US3902098A - Linear beam microwave tube having means coupled to the beam upstream of input coupler and/or downstream of output coupler for varying amplitude and/or phase of r.f. component in the beam - Google Patents
Linear beam microwave tube having means coupled to the beam upstream of input coupler and/or downstream of output coupler for varying amplitude and/or phase of r.f. component in the beam Download PDFInfo
- Publication number
- US3902098A US3902098A US479286A US47928674A US3902098A US 3902098 A US3902098 A US 3902098A US 479286 A US479286 A US 479286A US 47928674 A US47928674 A US 47928674A US 3902098 A US3902098 A US 3902098A
- Authority
- US
- United States
- Prior art keywords
- coupler
- input
- collector
- output
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J25/00—Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
- H01J25/02—Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
- H01J25/10—Klystrons, i.e. tubes having two or more resonators, without reflection of the electron stream, and in which the stream is modulated mainly by velocity in the zone of the input resonator
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J23/00—Details of transit-time tubes of the types covered by group H01J25/00
- H01J23/02—Electrodes; Magnetic control means; Screens
- H01J23/11—Means for reducing noise
Definitions
- a linear beam microwave tube comprises circuit element means coupled to the beam at a region between the electron gun and the input coupler and/or at a region between the output coupler and the collector.
- the circuit element means varies the amplitude and/or the phase of an r.f. component produced by an r.f. input power in the beam at the input coupler.
- the circuit element means may either be r.f. resistive means or resonator circuit means.
- a microwave tube of the type described comprises an electron gun, an input coupler, an output coupler, and a collector arranged in alignment in the order described.
- the tube further comprises means directing an electron beam from the gun to the collector successively through input and output couplers.
- the input coupler couples r.f. input power to the beam to produce therein an r.f. component.
- the output coupler derives r,f. output power from the r.f. component produced in the beam.
- Each of the input and output couplers may comprise a resonator circuit having interaction gap means contributing to the interaction between the r.f. power and the beam.
- the electron beam forming means may comprise magnetic focussing means for providing a focussing magnetic field substantially between the electron gun and collector.
- the tube still further comprises several drift tubes extending around the beam from the interaction gap means.
- a weak backwardly flowing electron stream is present in addition to the forwardly flowing electron beam.
- the backwardly flowing electron stream is produced by secondary electrons produced, in turn, by electrons of the forwardly flowing beam impinging on the collector and drift tubes.
- the velocity modulation of the beam electrons results in a deep density modulation of the beam at the interaction gap of the output coupler so that the beam provides a high r.f.
- the backward stream electrons are small in number as compared with the forward beam electrons and generally have an irregular velocity distribution. It follows therefore in general that the interaction of the backward electron stream with the resonator circuits, although irregular, is small and has only a minor effect upon the performance of the microwave tube. In some cases, the backward electron stream nevertheless feeds or couples an amount of energy back to the input coupler that cannot be neglected with respect to the r.f. input power. The backward coupling resulting from the backward electron stream may render the microwave tube performance unstable. The degree of instability depends, in a complex manner, upon the amount of the backward stream electrons, arrangement of the resona tor circuits, the Q-values thereof, the distribution of the focussing magnetic field, the level of the r.f.
- a countermeasure for the troubles means is disposed in accordance with Japanese Patent Publication No. 37-6181 in a drift tube interposed between two cavity resonators of a microwave tube of the type de scribed for suppressing the propagation of electromagnetic waves.
- some of the drift tubes are outwardly flared into the associated cav' ity resonators according to US. Pat. No. 3,447,018.
- These countermeasures may be effective in suppressing the feedback caused by the backwardly directed electrons on the input side of the microwave tube. It would, however, be inevitable with these countermeasures where the feedback suppressing means is disposed be tween the input and output couplers that the forward gain is also reduced in an amount related to the reduction in the feedback.
- a micro wave tube of the type described comprises circuit ele ment means coupled to the electron beam at a region between the electron gun and the input coupler and/or at a region between the output coupler and the collector for varying the amplitude and/or the phase of the r.f. component resulting in the electron beam primarily from the r.f. input power.
- the circuit element means automatically substantially eliminates the adverse effects otherwise caused on the tube performance by backwardly directed electrons.
- the r.f. component amplitude and- /or phase varying means is disposed upstream of the input coupler and/or downstream of the output coupler rather than in a region therebetween where the r.f. am plification is carried out.
- the circuit element means may be disposed outside of a vacuum envelope of the tube, without any modification to the structure of the tube.
- FIG. 1 is a schematic axial sectional view of a conventional three-cavity klystron
- FIGS. 2A-2D show similar views of a conventional five-cavity klystron
- FIGS. 3A & 3B schematically show frequency characteristics of the klystron shown in FIGS. 2A-2D;
- FIG. 4 is a schematic axial sectional view of a multicavity klystron according to a first embodiment of the instant invention
- FIG. 5 is a like view of a multicavity klystron according to a second embodiment of this invention.
- FIG. 6 is a similar view of a multicavity klystron according to a modification of the second embodiment
- FIG. 7 is an enlarged schematic partial axially sectionalized view of a linear beam microwave tube according to a third embodiment of this invention.
- FIG. 8 is a similar view of a linear beam microwave tube according to a modification of the third embodiment.
- FIG. 9 is a similar view of a linear beam microwave tube according to a fourth embodiment of this invention.
- FIG. 10 is a similar view of a linear beam microwave tube according to a modification of the fourth embodiment.
- an electron beam 10 is formed in a multicavity klystron by an electron gun 11 comprising a cathode 12 (having a heater element 12a), an anode 13 and a magnetic focussing device 16 comprising first and second pole pieces 17 and 18 and a plurality of coils, such as 19.
- the beam 10 flows in a forward direction along the klystron from the electron gun 11 to a collector 21 successively through a central opening formed through the first pole piece 17, a cavity resonator 22 of an input coupler, an intermediate cavity resonator 23, a cavity resonator 24 of an output coupler, and a central opening formed through the second pole piece 18.
- the cavity resonators 22, 23, and 24 have interaction gaps 27, 28, and 29, respectively.
- the ra' dius r,, of the beam 10 is approximately constant and is from 0.6 to 0.8 times the radius r of drift tubes, such as 31, extending either from or between the interaction gaps 27, 28, and 29.
- the input coupler comprises a loop 32 for supplying r.f. input power to the klystron to produce in the input coupler resonator 22 an r.f. electromagnetic field which, in turn, interacts with the beam 10 at the input coupler interaction gap 27 to produce r.f. velocity modulation 0n the beam 10.
- the output coupler comprises a loop 34 for deriving r.f. output power from the output coupler resonator 24 in which the r.f. component of the deep density modulated beam produces an r.f. electromagnetic field at the output coupler interaction gap 29.
- the average velocity of the beam 10 accordingly decreases although the electrons of the beam 10 have their respective velocities determined by the phase of the r.f. component of the beam 10 at the output coupler interaction gap 29 and by their respective trajectories in the beam 10.
- the beam radius r does not appreciably grow large downstream of the output coupler interaction gap 29 when the klystron operates at low levels of the input signals.
- the interaction of the beam 10 with the output coupler resonator 24 becomes strong to increase the beam radius.
- some of the beam electrons tend to impinge on the interior surface of the drift tube extending forwardly from the output coupler interaction gap 29 to the collector 21. Even when these electrons do not actually impinge on the interior surface, some of the beam electrons will impinge on the upstream end interior surface of the collector 21.
- the beam electrons behave in a complicated manner after their passage through the output coupler interaction gap 29 where they lose a substantial amount of energy and from that point foward they are subjected to a weaker focussing magnetic field.
- some of the beam electrons will be directed backwards as exemplified at 36 and secondary electrons will flow backwards as exemplified at 37.
- These backwardly directed or flowing electrons are subjected to the focussing magnetic field and proceed towards the electron gun 11 as an electron stream having a larger radius substantially extending across the entire radius of the drift tubes.
- the stream electrons which have various velocities and vary in amount from time to time, interact at the output coupler interaction gap 29 with the elec tromagnetic field induced by the beam 10 in the output coupler resonator 24, and further interact with the intermediate resonator 23, and feed the microwave energy back to the input coupler resonator 22.
- the feedback characteristics are complicated and unstable.
- another conventional multicavity klystron comprises parts designated with similar reference numerals as in FIG. 1 and, instead of a single intermediate resonator 23, is provided with three intermediate resonators 231, 232, and 233 having interaction gaps 281, 282, and 283, respectively.
- the r.f. output voltage is of the same order as the beam accelerating anode voltage or when the velocity of the velocity modulated electrons is distributed over a wide range, it has now been confirmed that a portion of the beam electrons does not reach the collector 21 but is directed backwards shown in FIG.
- the electron stream proceeding towards the electron gun 11 is subjected to modulation at the output coupler interaction gap 29 and then at the intermediate resonator interaction gaps 283, 282, and 281 to form feedback loops at the lattermentioned interaction gaps 281 through 283.
- the backward moving electron stream reaching the electron gun 11 is accelerated by the anode voltage to become an additional electron beam shown at 39 in FIG. 1 flowing towards the collector 21 and forming additional feedback loops.
- the backwardly proceeding electron stream is weak even when the r.f. output voltage is considerably high, it has been found that this electron stream .and additional electron beam have an undesireable effect upon the r.f. component of the beam at the output coupler interaction 'gap 29 to seriously adversely affect the klystron operation and to make the operation unstable.
- the klystron illustrated with reference to FIG 2A was operated as a four cavity klystron with the most upstream resonator 22 detuned to the operating passband of frequencies and supplied with no r.f. power and with the'second upstream resonator 231 supplied with the r.f. input power through aloop (not shown).
- the r.f. output power exhibited the characteristics shown in FIG. 3A.
- a multicavity klystron according to a first embodiment of the present invention comprises parts designated with like reference numerals as in FIGS. 1 and 2A.
- the l lystronfurther comprises an input side r.f. attenuator 41 between the electron gun 11 and the input coupler resonator 22 and/or an output side r.f. attenuator 42 between the output coupler resonator 24 and the collector 21.
- the r.f. attenuator 41 or 42 may be provided either by making a portion or the whole of the relevant drift tube of a material havinglarge electric resistance or by forming a film of resistive material on the interior surface of the drift tube concerned.
- the material for the r.f. attenuator tube 4] or 42 may be iron. stainless steel, a nickel-copper alloy known as Monel Metal, or the like.
- the r.f. attenuator film may be made by plating the interior surface of the relevant drift tube with the material mentioned above. Alternatively, the film may be made by spraying up the interior surface either powered stainless steel or a mixture of iron group metal powder and aluminum powder known by the name of Kanthal, a Swedish company.
- the circuit element means provided by the output side r.f. attenuator 42 varies the amplitude of the r.f. component of the principal electron beam to reduce the r.f. component of that portion of the backward electron stream which is provided by the secondary electrons produced at the collector 21 or produced at locations adjacent thereto.
- the attenuator 42 directly reduces the r.f. component of the lastmentioned portion of the backward electron stream.
- the input side attenuator 41 reduces the r.f. components of both the entire backward electron stream and the additional forward electron beam, thereby varying the amplitude of the r.f. component of the electron beam 10 including the additional forward electron beam.
- a multicavity klystron is characterized by an r.f. circuit element 46 coupled to the electron beam 10 in a region between the electron gun I] and the input coupler resonator 22.
- the r.f. circuit element 46 comprises an input side resonator circuit exemplified by a cavity resonator and disposed between the gun 11 and the input coupler resonator 22.
- the input side cavity resonator 46 is coupled to the electron beam 10 at its interaction gap 47 and is provided with a loop 48 connected to an adjustable load 49.
- the cavity resonator 46 may be either of substantially the same dimensions as the input coupler or intermediate resonators 22 and 23 or of smaller dimensions having the fundamental or harmonic mode of resonance within the operating passband of frequencies.
- the r.f. circuit ele ment may be coupled to the beam 10 either through a wave guide or a coaxial cable.
- the load 49 may be another resonator circuit, a stub tuner, a slug tuner, a pair of strip lines, or the like.
- the voltage appearing across the input coupler interaction gap 27 results from a superposition of a voltage resulting from the r.f. input power ofa first unwanted voltage resulting from the r.f. component of the backward electron stream with a second unwanted voltage resulting from the r.f. component of the additional forward electron beam.
- the impedance of the load 49 it is possible to vary the amplitude and/or the phase of the r.f. component of the additional forward electron beam at a region between the input side resonator interaction gap 47 and the input coupler interaction gap 27. This, in turn, varies the amplitude and/or the phase of the r.f. component of the backward electron stream.
- the circuit element means provided by the r.f. circuit element renders it possible to vary the amplitude and/or the phase of the r.f. component of the backward electron stream and to reduce the first and second unwanted voltages.
- the circuit element means substantially eliminates the backward coupling and eliminates the instability of the microwave tube operation.
- a multicavity klystron according to a modification of the second embodiment comprises an output side cavity resonator 51 disposed between the output tnupler resonator 24 and the collector 21.
- the resonator 51 is coupled to the electron beam at its interaction gap 52 and is accompanied by a loop 53 connected to an adjustable load 54.
- a multicavity klystron may comprise the output side r.f. circuit element 51 in addition to the input side r.f. circuit element 46 illustrated with reference to FIG. 5.
- the operation of the output side r.f. circuit element 51 is similar to that described in conjunction with the input side r.f. circuit element 46.
- the anode 13 serves as a reentrant portion of the input side cavity resonator 46.
- the so-called top wall of the reentrant cavity resonator 46 is provided by a metal support 62 for the input sidev drift tube 61 sealed to a ceramic tube 65 forming a portion of a vacuum envelope of the microwave tube.
- the so-called bottom wall of the reentrant cavity resonator 46 is partially provided by another metal support 66 for the anode l3 sealed also to the ceramic tube 65.
- a peripheral wall 67 is extended between the top and bottom walls 62 and 66 to provide the remaining portion of the bottom wall and the so-called side wall of the reentrant cavity resonator 46.
- the dimensions of the cavity resonator 46 may readily be determined by experiment and/or calculation.
- This provides a choke coupling in the bottom wall of the reentrant cavity resonator 46.
- the choke coupling may be disposed between the drift tube support 62 and the peripheral wall 67 or elsewhere in the wall. of the resonator of any shape.
- the choke coupling enables the anode current to be measured to give an estimation of the backward electron stream.
- a linear beam microwave tube comprises an output side drift tube 71 extending downstream of the output coupler interaction gap 29 and a hollow collector 21 having an upstream end wall 72 defining an opening for the collector 21 opposing the free end opening of the output side drift tube 71.
- the interaction gap 52 of the output side resonator circuit 51 is formed by that space between the opposing openings of the output side of drift tube 71 and of the upstream end wall 72 which is usually merely used to measure the beam transmission factor of the microwave tube.
- the downstream end portion of the collector 21 serves as a reentrantof the cavity resonator 51.
- the downstream end of the reentrant cavity resonator interaction gap 52 is provided by the upstream end wall 72 of the collector 21, which is sealed to an output end ceramic tube 75 forming a portion of the vacuum envelope described in conjunction with the third embodiment.
- the top wall of ,the reentrant cavity resonator 51 is provided by a portion of a metal support 76 for the output side drift tube 71, which is also sealed to the output end ceramic tube 75.
- a peripheral wall 77 extends between the collector upstream end wall 72 and the drift tube support 76 to provide both the bottom and side walls of the reentrant cavity resonator 51.
- the dimensions of the resonator circuit 51 may be readily determined by experiment and/or calculation.
- a collector 21 must be made larger and thus inevitably heavier if spaced further apart from the output coupler interaction gap 29 because the electron beam 10 diverges here.
- the fourth embodiment illustrated with reference to FIG. 9 it is possible to provide the output side resonator circuit 51 without lengthening the distance between the output coupler interaction gap 29 and the upstream end of the collector 21 and consequently without adversely affecting the strength of the hermetic seal for the collector 21.
- a linear beam microwave tube according to a modification of the fourth embodiment comprises a ring 79 of an electrically insulating material between the output side resonator circuit peripheral wall 77 and the collector side wall.
- This provides a choke coupling for electrically insulating the collector 21 from the output coupler resonator 24 to enable the measurement of the beam transmission factor of the microwave tube.
- the choke coupling may be disposed elsewhere in the output side resonator wall.
- the multicavity klystrons described with reference to FIGS. 4 through 10 may be other linear beam microwave tubes, such as travelling wave tubes.
- the circuit element means placed on one of the input and the output sides may be a plurality of r.f. attenuators and/or r.f. circuit elements.
- a microwave tube according to this invention may comprise the input and output side resonator circuits described with reference to FIGS. 7 through 10.
- a microwave tube including an electron gun, an input coupler, an output coupler, a collector, and means for directing an electron beam flow from said gun toward said collector successively through said input and output couplers, said input coupler being adapted to couple r.f. input power to said beam to eventually produce an r.f. component in said beam at said output coupler, said output coupler being adapted to derive r.f. output power from said r.f. component, wherein theimprovement comprises circuit element means coupled to said beam in at least one of regions between said gun and said input coupler and between said output coupler and said collector for varying at least one of the amplitude and the phase of said r.f. component.
- a microwave tube including an electron gun, an input coupler, an output coupler, a collector, and means for directing an electron beam flow from said gun toward said collector successively through said input and output couplers, said input coupler being adapted to couple r.f. input power to said beam to eventually produce an r.f. component in said beam at said output coupler, said output coupler being adapted to derive r.f. output power from said r.f. component, wherein the improvement comprises circuit element means coupled to said beam in at least one of regions between said gun and said input coupler and between said output coupler and said collector for varying at least one of the amplitude and the phase of said r.f. component; wherein said circuit element means is an r.f. circuit means comprising a cavity resonator, an adjustable load coupled to said cavity resonator, said cavity resonator having an interaction gap coupled to said electron beam.
- a microwave tube as claimed in claim 6, further comprising a pair of metal supports for said drift tube and an anode of said electron gun, wherein a pair of opposing walls and said cavity resonator are at least partly provided by said metal supports.
Landscapes
- Microwave Tubes (AREA)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7112873A JPS576661B2 (enrdf_load_stackoverflow) | 1973-06-22 | 1973-06-22 | |
JP7112973A JPS5733659B2 (enrdf_load_stackoverflow) | 1973-06-22 | 1973-06-22 | |
JP7459973U JPS5331727Y2 (enrdf_load_stackoverflow) | 1973-06-22 | 1973-06-22 | |
JP1973074600U JPS5529988Y2 (enrdf_load_stackoverflow) | 1973-06-22 | 1973-06-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3902098A true US3902098A (en) | 1975-08-26 |
Family
ID=27465325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US479286A Expired - Lifetime US3902098A (en) | 1973-06-22 | 1974-06-14 | Linear beam microwave tube having means coupled to the beam upstream of input coupler and/or downstream of output coupler for varying amplitude and/or phase of r.f. component in the beam |
Country Status (6)
Country | Link |
---|---|
US (1) | US3902098A (enrdf_load_stackoverflow) |
CA (1) | CA1004359A (enrdf_load_stackoverflow) |
DE (1) | DE2430101C3 (enrdf_load_stackoverflow) |
FR (1) | FR2234652B1 (enrdf_load_stackoverflow) |
GB (1) | GB1449745A (enrdf_load_stackoverflow) |
NL (1) | NL171306C (enrdf_load_stackoverflow) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4100457A (en) * | 1975-12-13 | 1978-07-11 | English Electric Valve Company Limited | Velocity modulation tubes employing harmonic bunching |
DE3002495A1 (de) * | 1979-01-24 | 1980-07-31 | Sits Soc It Telecom Siemens | Oszillator-klystron |
US4506190A (en) * | 1982-09-27 | 1985-03-19 | Varian Associates, Inc. | Linear beam tube with reflected electron trap |
US4764710A (en) * | 1986-11-19 | 1988-08-16 | Varian Associates, Inc. | High-efficiency broad-band klystron |
US5521551A (en) * | 1994-11-21 | 1996-05-28 | Ferguson; Patrick E. | Method for suppressing second and higher harmonic power generation in klystrons |
US6326730B1 (en) * | 1998-11-16 | 2001-12-04 | Litton Systems, Inc, | Low-power wide-bandwidth klystron |
RU2258973C2 (ru) * | 2003-10-06 | 2005-08-20 | Федеральное государственное унитарное предприятие Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики-ФГУП РФЯЦ-ВНИИЭФ | Способ получения объемного заряда |
EP2446456A4 (en) * | 2009-06-23 | 2014-03-19 | L 3 Comm Corp | MAGNETIC ISOLATED COLD CATHODE ELECTRON PISTOL |
US11087860B2 (en) | 2015-10-27 | 2021-08-10 | Koninklijke Philips N.V. | Pattern discovery visual analytics system to analyze characteristics of clinical data and generate patient cohorts |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4413207A (en) * | 1979-12-05 | 1983-11-01 | Nippon Electric Co., Ltd. | Multicavity klystron |
RU2364977C1 (ru) * | 2008-07-21 | 2009-08-20 | Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Исток" (ФГУП "НПП "Исток") | Свч-прибор о-типа |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2916659A (en) * | 1956-02-24 | 1959-12-08 | Sperry Rand Corp | Electron beam forming apparatus |
US3447018A (en) * | 1966-09-16 | 1969-05-27 | Varian Associates | High power multicavity amplifier having enlarged drift tube gap defining portions to inhibit electronic feedback |
US3502934A (en) * | 1967-09-15 | 1970-03-24 | Varian Associates | High frequency electron discharge devices having improved mode suppression means for cavities with re-entrant drift tubes |
US3509413A (en) * | 1966-12-09 | 1970-04-28 | Philips Corp | Klystron with added inductance in resonant cavity |
US3509412A (en) * | 1966-12-24 | 1970-04-28 | Philips Corp | Multicavity klystron for microwave and uhf with interfering mode suppression slots in the ends of the drift tube |
-
1974
- 1974-05-31 GB GB2423174A patent/GB1449745A/en not_active Expired
- 1974-06-12 NL NLAANVRAGE7407817,A patent/NL171306C/xx not_active IP Right Cessation
- 1974-06-14 US US479286A patent/US3902098A/en not_active Expired - Lifetime
- 1974-06-19 CA CA202,797A patent/CA1004359A/en not_active Expired
- 1974-06-20 FR FR7421501A patent/FR2234652B1/fr not_active Expired
- 1974-06-22 DE DE2430101A patent/DE2430101C3/de not_active Expired
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2916659A (en) * | 1956-02-24 | 1959-12-08 | Sperry Rand Corp | Electron beam forming apparatus |
US3447018A (en) * | 1966-09-16 | 1969-05-27 | Varian Associates | High power multicavity amplifier having enlarged drift tube gap defining portions to inhibit electronic feedback |
US3509413A (en) * | 1966-12-09 | 1970-04-28 | Philips Corp | Klystron with added inductance in resonant cavity |
US3509412A (en) * | 1966-12-24 | 1970-04-28 | Philips Corp | Multicavity klystron for microwave and uhf with interfering mode suppression slots in the ends of the drift tube |
US3502934A (en) * | 1967-09-15 | 1970-03-24 | Varian Associates | High frequency electron discharge devices having improved mode suppression means for cavities with re-entrant drift tubes |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4100457A (en) * | 1975-12-13 | 1978-07-11 | English Electric Valve Company Limited | Velocity modulation tubes employing harmonic bunching |
DE3002495A1 (de) * | 1979-01-24 | 1980-07-31 | Sits Soc It Telecom Siemens | Oszillator-klystron |
US4506190A (en) * | 1982-09-27 | 1985-03-19 | Varian Associates, Inc. | Linear beam tube with reflected electron trap |
US4764710A (en) * | 1986-11-19 | 1988-08-16 | Varian Associates, Inc. | High-efficiency broad-band klystron |
US5521551A (en) * | 1994-11-21 | 1996-05-28 | Ferguson; Patrick E. | Method for suppressing second and higher harmonic power generation in klystrons |
US6326730B1 (en) * | 1998-11-16 | 2001-12-04 | Litton Systems, Inc, | Low-power wide-bandwidth klystron |
RU2258973C2 (ru) * | 2003-10-06 | 2005-08-20 | Федеральное государственное унитарное предприятие Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики-ФГУП РФЯЦ-ВНИИЭФ | Способ получения объемного заряда |
EP2446456A4 (en) * | 2009-06-23 | 2014-03-19 | L 3 Comm Corp | MAGNETIC ISOLATED COLD CATHODE ELECTRON PISTOL |
US11087860B2 (en) | 2015-10-27 | 2021-08-10 | Koninklijke Philips N.V. | Pattern discovery visual analytics system to analyze characteristics of clinical data and generate patient cohorts |
Also Published As
Publication number | Publication date |
---|---|
DE2430101B2 (de) | 1978-07-27 |
FR2234652B1 (enrdf_load_stackoverflow) | 1979-03-16 |
DE2430101C3 (de) | 1979-03-22 |
NL7407817A (enrdf_load_stackoverflow) | 1974-12-24 |
FR2234652A1 (enrdf_load_stackoverflow) | 1975-01-17 |
CA1004359A (en) | 1977-01-25 |
DE2430101A1 (de) | 1975-01-23 |
NL171306C (nl) | 1983-03-01 |
GB1449745A (en) | 1976-09-15 |
NL171306B (nl) | 1982-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4527091A (en) | Density modulated electron beam tube with enhanced gain | |
US2595698A (en) | Electron discharge device and associated circuit | |
US3902098A (en) | Linear beam microwave tube having means coupled to the beam upstream of input coupler and/or downstream of output coupler for varying amplitude and/or phase of r.f. component in the beam | |
US2888597A (en) | Travelling wave oscillator tubes | |
US4558258A (en) | Klystron unit | |
US3936695A (en) | Electron collector having means for trapping secondary electrons in a linear beam microwave tube | |
US2681951A (en) | Low background noise amplifying system for ultra-short waves | |
US3450930A (en) | Permanent magnet focused linear beam tube employing a compensating magnet structure between the main magnet and the beam collector | |
US2844753A (en) | Traveling wave tube | |
US2733305A (en) | Diemer | |
US3005126A (en) | Traveling-wave tubes | |
US3205398A (en) | Long-slot coupled wave propagating circuit | |
US3237046A (en) | Slow wave structures including a periodically folded coaxial cable | |
US2758244A (en) | Electron beam tubes | |
US2444073A (en) | Electron beam tube for ultra high frequencies | |
US2758243A (en) | Electron beam tubes | |
US4168451A (en) | Multi-cavity klystron amplifiers | |
US3573540A (en) | Microwave traveling wave device with electronically switched interaction characteristics | |
US3381163A (en) | Klystron amplifier having one cavity resonator coated with lossy material to reduce the undesired modes unloaded cavity q | |
JP2019192344A (ja) | クライストロン | |
US2972702A (en) | High frequency amplifier | |
US3594605A (en) | Mode suppression means for a clover-leaf slow wave circuit | |
US3433999A (en) | Non-resonant stub supports for slow wave circuits | |
US3292033A (en) | Ultra-high-frequency backward wave oscillator-klystron type amplifier tube | |
CA1086862A (en) | Lossless traveling wave booster tube |