National De La Recherche Scientifique Correction device using magnetic elements for correcting unhomogeneities of the magnetic field in a magnet
AU611797B2 (en) * 1988-05-13 1991-06-20 Institut De Recherches De La Siderurgie Francaise (Irsid) Process for cooling a continuously cast metal product
CN107350442A (en) * 2017-06-28 2017-11-17 江苏省沙钢钢铁研究院有限公司 Improve the method for slab internal soundness using electromagnetic agitation
CN107350442B (en) * 2017-06-28 2019-04-19 江苏省沙钢钢铁研究院有限公司 Improve the method for slab internal soundness using electromagnetic agitation
CN110340319A (en) * 2019-08-02 2019-10-18 燕山大学 A kind of bar shaped winding M-emss
CN110340319B (en) * 2019-08-02 2021-03-19 燕山大学 Bar winding crystallizer electromagnetic stirrer

Also Published As

Publication number Publication date
BE807812A (en) 1974-03-15
SE404496B (en) 1978-10-09
JPS535846B2 (en) 1978-03-02
ES421704A1 (en) 1976-04-16
BR7309962D0 (en) 1974-08-29
JPS506529A (en) 1975-01-23
FR2211305A1 (en) 1974-07-19
DE2362720A1 (en) 1974-06-27
IT1002132B (en) 1976-05-20
GB1403480A (en) 1975-08-28
FR2211305B1 (en) 1975-06-06

Similar Documents

Publication Publication Date Title
US3905417A (en) Electromagnetic rabbling mechanism for continuously pouring molten metal
US3941183A (en) Liquid cooled electromagnetic continuous casting mold
SU818469A3 (en) Device for stirring molten metal in crystallizer
US4026346A (en) Liquid-cooled mold for continuous casting of molten metal
US3082337A (en) Dynamo-electric machines
US3702155A (en) Apparatus for shaping ingots during continuous and semi-continuous casting of metals
US4031422A (en) Gas cooled flux shield for dynamoelectric machine
JPH084877B2 (en) Method for producing thixotropic metal product by continuous casting with multi-phase alternating current electromagnetic stirring and continuous casting device for thixotropic metal product
US4297665A (en) Doughnut-type transformer for resistance butt welding
KR870007542A (en) Transformer and coil assembly and manufacturing method
JPS6322907B2 (en)
CN104972085A (en) A Continuous Casting Device
EA012485B1 (en) Toroidal core transformers
RU2521963C2 (en) Electrical conductor for high-current bushing insulator
US4479531A (en) Electromagnetic stirring
US3052001A (en) Centrifugal casting apparatus
US4088911A (en) Electric unipolar machine
EP0086637B1 (en) Treatment of molten materials
US1650795A (en) Bimetallic rotor for induction motors
US3738777A (en) An electromagnetic conveying trough with cooling channels
SU1114325A3 (en) Apparatus for stripping molten metal
FI78852B (en) CONTAINING CONSTRUCTION CONDITIONS.
US3772449A (en) Plant for the electric slag refining of metals
US3633054A (en) Arrangement for cooling the poles of a dynamoelectric machine
US2007167A (en) Inductor for induction welding machine