US3902614A - Jack-actuated crane tongs - Google Patents

Jack-actuated crane tongs Download PDF

Info

Publication number
US3902614A
US3902614A US45328574A US3902614A US 3902614 A US3902614 A US 3902614A US 45328574 A US45328574 A US 45328574A US 3902614 A US3902614 A US 3902614A
Authority
US
United States
Prior art keywords
supporting
legs
rotative
relative
tongs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Alvin M Roberts
Kenneth E Roberts
Original Assignee
Alvin M Roberts
Kenneth E Roberts
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US17546771A priority Critical
Application filed by Alvin M Roberts, Kenneth E Roberts filed Critical Alvin M Roberts
Priority to US45328574 priority patent/US3902614A/en
Application granted granted Critical
Publication of US3902614A publication Critical patent/US3902614A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C3/00Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith and intended primarily for transmitting lifting forces to loose materials; Grabs
    • B66C3/14Grabs opened or closed by driving motors thereon
    • B66C3/16Grabs opened or closed by driving motors thereon by fluid motors

Abstract

The legs of tongs are pivotally mounted between plates supported both to rotate about a vertical axis for turning the tongs, and to swing about a horizontal axis relative to a crane boom to enable the tongs to be disposed in depending position irrespective of the angle of the crane boom. The tongs legs can be swung toward and away from each other by toggle linkage actuated by an upright jack such as a hydraulic jack or a nonrotative screw reciprocated by a nut power-rotated by a hydraulic motor driving the nut through a chain-and-sprocket drive or a gear.

Description

ited States Roberts et a1. Sept. 2, 1975 [5 JACK-ACTUATED CRANE TONGS 2,788,143 4/1957 La Tendresse 214/147 G 2,903,294 9/1959 [76] Inventors: Alvin M. Roberts, 126 N. Third St.; 3 527 495 9/1970 Kenneth E. Roberts, 705 3: 27: 72 12/ 9 7 McBryde, both of Montesano, Wash. 98563 Filed: Mar. 21, 1974 Appl. No.: 453,285

Related US. Application Data Continuation-in-part ofSer. No. 175,467, Aug. 27, 1971, abandoned.

US. Cl. 214/147 G; 294/88; 294/106 int. Cl. B66C 3/14 Field of Search 294/88, 106, 115;

References Cited UNITED STATES PATENTS Primary Examiner-Richard A. Schacher Assistant Examiner-Johnny D. Cherry Attorney, Agent, or Firm-Robert W. Beach 5 7] ABSTRACT The legs of tongs are pivotally mounted between plates supported both to rotate about a vertical axis for turning the tongs, and to swing about a horizontal axis relative to a crane boom to enable the tongs to be disposed in depending position irrespective of the angle of the crane boom. The tongs legs can be swung toward and away from each other by toggle linkage actuated by an upright jack such as a hydraulic jack or a non-rotative screw reciprocated by a nut powerrotated by a hydraulic motor driving the nut through a chain-and-sprocket drive or a gear.

8 Claims, 8 Drawing Figures PATENTED 2|975 sum 1 pg 3 J ACK-ACTUATED CRANE TONGS This application is a continuation-impart of application Ser. No. 175,467 on Screw-Actuated Crane Tongs, filed Aug. 27, 1971, now abandoned.

A principal object of the invention is to provide power-actuated crane tongs which can be driven positively to move the legs of the tongs into a predetermined spread position in which they will remain without the continuing application of power to them.

A further object is to provide power-operated tongs which can be operated by screw means mounted adjacent to the tongs and connected to a source of power such as by wires or preferably by conduits through which fluid under pressure is supplied.

Another object is to provide such power-operated tongs which are mounted both for swiveling and for swinging relative to a crane boom, by which the tongs are supported.

It is also an object to be able to use the same power means to open and close the tongs and to swivel the tongs relative to the crane boom.

A further object is to provide strong and effective power means for swinging the tongs legs relatively and which is compact and reliable in operation.

FIG. 1 is a top perspective of tongs according to the present invention mounted on the end ofa crane boom. FIG. 2 is a side elevation of the tongs mounted on the end of a crane boom on an enlarged scale, parts being broken away.

FIG. 3 is a central vertical section through the root portions of the tongs legs and the mounting structure, parts being broken away, and showing the tongs legs in spread relationship; and FIG. 4 is a similar view showing the tongs legs in fully contracted relationship.

FIG. 5 is a horizontal section through the mounting structure for the crane tongs, taken on line 55 of FIG. 3.

FIG. 6 is a central vertical section taken on line 66 of FIG. 8 through the root portions of the tongs legs and the mounting structure showing an alternative type of tongs mechanism, the tongs legs being in spread relationship. FIG. 7 is a similar view with the tongs legs in fully contracted relationship.

FIG. 8 is a horizontal section through the mounting structure for the crane tongs taken on line 8-8 of FIG.

It has been customary to mount tongs on a crane boom either in a very flexible fashion, such as on the end of a cable depending from the crane boom or in a rigid fashion, such that the tongs cannot swivel relative to the crane boom if power means is provided to close the tongs. In accordance with the present invention, the legs la and lb of the tongs are supported from the crane boom 2 so that, not only can the tongs legs be opened and closed positively under power, but the tongs can be swiveled under power relative to the crane boom and can swing relative to the crane boom. By such swinging, the tongs will always be able to return to depending relationship relative to the crane boom, irrespective of the angle of the crane boom, when-the load has been removed from the tongs.

The tongs mount 3 is supported by trunnions 4 projecting outward from its opposite sides, which trunnions are mounted in bearings 5 in the bifurcations of the crane boom 2 so that the tongs can swing relative to the boom in whatever swung position the boom may be. The tongs will therefore always tend to return to depending position in which their legs la and lb are disposed substantially in an upright plane. The tongs mount 3 has a large central aperture 6 for receiving the swivel support for the tongs.

The root portions of the tongs legs are inserted between parallel vertical plates 7, as shown in FIG. 2, the upper edges of which are welded or otherwise permanently attached to a turntable 8, as shown in FIG. 3. The margin of such turntable is fitted rotatively within a groove 9 in the tongs mount 3 opening into central aperture 6. The turntable will thus support the weight of the tongs legs and any load gripped by them for swiveling about a substantially upright axis.

The tongs legs la and lb are mounted for relative vertical swinging about horizontal pivots 10a and 10b, respectively, which extend through the root portions of the respective tongs legs and the parallel plates 7 on opposite sides of them. FIGS. 3 and 4 shown such pivots located a short distance below the trunnions 4. As shown in FIG. 5, the tongs leg 1a is slightly narrower than the tongs leg lb and spacing washers 11 are mounted on the pivot rod 10a between the root portion of the leg la and the side plates 7 to maintain the parts of the tongs centered between such plates.

The actuating mechanism for swinging the tongs legs relatively toward and away from each other includes bars or links and 12b of a toggle joint having their remote ends connected respectively to the leg la and the leg lb of the tongs by pivots 13a and 13b, respectively, located below the pivots 10a and 10b. The adjacent ends of the toggle joint bars 12a and 12b are disposed in overlapping relationship, as shown in FIGS. 3 and 5, and are connected together by the common pivot pin 14, the opposite ends of which are received in and guided for elevational movement by upright slots 15 in the side plates 7 of the tongs mount.

The legs la ahd lb of the tongs are spread apart by forcing the toggle joint pivot 14 downward in slots 15 to move the toggle joint bars 12a and 12b toward alignment. Alternatively the tongs legs are swung toward each other, such as to the fully closed position shown in FIG. 4, or to any intermediate clamping position, by elevating the toggle joint pivot 14 along slots 15 to pull the toggle joint pivots 13a and 13b toward each other. Such elevational movement of the toggle joint pivot is effected by exerting a raising or lowering force on the collar 16 encircling the central portion of the toggle joint pivot 14 with ajack. Ajack spindle 17 connected rigidly to the collar 16 and projecting radially from it and from the toggle joint pivot 14 extends upwardly from the collar, as shown in FIGS. 3 and 4.

Elevational lengthwise non-rotative movement of the spindle 17 to effect relative swinging of the tongs legs la and lb is accomplished by making the spindle a screw and rotating relative to it a nut 18 extending through a central aperture 19 in the turntable 8 of the tongs mounting structure. This nut is supported by an upper shoulder 20 engaging a thrust bearing 21 interposed between such shoulder and the depressed, inner margin of the turntable 8 encircling the aperture 19. The nut is rotated to effect elevational longitudinal movement of the screw 17 by rotation of a sprocket 22 integral with the nut 18, which is rotated by a roller chain 23, although the nut could be turned by suitable gearing.

As shown best in FIG. 2, the roller chain is driven by a motor 24, preferably of the hydraulic type, although it may be an electric motor, or could be driven by a belt or cable drive. This motor is mounted on a support 25 offset from the sprocket 22 and screw 17 and supported in cantilever fashion from the tongs mount 3 in a position between the bifurcations 2 of the crane boom. It is necessary for the motor 24 to be of the reversible type so that it can rotate sprocket 22 positively in each direction by driving chain 23 for turning the nut 18 to raise or to lower the screw 17. Any force exerted on the tongs legs la and lb by a load clamped between them, which tends to spread the tongs legs, will simply tend to pull screw 17 downward with only a negligible component of the force tending to rotate it. Conse-,

quently, the screw 17 locks the tongs legs automatically in any selected position.

The axial force exerted on screw 17 by a load clamped between the tongs legs may make it difficult to turn the nut 18 relative to the screw and cause wear of these parts. Consequently, it is desirable to provide a housing 26 carried by the sprocket 22, which completely encloses the portion of the screw projecting upward above the nut 18. Such housing can be filled with lubricant through a self-sealing grease fitting 27.

In operation, the motor 24 can be energized to drive chain 23 for turning the nut 18 to raise or lower the screw 17 relative to the mount 3 so that the tongs legs are fully opened or fully closed. When the screw 17 has reached such a limit position, further rotation of the motor 24 will swivel the turntable 8 and the tongs supported by it relative to the annular tongs mount 3 into any desired swiveled position relative to the crane boom 2. The motor 24 can then be driven in the direction to open the crane tongs legs if they are not open, after which the crane boom 2 is lowered to place the tongs over a load to be lifted.

While the tongs of the present invention will probably find their greatest usefulness when mounted on a crane boom, such power-operated crane tongs could be supported on the end of a hoisting line or on a heel boom crane, if desired. The drive mechanism for opening and closing the legs of the tongs is very compact and exerts minimum stress on the tongs legs compatible with providing an ample clamping force on the load. No effort is required to be exerted by the actuating means for swinging the tongs legs when they have been moved into load-clamping relationship or into an opened relationship. Consequently, the actuating mechanism described is much lighter than conventional power-actuating mechanism for crane tongs.

Instead of using a screw type ofjack for moving the spindle l7 lengthwise to open and close the legs la and lb, a hydraulic jack can be used for this purpose. Tongs employing a hydraulic jack in this way are shown in FIGS. 6, 7, and 8. Leg la is primarily supported from parallel upright plates 7a by a pivot c, and leg lb is primarily supported by parallel upright plates 7b by pivot 1041. The plates 7a and 7b are rigidly secured to a central tube a by welding.

Such tube has a collar 8' screwed onto its upper end and received within the hollow 9' of a non-rotative supporting ring 3a. The tube 15a supports the tongs legs la and 1b and is rotatively supported by the non-rotative ring 30. For this purpose, the collar 8 threadedly connected to tube 15a rests on an internal flange 3b projecting inward from the lower portion of the ring 30. In order to facilitate rotation of tube 15a relative to ring 3a, a thin, flat bearing ring of antifriction material,

such as Teflon or brass, can be interposed between the lower side of the collar 9 and the upper side of the ring flange 3b.

The non-rotative supporting ring 3a is supported from crane boom members 2 by trunnions 4 projecting diametrically from opposite sides of the supporting ring 3a. The crane tongs legs la, lb and their entire mount can swing relative to the crane boom 2 about the axis of the horizontal trunnions 4. The pivots 10c and 10d for the tongs legs are located below the trunnions 4 and upward movement of the tongs and their supporting tube 15a is limited by the collar or flange 15b welded to the tube for disposition immediately below the internal flange 3b of the ring 3a.

As in the type of tongs shown in FIGS. 1 to 4, inclusive, the pivots 10c and 10d carrying the tongs legs la and lb, respectively, are located a short distance below the trunnions 4. The legs of the tongs shown in FIGS. 6 to 8, inclusive, are swung between the closed position of FIG. 7 and the open position of FIG. 6 by a toggle joint including bars or links and 12d having their adjacent ends disposed in overlapping relationship and connected together by a pivot 14'. The opposite ends of links 12c are connected by a pivot rod to the inner end portion of the tongs leg la at a location spaced from pivot 10c and the ends of links 12d remote from pivot 14 are connected to the inner end of tongs leg lb by pivot rod 13d which is spaced from the main pivot 10d.

In order to swing the tongs legs from the closed position of FIG. 7 to the open position of FIG. 6, it is necessary to exert a force on pivot 14 in a direction tending to move it toward a plane including the axis of pivots 13c and 13d. Such force is applied by reciprocating upright spindle l7 lengthwise, the lower end of which is connected to or bears upon pivot l4. Downward movement of such spindle operates to expand the toggle joint 12c, 12d forcing pivot rods 13c and-13d apart for swinging the tongs legs la and 1b relative to the supporting tube 15a and plates 7a and 7b toward open position.

In the apparatus of FIGS. 6, 7 and 8, the mechanism for reciprocating spindle 17' lengthwise is a hydraulic jack connected to the upper portion of the spindle. The lower portion of the spindle is guided for reciprocation relative to the rotative supporting tube 1'5a by pivotally connecting the lower portion of the spindle to the central portion of the pivot 14, which pivot connects the overlapping adjacent ends of the toggle lengths 12c and 12d and extends through guide slots. 15c in opposite sides of the rotative tube 15a. The upper portion of the spindle l7 slides through an aperture in the lower cylinder head 28 of the hydraulic cylinder and carries the piston 18 fitting within a cylindrical tube 29 to form the jack plunger.

The cylindrical tube 29 is clamped between the lower cylinder head 28 and the upper cylinder head 30 of the hydraulic jack cylinder by tie rods 31 having their lower end portions extending through apertures in the margin of the lower cylinder head 28 and their lower ends screwed into the upper side of non-rotative ring 3a. The upper end portions of such tie rods extend through apertures in the marginal portion of the upper cylinder head 30, and such upper end portions are threaded to receivenuts for securing the cylinder head. Consequently, the cylinder 28, 29, 30, being secured to ring 3a, will be held against rotation. The spindle 17' and piston 18, being integrated through pivot 14' with the rotatable tube 15a, will be rotatable with the tongs relative to the cylinder.

While the fluid jack for reciprocating spindle 17 is of the double-acting type, it is not necessary to be able to supply the same fluid pressureabove the piston 18' as below the piston. The principal requirement is to be able to exert sufficient fluid pressure in the portion of the cylinder below the piston 18' so as to be able to close the tongs legs la and 1b positively on a log or a group of logs and to hold the tongs legs clamped securely around the log load while the crane is handling them. For this purpose it is preferred to supply hydraulic liquid through the connection 32 to the lower end of the cylinder at a pressure within the range of l500 pounds per square inch to 2250 pounds per square inch. Such pressure will assure that the spindle 17 will be pulled upward to close the tongs legs 1a and 1b forcibly on the log load.

As long as the hydraulic pressure is maintained in the portion of the jack cylinder beneath the piston 18', force will be exerted on the toggle joint 120, 1211 to hold the tongs legs clamped tightly around the load. When it is desired to release the load from the tongs, the supply of hydraulic liquid under pressure to the cylinder connection 32 is discontinued and the weight of the load would probably be sufficient to force the tongs legs open far enough so that the load would drop from the tongs.

It is desirable to spread the legs la and lb open positively when placing the tongs legs in position to grip a load. Such spreading of the tongs legs can be effected by exerting a relatively small force on the toggle joint to expand it. For this purpose a source of air under pressure can be connected to the fluid connection 33 at the upper end of the cylinder. Such opening of the tongs can be accomplished by an air pressure of 100 pounds per square inch, for example.

It is not necessary to provide valve mechanism for supplying and interrupting the supply of air under pressure to the connection 33. Instead a source of air under lOO pounds-per-square-inch pressure can be connected continually to the connection 33 so that there will always be air pressing on the upper side of piston 18 with a force sufficient to swing the tongs legs 1a, 1b to open position when the hydraulic pressure on the lower side of the piston has been substantially completely relieved.

When the tongs are to be closed for gripping a load, it is not necessary to cut off the supply of air under pressure to the upper end of the cylinder because the hydraulic pressure applied through connection 32 to the underside of the piston 18' of the order of 1500 pounds per square inch to 2250 pounds per square inch is so much greater than the pressure of the air on the upper side of the piston that the differential pressure will always effect forcible closing of the tongs legs 1a and 1b to grip a load securely between them. The supply of air under pressure to connection 33, which can be provided by a pressure tank, will not be cut off, and the portion of the cylinder above piston 18 will not be vented during a tongs-closing operation. It is, therefore, only necessary to provide control valve mechanism for supplying hydraulic liquid under pressure to the connection 32 or for connecting the connection 32 to a receiver for draining hydraulic fluid-from the portion of the cylinder beneath piston 18' in order to effect opening and closing of the tongs legs.

While it has been proposed above to provide a continual supply of air under a constant pressure to the connection 33 for effecting opening movement of the tongs legs, a compression spring reacting between the upper side of piston 18' and the lower side of the upper cylinder head 30 could be substituted for air under pressure to exert a downward. force on spindle 17 to open the tongs legs.

We claim:

1. In crane tongs including non-rotative supporting means, rotative supporting means rotatable about an upright axis relative to the nonrotative supporting means, crane boom means, means supporting the nonrotative supporting means from the crane boom means, a pair of legs, pivot means carried by the rotative supporting means and supporting the legs for swinging toward and away from each other, and leg-swinging means carried by the rotative supporting means including an upright spindle, a toggle joint having two links connecting the spindle and the legs and drive means connected to the spindle for effecting lengthwise movement of the spindle in opposite directions relative to the rotative supporting means to swing the legs about the pivot means relative to the rotative supporting means for opening and closing the legs, the improvement comprising the drive means including a rotative member rotatable both to effect rotation of the rotative supporting means relative to the nonrotative supporting means and to effect swinging of the legs about their pivot means relative to the rotative supporting means.

2. In crane tongs defined in claim 1, the spindle is a screw, and the drive means includes a nut held against axial movement and rotatable relative to the rotative supporting means to effect lengthwise elevational reciprocation of said screw relative to said nut.

3. In crane tongs defined in claim 2, the nut is rotatable both to effect rotation of the rotative supporting means relative to the non-rotative supporting means and swinging of the legs about their pivot means relative to the rotative supporting means.

4. Crane tongs comprising non-rotative supporting means, rotative supporting means rotatable about an upright axis relative to said non-rotative supporting means, crane boom means, trunnions projecting from opposite sides of said nonrotative supporting means and supporting said non-rotative supporting means from said crane boom means for tilting relative to said crane boom means about a substantially horizontal axis, a pair of legs, pivot means below said trunnions, carried by said rotative supporting means and supporting said legs for swinging toward and away from each other, and leg-swinging means carried by said rotative supporting means and including an upright screw extending a substantial distance above and below said trunnions and having its lower portion connected to said legs below said pivot means and drive means including a nut held against axial movement and rotatable relative to said rotative supporting means to effect lengthwise elevational reciprocation of said screw relative to said nut in opposite directions to swing said legs about said pivot means relative to said rotative supporting means for opening and closing said legs.

5. The crane tongs defined in claim 4, in which the nut is rotatable both to effect rotation of the rotative supporting means relative to the non-rotative supporting means and swinging of the legs about their pivot means relative to the non-rotative supporting means.

6. Crane tongs comprising non-rotative supporting means, rotative supporting means rotatable about an upright axis relative to said non-rotative supporting means, crane boom means, trunnions projecting from opposite sides of said non-rotative supporting means and supporting said nonrotative supporting means from said crane boom means for tilting relative to said crane boom means about a substantially horizontal axis, a pair of legs, pivot means below said trunnions, carried by said rotative supporting means and supporting said legs for swinging toward and away from each other, and leg-swinging means carried by said rotative supporting means and including a rotative member held against axial movement and rotatable relative to said rotative supporting means both to effect rotation of said rotative supporting means relative to said non-rotative supporting means and to effect swinging of said legs about said pivot means relative to said rotative supporting means for opening and closing said legs.

7. ln crane tongs including non-rotative supporting means, rotative supporting means rotatable about an upright axis relative to the non-rotative supporting means, crane boom means, means supporting the nonrotative supporting means from the crane boom means, a pair of legs, pivot means carried by the rotative supporting means and supporting the legs for swinging toward and away from each other, and leg-swinging means carried by the rotative supporting means including an upright spindle, a toggle joint having two links connecting the spindle and the legs and drive means connected to the spindle for effecting lengthwise movement of the spindle in opposite directions relative to the rotative supporting means to swing the legs about the pivot means relative to the rotative supporting means for opening and closing the legs, the improvement comprising the drive means including fluid pressure jack means connected to the upper portion of the spindle and variable in effective length to effect lengthwise elevational reciprocation of the spindle relative to the rotative supporting means, continual pressure means acting on saidjack means urging saidjack means in the direction to spread the legs, and means for supplying fluid under pressure to said jack means to overcome said continual pressure means and swing the legs in the closing direction.

8. In crane tongs defined in claim 7, the jack means including a piston, the continual pressure means being a compressible gas exerting pressure on one side of said piston, and the means for supplying fluid under pressure including liquid under pressure exerting pressure on the opposite side of said piston.

Claims (8)

1. In crane tongs including non-rotative supporting means, rotative supporting means rotatable about an upright axis relative to the nonrotative supporting means, crane booM means, means supporting the non-rotative supporting means from the crane boom means, a pair of legs, pivot means carried by the rotative supporting means and supporting the legs for swinging toward and away from each other, and leg-swinging means carried by the rotative supporting means including an upright spindle, a toggle joint having two links connecting the spindle and the legs and drive means connected to the spindle for effecting lengthwise movement of the spindle in opposite directions relative to the rotative supporting means to swing the legs about the pivot means relative to the rotative supporting means for opening and closing the legs, the improvement comprising the drive means including a rotative member rotatable both to effect rotation of the rotative supporting means relative to the non-rotative supporting means and to effect swinging of the legs about their pivot means relative to the rotative supporting means.
2. In crane tongs defined in claim 1, the spindle is a screw, and the drive means includes a nut held against axial movement and rotatable relative to the rotative supporting means to effect lengthwise elevational reciprocation of said screw relative to said nut.
3. In crane tongs defined in claim 2, the nut is rotatable both to effect rotation of the rotative supporting means relative to the non-rotative supporting means and swinging of the legs about their pivot means relative to the rotative supporting means.
4. Crane tongs comprising non-rotative supporting means, rotative supporting means rotatable about an upright axis relative to said non-rotative supporting means, crane boom means, trunnions projecting from opposite sides of said non-rotative supporting means and supporting said non-rotative supporting means from said crane boom means for tilting relative to said crane boom means about a substantially horizontal axis, a pair of legs, pivot means below said trunnions, carried by said rotative supporting means and supporting said legs for swinging toward and away from each other, and leg-swinging means carried by said rotative supporting means and including an upright screw extending a substantial distance above and below said trunnions and having its lower portion connected to said legs below said pivot means and drive means including a nut held against axial movement and rotatable relative to said rotative supporting means to effect lengthwise elevational reciprocation of said screw relative to said nut in opposite directions to swing said legs about said pivot means relative to said rotative supporting means for opening and closing said legs.
5. The crane tongs defined in claim 4, in which the nut is rotatable both to effect rotation of the rotative supporting means relative to the non-rotative supporting means and swinging of the legs about their pivot means relative to the non-rotative supporting means.
6. Crane tongs comprising non-rotative supporting means, rotative supporting means rotatable about an upright axis relative to said non-rotative supporting means, crane boom means, trunnions projecting from opposite sides of said non-rotative supporting means and supporting said nonrotative supporting means from said crane boom means for tilting relative to said crane boom means about a substantially horizontal axis, a pair of legs, pivot means below said trunnions, carried by said rotative supporting means and supporting said legs for swinging toward and away from each other, and leg-swinging means carried by said rotative supporting means and including a rotative member held against axial movement and rotatable relative to said rotative supporting means both to effect rotation of said rotative supporting means relative to said non-rotative supporting means and to effect swinging of said legs about said pivot means relative to said rotative supporting means for opening and closing said legs.
7. In crane tongs including non-rotative supporting means, rotative supporting means rotatable about an upright axis relative to tHe non-rotative supporting means, crane boom means, means supporting the non-rotative supporting means from the crane boom means, a pair of legs, pivot means carried by the rotative supporting means and supporting the legs for swinging toward and away from each other, and leg-swinging means carried by the rotative supporting means including an upright spindle, a toggle joint having two links connecting the spindle and the legs and drive means connected to the spindle for effecting lengthwise movement of the spindle in opposite directions relative to the rotative supporting means to swing the legs about the pivot means relative to the rotative supporting means for opening and closing the legs, the improvement comprising the drive means including fluid pressure jack means connected to the upper portion of the spindle and variable in effective length to effect lengthwise elevational reciprocation of the spindle relative to the rotative supporting means, continual pressure means acting on said jack means urging said jack means in the direction to spread the legs, and means for supplying fluid under pressure to said jack means to overcome said continual pressure means and swing the legs in the closing direction.
8. In crane tongs defined in claim 7, the jack means including a piston, the continual pressure means being a compressible gas exerting pressure on one side of said piston, and the means for supplying fluid under pressure including liquid under pressure exerting pressure on the opposite side of said piston.
US45328574 1971-08-27 1974-03-21 Jack-actuated crane tongs Expired - Lifetime US3902614A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17546771A true 1971-08-27 1971-08-27
US45328574 US3902614A (en) 1971-08-27 1974-03-21 Jack-actuated crane tongs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US45328574 US3902614A (en) 1971-08-27 1974-03-21 Jack-actuated crane tongs

Publications (1)

Publication Number Publication Date
US3902614A true US3902614A (en) 1975-09-02

Family

ID=26871236

Family Applications (1)

Application Number Title Priority Date Filing Date
US45328574 Expired - Lifetime US3902614A (en) 1971-08-27 1974-03-21 Jack-actuated crane tongs

Country Status (1)

Country Link
US (1) US3902614A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4257731A (en) * 1978-09-14 1981-03-24 North Bend Fabrication & Machine, Inc. Powered implement with work elements pivotally mounted on an implement mounting and a torque tube for rotating such mounting
WO1983000204A1 (en) * 1981-06-26 1983-01-20 Rose, Stanley, E. Spacial mechanism and method
US4648771A (en) * 1984-07-13 1987-03-10 Ikuo Yoshioka Robot hand for stacking boxes
US5125707A (en) * 1989-05-17 1992-06-30 Sankyu Inc. Rotary load lifting hook device
US5328223A (en) * 1993-01-12 1994-07-12 Maggio Lewis R End grapple for nurseries
US5330242A (en) * 1992-12-23 1994-07-19 Lucky Sr Bobby D Rotatable hydraulic grapple
US5516174A (en) * 1994-04-29 1996-05-14 Squyres; Lee Grapple device for handling balled trees and shrubs
WO1998049087A1 (en) * 1997-04-25 1998-11-05 Wasteworks International Inc. Waste bin manipulator arm
US5865491A (en) * 1997-08-04 1999-02-02 Lee; Kou-An Rotatable hoisting device for position adjustment
US5865493A (en) * 1997-04-03 1999-02-02 Lee; Kou-An Anchoring device for use with a hoisting machine
US6244643B1 (en) * 1999-04-22 2001-06-12 Dutchmaster Nurseries Ltd. Vehicle-mounted grapple device
US20040168568A1 (en) * 2001-07-18 2004-09-02 Michel Roy Motor-driven, boom-mounted rotary coupling
US7207610B1 (en) * 2003-03-03 2007-04-24 Kauppila Richard W Clam for wood handling equipment
US20080034561A1 (en) * 2004-07-20 2008-02-14 Thule Sweden Ab Fixing Device for Fastening a Roof Box
US20100109361A1 (en) * 2006-11-23 2010-05-06 Leendert Cornelis Mizelmoe Gripper for objects
US7743960B2 (en) * 2002-06-14 2010-06-29 Power Medical Interventions, Llc Surgical device
US7918230B2 (en) 2007-09-21 2011-04-05 Tyco Healthcare Group Lp Surgical device having a rotatable jaw portion
US7963433B2 (en) 2007-09-21 2011-06-21 Tyco Healthcare Group Lp Surgical device having multiple drivers
US20110148133A1 (en) * 2008-04-29 2011-06-23 Itrec B.V. Pipe gripping assembly
US20110150575A1 (en) * 2008-08-08 2011-06-23 Geobrugg Ag Method and Apparatus for Lining Tunnel Walls or Tunnel Ceilings with Protective Nets
US20130099517A1 (en) * 2010-06-17 2013-04-25 Nissan Motor Co., Ltd. Gripping device
KR101331247B1 (en) * 2012-02-03 2013-11-19 정동영 Swing type grapper
USD740861S1 (en) * 2014-07-30 2015-10-13 Alex M. Aerts Jaw tip
US20160007994A1 (en) * 2014-07-10 2016-01-14 Maxwell Choongwon Park Method and apparatus for securing soft tissue to bone

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US656416A (en) * 1899-09-01 1900-08-21 Morgan Engineering Co Ingot-extracting apparatus.
US2229800A (en) * 1939-03-20 1941-01-28 William T Dean Tongs
US2788143A (en) * 1953-05-12 1957-04-09 Tendresse Philip E La Loader with swivel clam gripper
US2903294A (en) * 1955-12-29 1959-09-08 Warner Swasey Co Grapple for material handling and earth moving apparatus
US3527495A (en) * 1968-04-03 1970-09-08 Northern Eng & Supply Co Ltd Grapple
US3627372A (en) * 1969-12-08 1971-12-14 Hydraulic Machinery Co Inc Continuous rotation grapple

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US656416A (en) * 1899-09-01 1900-08-21 Morgan Engineering Co Ingot-extracting apparatus.
US2229800A (en) * 1939-03-20 1941-01-28 William T Dean Tongs
US2788143A (en) * 1953-05-12 1957-04-09 Tendresse Philip E La Loader with swivel clam gripper
US2903294A (en) * 1955-12-29 1959-09-08 Warner Swasey Co Grapple for material handling and earth moving apparatus
US3527495A (en) * 1968-04-03 1970-09-08 Northern Eng & Supply Co Ltd Grapple
US3627372A (en) * 1969-12-08 1971-12-14 Hydraulic Machinery Co Inc Continuous rotation grapple

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4257731A (en) * 1978-09-14 1981-03-24 North Bend Fabrication & Machine, Inc. Powered implement with work elements pivotally mounted on an implement mounting and a torque tube for rotating such mounting
WO1983000204A1 (en) * 1981-06-26 1983-01-20 Rose, Stanley, E. Spacial mechanism and method
US4648771A (en) * 1984-07-13 1987-03-10 Ikuo Yoshioka Robot hand for stacking boxes
US5125707A (en) * 1989-05-17 1992-06-30 Sankyu Inc. Rotary load lifting hook device
US5330242A (en) * 1992-12-23 1994-07-19 Lucky Sr Bobby D Rotatable hydraulic grapple
US5328223A (en) * 1993-01-12 1994-07-12 Maggio Lewis R End grapple for nurseries
US5516174A (en) * 1994-04-29 1996-05-14 Squyres; Lee Grapple device for handling balled trees and shrubs
US5865493A (en) * 1997-04-03 1999-02-02 Lee; Kou-An Anchoring device for use with a hoisting machine
WO1998049087A1 (en) * 1997-04-25 1998-11-05 Wasteworks International Inc. Waste bin manipulator arm
US5865491A (en) * 1997-08-04 1999-02-02 Lee; Kou-An Rotatable hoisting device for position adjustment
US6244643B1 (en) * 1999-04-22 2001-06-12 Dutchmaster Nurseries Ltd. Vehicle-mounted grapple device
US7066076B2 (en) 2001-07-18 2006-06-27 Rotobec Inc. Motor-driven, boom-mounted rotary coupling
US20040168568A1 (en) * 2001-07-18 2004-09-02 Michel Roy Motor-driven, boom-mounted rotary coupling
US8540733B2 (en) 2002-06-14 2013-09-24 Covidien Lp Surgical method and device having a first jaw and a second jaw in opposed correspondence for clamping, cutting, and stapling tissue
US9861362B2 (en) 2002-06-14 2018-01-09 Covidien Lp Surgical device
US7743960B2 (en) * 2002-06-14 2010-06-29 Power Medical Interventions, Llc Surgical device
US8056786B2 (en) 2002-06-14 2011-11-15 Tyco Healthcare Group Lp Surgical device
US7207610B1 (en) * 2003-03-03 2007-04-24 Kauppila Richard W Clam for wood handling equipment
US7637405B2 (en) * 2004-07-20 2009-12-29 Thule Sweden Ab Fixing device for fastening a roof box
US20080034561A1 (en) * 2004-07-20 2008-02-14 Thule Sweden Ab Fixing Device for Fastening a Roof Box
US20100109361A1 (en) * 2006-11-23 2010-05-06 Leendert Cornelis Mizelmoe Gripper for objects
US8210587B2 (en) * 2006-11-23 2012-07-03 Peinemann Equipment B.V. Gripper for objects
US8752748B2 (en) 2007-09-21 2014-06-17 Covidien Lp Surgical device having a rotatable jaw portion
US7992758B2 (en) 2007-09-21 2011-08-09 Tyco Healthcare Group Lp Surgical device having a rotatable jaw portion
US10117651B2 (en) 2007-09-21 2018-11-06 Covidien Lp Surgical device having a rotatable jaw portion
US8272554B2 (en) 2007-09-21 2012-09-25 Tyco Healthcare Group Lp Surgical device having multiple drivers
US8342379B2 (en) 2007-09-21 2013-01-01 Covidien Lp Surgical device having multiple drivers
US8353440B2 (en) 2007-09-21 2013-01-15 Covidien Lp Surgical device having a rotatable jaw portion
US10420548B2 (en) 2007-09-21 2019-09-24 Covidien Lp Surgical device having multiple drivers
US7963433B2 (en) 2007-09-21 2011-06-21 Tyco Healthcare Group Lp Surgical device having multiple drivers
US10881397B2 (en) 2007-09-21 2021-01-05 Covidien Lp Surgical device having a rotatable jaw portion
US9282961B2 (en) 2007-09-21 2016-03-15 Covidien Lp Surgical device having multiple drivers
US9204877B2 (en) 2007-09-21 2015-12-08 Covidien Lp Surgical device having a rotatable jaw portion
US9017371B2 (en) 2007-09-21 2015-04-28 Covidien Lp Surgical device having multiple drivers
US7918230B2 (en) 2007-09-21 2011-04-05 Tyco Healthcare Group Lp Surgical device having a rotatable jaw portion
US8544914B2 (en) * 2008-04-29 2013-10-01 Itrec B.V. Pipe gripping assembly
US20110148133A1 (en) * 2008-04-29 2011-06-23 Itrec B.V. Pipe gripping assembly
US8662796B2 (en) * 2008-08-08 2014-03-04 Geobrugg Ag Method and apparatus for lining tunnel walls or tunnel ceilings with protective nets
AU2009278321B2 (en) * 2008-08-08 2016-01-07 Geobrugg Ag Method and apparatus for lining tunnel walls or ceilings with protective nets
AU2009278321C1 (en) * 2008-08-08 2016-05-12 Geobrugg Ag Method and apparatus for lining tunnel walls or ceilings with protective nets
US20110150575A1 (en) * 2008-08-08 2011-06-23 Geobrugg Ag Method and Apparatus for Lining Tunnel Walls or Tunnel Ceilings with Protective Nets
US20130099517A1 (en) * 2010-06-17 2013-04-25 Nissan Motor Co., Ltd. Gripping device
US8672379B2 (en) * 2010-06-17 2014-03-18 Nissan Motor Co., Ltd. Gripping device
KR101331247B1 (en) * 2012-02-03 2013-11-19 정동영 Swing type grapper
US9901335B2 (en) * 2014-07-10 2018-02-27 Maxwell Choongwon Park Method and apparatus for securing soft tissue to bone
US20160007994A1 (en) * 2014-07-10 2016-01-14 Maxwell Choongwon Park Method and apparatus for securing soft tissue to bone
USD740861S1 (en) * 2014-07-30 2015-10-13 Alex M. Aerts Jaw tip

Similar Documents

Publication Publication Date Title
CA1040615A (en) Derrick mounted apparatus for the manipulation of pipe
US2814396A (en) Portable crane for handling and setting poles
US5423390A (en) Pipe racker assembly
US2411623A (en) Portable saw
US3112830A (en) Pole handling device
US3885679A (en) Raching arm for pipe sections, drill collars, riser pipe, and the like used in well drilling operations
US2804979A (en) Portable lifting apparatus
US3804263A (en) Portable hoist
US4303270A (en) Self-centering clamp
US2490233A (en) Lift structure for tires
US3961399A (en) Power slip unit
US4645084A (en) Robot arm
US2364851A (en) Collapsible support
US8235105B2 (en) Mouse hole support unit with rotatable or stationary operation
US4403897A (en) Self-centering clamp for down-hole tubulars
US3559821A (en) Drill pipe handling apparatus
US2596477A (en) Lift truck grab arm mechanism for cylindrical bodies
US2615681A (en) Device for handling pipes
US4109800A (en) Multi-stage well-drilling mast assembly
US3464507A (en) Portable rotary drilling pipe handling system
US3734328A (en) Roll lifter
US2807382A (en) Industrial lift truck with load clamp
US2646182A (en) Loading and unloading apparatus
US2595131A (en) Load grip means for trucks and the like
US20080245192A1 (en) Power tong positioner