US3900591A - Developed image transfer - Google Patents

Developed image transfer Download PDF

Info

Publication number
US3900591A
US3900591A US368108A US36810873A US3900591A US 3900591 A US3900591 A US 3900591A US 368108 A US368108 A US 368108A US 36810873 A US36810873 A US 36810873A US 3900591 A US3900591 A US 3900591A
Authority
US
United States
Prior art keywords
web
particles
transfer member
transfer
electrically conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US368108A
Inventor
Robert J Kline
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Co
Original Assignee
Minnesota Mining and Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minnesota Mining and Manufacturing Co filed Critical Minnesota Mining and Manufacturing Co
Priority to US368108A priority Critical patent/US3900591A/en
Priority to CA194,458A priority patent/CA1011994A/en
Priority to DE2414000A priority patent/DE2414000A1/en
Priority to FR7419686A priority patent/FR2232786B1/fr
Priority to JP49064871A priority patent/JPS5033844A/ja
Priority to GB2551174A priority patent/GB1448339A/en
Priority to IT23745/74A priority patent/IT1014873B/en
Priority to US05/564,999 priority patent/US3993021A/en
Application granted granted Critical
Publication of US3900591A publication Critical patent/US3900591A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/14Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base
    • G03G15/16Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer
    • G03G15/1665Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer by introducing the second base in the nip formed by the recording member and at least one transfer member, e.g. in combination with bias or heat
    • G03G15/167Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer by introducing the second base in the nip formed by the recording member and at least one transfer member, e.g. in combination with bias or heat at least one of the recording member or the transfer member being rotatable during the transfer
    • G03G15/1685Structure, details of the transfer member, e.g. chemical composition

Definitions

  • ABSTRACT 52 U.S. Cl. 427/24; 118/637 427/25 A method of transferring electrogaphic toner POWgr [51] Int. Cl G03g 13/08 images to plain paper wherein a transfer device 58 Field 61 Search l18/637- 117/17.5- cludes apertured electrically conductive Support 7 6 /DIG member overlying which is a surface layer in the form of a pile fabric having a multiplicity of electrically [56] 1 I Rem-fences Cited, conductive fibrous loops, and vacuum means cooperating with the apertures for drawing copy paper into UNITED STATES PATENTS intimate clinging engagement with the surface layer. 3,382,360 5/1968 Young et a1.
  • This invention relates to-a process for transferring particles in imagewise fashion from one surface to another.
  • the invention is particularly suited'for transferring electrographically developed tonerp'owder images from an electrographic surface to plain paper with retention of the pattern of the developed image.
  • Previous methods of transferring developed images to plain copy papers include the use of corona wires, conductive brushes, and conductive rollers. Image transfers made using the corona method are subject to serious nonuniformity problems if vibration of the corona wire or powder buildup on the wire occurs, as well as being very sensitive to changes in temperature, relative humidity, the amount of powder on the developed images, and changes in the electrical characteristics of the copy paper used. Frequent cleaning and adjustment of the corona is required to maintain consistent quality and density of the transferred copy under the wide variety of environmental conditions and many types of copy paper to which the copying machine is or may be exposed.
  • the conductive brush type transfer as disclosed in US. Pat. No. 3,691 ,993 is stated to overcome some disadvantages of the corona transfer technique, but itself has the disadvantages of causing copy registration problems, scuffing or abrasion of the photoconductor surface, as well as non-uniformly transferred image where the brush fibers separate or bunch together.
  • toner particles which had been electrostatically charged are transferred from an image to a web of transfer material by means of a brush.
  • the brush comprises a plurality of unitary, electrically conductive fibers which extend substantially outward from the base.
  • the tips of the fibers move the web of transfer material into abutting contact with the image surface bearing the electrostatically charged toner particles urrderthe' influence of the electrical potential difference which causes transfer.
  • the brush tips move at a higher velocity than that 1 of theweb-image surface sandwich while in the transfer nip.
  • a smooth conductive back-up roller is provided in place of the brush.
  • toner powderimage undergoes a blasting effect at the time the web of transfer material is separated from the roller surface.
  • papers are employed having a special sizing. This expedient is not entirely satisfactory, however, since special plain papers are required whereas the copying market, especially the high volume copying market, demands that conventional plain paper from a variety of sources be usable.
  • a transfer device comprising an electrically conductive support member having apertures therein overlying which is a surface layer in the form of a pile fabric having a multiplicity of electrically conductive fibrous loops adapted to make intimate electrically conductive contact with a web or sheet of copy material, and vacuum means communicating with said apertures for drawing said web into clinging engagement with said fibrous loops whereby said web is stationary with respect to said transfer device when said transfer device is moving.
  • This device is adapted to be connected to a source of In another embodiment of the invention, a process is provided comprising:
  • FIG. 1 is a schematic view illustrating the transfer process of this invention.
  • FIG. 2 is a cross-sectional view in elevation of a transfer device of this invention.
  • a carrier member 1 in the form of a web mounted on moveable carriage 3 carries a plurality of particles 5.
  • Carrier member 1, mounted over guide rolls 7 and 9, is connected at one end to a supply roll (not shown) and at the other end to a take-up roll (not shown).
  • Particles 5 have previously been deposited on the surface of member 1 by any means of deposition.
  • the particles 5 have associated therewith an electrical charge 14.
  • an electrical charge 14 In this embodiment,
  • the electrical charge is positive in polarity. It is to be understood that where a charge of one polarity is shown, a charge of the opposite polarity could be employed as well.
  • the particles 5 are located on the surface of member 1 in accordance with a predetermined pattern.
  • Drum 19 contains apertures 21 which are operatively associated with a vacuum source not shown. This source produces a suction from the outside of drum 19 towards the inside in the direction of arrow 23. This suction thus exerts a force on the leading edge of the sheet 15 which draws it into intimate, clinging engagement with drum .19. Thus, sheet 15 is maintained stationary with respect to the drum 19.
  • the drum 19 rotates in a counterclockwise direction at a speed essentially the same as the speed of carriage 3. In the preferred embodiment, drum 19 is indexed to provide registration between the apertures 21 and the leading edge of the sheet 15.
  • sheet as used herein includes films or sheets of any length. In copying and duplicating processes, paper in a continuous roll form or separate sheets is conventionally employed.
  • Drum 19 and carriage 3, including base 11, are con nected to a source of electrical potential 27; drum 19 being connected to the pole having a polarity opposite the polarity of the charge associated with the particles At the appropriate time, drum 19 drops into contact with the carriage 3. As drum 19 rotates with its surface speed synchronized with that of carriage 3, the toner particles 5 on the carrier member 1 are transferred with retention of their relative positions to the surface of sheet by impressing a voltage on the drum 19.
  • sheet 15 As the leading edge of the sheet 15 (still held by vacuum) nears the lower end of a conveyor 31, sheet 15 is blown off the drum 19 by a positive pressure applied at that point.
  • a vacuum applied to the moving conveyor belt 33 allows the sheet to be picked up and carried to further processing stations such as a fuser, cutter, etc. and finally out of the machine.
  • sheet 15 may be provided in any web form whether pre-cut or in roll form.
  • FIG. 2 depicts a preferred embodiment of the transblanket which can be wrapped around the cylindrical member 43 and fastened in place by suitable means such as double-coated pressure-sensitive adhesive tape.
  • the resilient layer which may be of a soft rubber, foam or sponge material, acts as a cushion between the cylindrical member or other support 43 and the surface layer 51 to ensure uniform contact pressure between the transfer device and the electrographic member 1.
  • the particles 5 may be initially deposited on acarrier surface by anymeans, electrographic or otherwise'.
  • An electrographic process which may beemployed'toiobtain a pattern of particles on a carrier surface is the process involving development of a latent; conductivity pattern (Shely, U.S. Pat. No. 3,563,734, incorporated herein by reference).
  • a preferred toner is that described in Nelson, U.S. Pat. No. 3,639,245 incorporated herein by reference.
  • These particles have a relatively resistive core and a relatively electrically conductive periphery and are magnetically attractable.
  • the conductivity of these toner particles ranges from about 10 to about l0 mho/cm. at volts per cm. d.c. field.
  • the carrier surface may be composed of a variety of materials. Suitable materials include those which are electrically insulating at least in the absence of activating radiation, e.g., polymeric films, such as polyesters, and layers of organic and inorganic photoconductors either as a single homogeneous layer, such as selenium, arsenic selenide or the like, or as blends of a photoconductor, such as zinc oxide, titanium dioxide, cadmium sulfide, 0r polyvinyl carbazole, and an insulating binder.
  • the carrier surface is an insulating material having a conductivity in the absence of activating radiation ranging from 10' to 10'" mho/cm.
  • the carrier surface is provided with an electrically conductive backing either integral with or separate from the carrier surface.
  • This backing is electrically connected to one terminal of the voltage source and preferably is also connected to ground.
  • Typical backings include metal platens, drums, rollers, as well as metallized coatings and resins loaded with conductive particles.
  • the preferred covering for the transfer member is comprised of a polyester backing, on the order of microns thick, to which is adhesively. bonded a urethane foam, typically 3 to 7 millimeters thicl to which, in turn, is adhesively bonded an electrically conductive fuzz fabric, preferably a metal impregnated natural or synthetic fiber pile fabric.
  • a silver impregnated polyamide pile fabric is most preferred.
  • Such a material, described in U.S. Pat. No. 3,693,181, has a myriad of soft loops or piles extending from a fabric-like base. The piles have good recovery characteristics and provide the resilience required for mechanical and electrical engagements.
  • a preferred commercially available pile fabric is available under the tradename Tecknit Confuzz Fabric Cloth.
  • This cloth has a weight of about 142 grams per square meter, a loop tricot fabric construction, is impregnated with about 30% by weight silver, has a surface resistivity of 2 ohms per square and surface-to-surface resistivity of 0.016 ohms per square centimeter.
  • the preferred pile fabric should have a loop density ranging from 300 to 3,000 per square centimeter with each loop having a fiber diameter of 5 to 30 microns.
  • the pile should extend above the woven backing a distance of 0.050 to 0.160centimeters.
  • Volume resistivity of the material should be less than 5,500 ohms per square centimeter, although best results have been obtained with the most conductive fabric.
  • Other metals than silver can be used to make the fibers conductive, but silver is preferred because of its anti-corrosive properties and its high electrical conductivity.
  • EXAMPLE 1 Employing a device as depicted in FIG. 1, an image is developed on an electrographic member in accordance with the process described in Shely, US. Pat. No. 3,563,734.
  • the carrier surface is photoconductive titanium dioxide disposed in an insulating resin binder underlying which is a polyester film which in turn is provided with a vapor coating of aluminum.
  • the potential applied to the developer roll +800 volts d.c.
  • the toner is a powder having a resistive core and an electrically conductive surface as described in Nelson, US. Pat. No. 3,639,245. After development, the photoconductive carrier surface is at a surface potential of +550 to +600 volts.
  • the transfer material is a sheet of plain bond paper pound weight) having a resistivity of 7.2 X 10" ohm-cm moving at a surface speed of about 56 cm./sec.
  • the transfer roll is of the construction depicted in FIG. 2 having an aluminum roll I 1.25 cm. in diameter covered with, respectively, a polyester film 0.010 cm. thick, alayer of urethane foam 0.31 cm.
  • the leading edge of the paper is fed into contact with the transfer roll at which time the paper is subjected to a vacuum which draws the paper into intimate clinging contact with the pile cloth.
  • a negative 200 volts direct current potential is applied as the paper passes into contact with the carrier surface bearing the toner powder developed image.
  • the toner powder is thereby attracted and transferred imagewise to the paper sheet.
  • the paper or other copy sheet Due to the force exerted by the vacuum, the paper or other copy sheet is pushed against the loops of the pile fabric. Unlike the brush described in US. Pat. No. 3,691,993, the copy sheet is not moved by the loop piles but rather is moved or driven together with the transfer roll itself to which it is releasably adhered by the vacuum.
  • the paper sheet, adhered to the transfer roll by the vacuum at its leading edge, then moves away from the nip between the carrier surface and the transfer roll toward the lower end of the conveyor.
  • the transfer roll vacuum is released and-a force pressure applied which lifts the paper away from the transfer member and permits it to be picked up bythe conveyor and carried to the fuser.
  • the force is preferably in the form of a positive pressure exerted by a gas, generally air, which is directed opposite to the force exerted by the vacuum holding the web on the transfer member surface.
  • a gas generally air
  • the magnitude of the force providing the positive pressure should be sufficient to lift the web off of the transfer member.
  • the pile fabric provides a surface covering for an electrically conductive substrate.
  • a nonresilient, electrically conductive substrate such as a metal core may be covered with the pile fabric having a plurality of fibrous loops 53.
  • the pile fabric may be in direct contact with the surface of the non-resilient conductive substrate or there may be a resilient, electrically conductive layer interposed between the pile fabric and the non-resilient substrate.
  • An exemplary resilient conductive material is silicone rubber filled with conductive particles sufficient to provide the requisite conductivity.
  • a processing comprising:

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Paper Feeding For Electrophotography (AREA)

Abstract

A method of transferring electrographic toner powder images to plain paper, wherein a transfer device includes an apertured, electrically conductive support member overlying which is a surface layer in the form of a pile fabric having a multiplicity of electrically conductive fibrous loops, and vacuum means cooperating with the apertures for drawing copy paper into intimate clinging engagement with the surface layer.

Description

United States Patent 1191 Kline Au 19 1975 [54] DEVELOPED IMAGE TRANSFER 3.647,292 3/1972 Weikel, .lr 355/3 3,687,539 8/1972 Furuichi 355/8 [751 Inventor: Rbert Sunwateri 3,691,993 9/1972 Krause et a1. 118/637 [73] Assignee: Minnesota Mining and 3,751,156 8/1973 Szostak et a1 .1 355/3 Manufacturing Company, St. Paul,
Minn Primary E.\'aminerMorris Kaplan Attorney, Agent, or FirmAlexander, Sell, Steldt & [221 F11ed: June 8, 1973 DeLaHum [21] Appl. No.: 368,108
[57] ABSTRACT 52 U.S. Cl. 427/24; 118/637 427/25 A method of transferring electrogaphic toner POWgr [51] Int. Cl G03g 13/08 images to plain paper wherein a transfer device 58 Field 61 Search l18/637- 117/17.5- cludes apertured electrically conductive Support 7 6 /DIG member overlying which is a surface layer in the form of a pile fabric having a multiplicity of electrically [56] 1 I Rem-fences Cited, conductive fibrous loops, and vacuum means cooperating with the apertures for drawing copy paper into UNITED STATES PATENTS intimate clinging engagement with the surface layer. 3,382,360 5/1968 Young et a1. 118/637 3,633,543 1 1972 Pitasi 118/621 4 ClaImS, 2 Drawing Flgures DEVELOPED IMAGE TRANSFER This invention relates to-a process for transferring particles in imagewise fashion from one surface to another. The invention is particularly suited'for transferring electrographically developed tonerp'owder images from an electrographic surface to plain paper with retention of the pattern of the developed image.
Previous methods of transferring developed images to plain copy papers include the use of corona wires, conductive brushes, and conductive rollers. Image transfers made using the corona method are subject to serious nonuniformity problems if vibration of the corona wire or powder buildup on the wire occurs, as well as being very sensitive to changes in temperature, relative humidity, the amount of powder on the developed images, and changes in the electrical characteristics of the copy paper used. Frequent cleaning and adjustment of the corona is required to maintain consistent quality and density of the transferred copy under the wide variety of environmental conditions and many types of copy paper to which the copying machine is or may be exposed.
The conductive brush type transfer as disclosed in US. Pat. No. 3,691 ,993 is stated to overcome some disadvantages of the corona transfer technique, but itself has the disadvantages of causing copy registration problems, scuffing or abrasion of the photoconductor surface, as well as non-uniformly transferred image where the brush fibers separate or bunch together. In the brush transfer, toner particles which had been electrostatically charged are transferred from an image to a web of transfer material by means of a brush. The brush comprises a plurality of unitary, electrically conductive fibers which extend substantially outward from the base. The tips of the fibers move the web of transfer material into abutting contact with the image surface bearing the electrostatically charged toner particles urrderthe' influence of the electrical potential difference which causes transfer. In the preferred embodimerit, the brush tips move at a higher velocity than that 1 of theweb-image surface sandwich while in the transfer nip.
In-another transfer system not involving electrostaticallyfcharged toner particles, a smooth conductive back-up roller is provided in place of the brush. The
toner powderimage undergoes a blasting effect at the time the web of transfer material is separated from the roller surface. To minimize this blasting, papers are employed having a special sizing. This expedient is not entirely satisfactory, however, since special plain papers are required whereas the copying market, especially the high volume copying market, demands that conventional plain paper from a variety of sources be usable.
In the present invention, a transfer device is provided comprising an electrically conductive support member having apertures therein overlying which is a surface layer in the form of a pile fabric having a multiplicity of electrically conductive fibrous loops adapted to make intimate electrically conductive contact with a web or sheet of copy material, and vacuum means communicating with said apertures for drawing said web into clinging engagement with said fibrous loops whereby said web is stationary with respect to said transfer device when said transfer device is moving.
This device is adapted to be connected to a source of In another embodiment of the invention, a process is provided comprising:
1. providing contact between a first surface of a web and a transfer member, said transfer member comprising an apertured, electrically conductive support member and a surface layer in the form of a pile fabric having a multiplicity of electrically conductive fibrous loops,
2. vacuum drawing said first surface of said web into intimate contact with said electrically conductive loops whereby said web is stationary relative to said transfer member,
3. contacting a second surface of said web opposing said first surface of said web with a carrier surface bearing particles disposed in a predetermined pattern thereon, said particles having electrical charges of one polarity associated therewith,
4. providing an electrical potential difference between said transfer member and said carrier surface whereby said web acquires an electrical charge of opposite polarity to said one polarity, and
5. separating said web from said carrier surface whereby said particles transfer to said second surface of said web with retention of said predetermined pattern.
Reference is now made to the attached drawings wherein:
FIG. 1 is a schematic view illustrating the transfer process of this invention; and
FIG. 2 is a cross-sectional view in elevation of a transfer device of this invention.
Referring to FIG. 1, a carrier member 1 in the form of a web mounted on moveable carriage 3 carries a plurality of particles 5. Carrier member 1, mounted over guide rolls 7 and 9, is connected at one end to a supply roll (not shown) and at the other end to a take-up roll (not shown). The carriage 3, which has an electrically conductive base 11 connected to ground 13, rolls on a track not shown and in FIG. 1 is shown as moving from left to right across the page. Particles 5 have previously been deposited on the surface of member 1 by any means of deposition. The particles 5 have associated therewith an electrical charge 14. In this embodiment,
after.
the electrical charge is positive in polarity. It is to be understood that where a charge of one polarity is shown, a charge of the opposite polarity could be employed as well. The particles 5 are located on the surface of member 1 in accordance with a predetermined pattern.
Making contact with the surface of member I hearing particles 5 is a sheet 15 which is fed past nip roll 17 into contact with drum 19. Drum 19 contains apertures 21 which are operatively associated with a vacuum source not shown. This source produces a suction from the outside of drum 19 towards the inside in the direction of arrow 23. This suction thus exerts a force on the leading edge of the sheet 15 which draws it into intimate, clinging engagement with drum .19. Thus, sheet 15 is maintained stationary with respect to the drum 19. The drum 19 rotates in a counterclockwise direction at a speed essentially the same as the speed of carriage 3. In the preferred embodiment, drum 19 is indexed to provide registration between the apertures 21 and the leading edge of the sheet 15. The term sheet as used herein includes films or sheets of any length. In copying and duplicating processes, paper in a continuous roll form or separate sheets is conventionally employed.
Drum 19 and carriage 3, including base 11, are con nected to a source of electrical potential 27; drum 19 being connected to the pole having a polarity opposite the polarity of the charge associated with the particles At the appropriate time, drum 19 drops into contact with the carriage 3. As drum 19 rotates with its surface speed synchronized with that of carriage 3, the toner particles 5 on the carrier member 1 are transferred with retention of their relative positions to the surface of sheet by impressing a voltage on the drum 19.
As the leading edge of the sheet 15 (still held by vacuum) nears the lower end of a conveyor 31, sheet 15 is blown off the drum 19 by a positive pressure applied at that point. A vacuum applied to the moving conveyor belt 33 allows the sheet to be picked up and carried to further processing stations such as a fuser, cutter, etc. and finally out of the machine.
The most seriousproblem with respect to image degradation occurs when sheet 15 leaves the drum 19. The particles 5 which make up the transferred images are held in place by oppositely charged mirror images 34 as long as the sheet 15 is in contact with the drum 19.
.As soon as the sheet 15 begins to separate from the drum 19, however, the electrical charges 34 either re- ,main with the drum 19 or move to the backside of the sheet 15. If these charges 34 remain predominately on the drum l9, insufficient charges are left on the sheet 15 to bind the particles 5 in position, and many of them are blown off the sheet by their mutually repelling Charges into the surrounding air and onto adjacent machine surfaces. The copy then exhibits the low density blasted image mentioned earlier. If the drum is able to force a sufficient number of mirror image charges 34 to remain with the sheet, however, the blasting is eliminated and the image remains intact. It is to be understood that sheet 15 may be provided in any web form whether pre-cut or in roll form.
Sufficient contact pressure between the drum l9 and the base 11 must be applied to immobilize the powder image in the nip area and prevent lateral movement of the powder particles into the adjacent background areas. Pressures of about 140 to 560 gm./cm. have proved effective.
FIG. 2 depicts a preferred embodiment of the transblanket which can be wrapped around the cylindrical member 43 and fastened in place by suitable means such as double-coated pressure-sensitive adhesive tape.
The resilient layer, which may be of a soft rubber, foam or sponge material, acts as a cushion between the cylindrical member or other support 43 and the surface layer 51 to ensure uniform contact pressure between the transfer device and the electrographic member 1.
As noted above, the particles 5 may be initially deposited on acarrier surface by anymeans, electrographic or otherwise'. An electrographic process which may beemployed'toiobtain a pattern of particles on a carrier surface is the process involving development of a latent; conductivity pattern (Shely, U.S. Pat. No. 3,563,734, incorporated herein by reference). A preferred toner is that described in Nelson, U.S. Pat. No. 3,639,245 incorporated herein by reference. These particles have a relatively resistive core and a relatively electrically conductive periphery and are magnetically attractable. The conductivity of these toner particles ranges from about 10 to about l0 mho/cm. at volts per cm. d.c. field.
The carrier surface may be composed of a variety of materials. Suitable materials include those which are electrically insulating at least in the absence of activating radiation, e.g., polymeric films, such as polyesters, and layers of organic and inorganic photoconductors either as a single homogeneous layer, such as selenium, arsenic selenide or the like, or as blends of a photoconductor, such as zinc oxide, titanium dioxide, cadmium sulfide, 0r polyvinyl carbazole, and an insulating binder. Preferably, the carrier surface is an insulating material having a conductivity in the absence of activating radiation ranging from 10' to 10'" mho/cm. The carrier surface is provided with an electrically conductive backing either integral with or separate from the carrier surface. This backing is electrically connected to one terminal of the voltage source and preferably is also connected to ground. Typical backings include metal platens, drums, rollers, as well as metallized coatings and resins loaded with conductive particles. v
The preferred covering for the transfer member is comprised of a polyester backing, on the order of microns thick, to which is adhesively. bonded a urethane foam, typically 3 to 7 millimeters thicl to which, in turn, is adhesively bonded an electrically conductive fuzz fabric, preferably a metal impregnated natural or synthetic fiber pile fabric. A silver impregnated polyamide pile fabric is most preferred. Such a material, described in U.S. Pat. No. 3,693,181, has a myriad of soft loops or piles extending from a fabric-like base. The piles have good recovery characteristics and provide the resilience required for mechanical and electrical engagements. A preferred commercially available pile fabric is available under the tradename Tecknit Confuzz Fabric Cloth. This cloth has a weight of about 142 grams per square meter, a loop tricot fabric construction, is impregnated with about 30% by weight silver, has a surface resistivity of 2 ohms per square and surface-to-surface resistivity of 0.016 ohms per square centimeter.
The preferred pile fabric should have a loop density ranging from 300 to 3,000 per square centimeter with each loop having a fiber diameter of 5 to 30 microns. The pile should extend above the woven backing a distance of 0.050 to 0.160centimeters. Volume resistivity of the material (surface-to-surface) should be less than 5,500 ohms per square centimeter, although best results have been obtained with the most conductive fabric. Other metals than silver (such as nickel, copper, aluminum, etc.) can be used to make the fibers conductive, but silver is preferred because of its anti-corrosive properties and its high electrical conductivity.
Acceptable transfers of particleshave-been 'n'ia'de over. transfer speeds ranging from; 12 =to 76 centimeters/second,although the faster web speeds generally produce higher resolution copies, Optimum tra nsfer results have been obtained mostplain copy papers where the transfe'r devic has been:l'ielcfat a'd.c. potential about 750 volts opposite that on the carrier surface. A minimum potential difference of at least 400 volts should be employed. For copiers operating in accordance with the process described in Shely, US. Pat. No. 3,563,734, a potential of 200 volts produces the best results for a wide variety of plain papers. The conductive nylon pile fabric permits higher quality copies to be made on such a machine over relative humidities ranging from 20 to 80 percent with most plain papers tested.
A wide variety of copy papers have been tested with little or no evidence of the blasting mentioned earlier. Very resistive-type papers (2.21 X 10 ohm-cm) as well as more conductive papers (1.21 X 10 ohm-cm) and papers which are constructed with a resistive surface on one side and a conductive surface of the other have been used successfully. It is to be understood that where the electrical characteristics of the papers vary widely, an adjustment in transfer roll potential may be needed to obtain the desired image density on the transferred copy.
EXAMPLE 1 Employing a device as depicted in FIG. 1, an image is developed on an electrographic member in accordance with the process described in Shely, US. Pat. No. 3,563,734. The carrier surface is photoconductive titanium dioxide disposed in an insulating resin binder underlying which is a polyester film which in turn is provided with a vapor coating of aluminum. The potential applied to the developer roll +800 volts d.c. The toner is a powder having a resistive core and an electrically conductive surface as described in Nelson, US. Pat. No. 3,639,245. After development, the photoconductive carrier surface is at a surface potential of +550 to +600 volts. The transfer material is a sheet of plain bond paper pound weight) having a resistivity of 7.2 X 10" ohm-cm moving at a surface speed of about 56 cm./sec. The transfer roll is of the construction depicted in FIG. 2 having an aluminum roll I 1.25 cm. in diameter covered with, respectively, a polyester film 0.010 cm. thick, alayer of urethane foam 0.31 cm.
thick, and silver impregnated nylon pile fabric cloth available under the tradename Tecknit Confuzz Fabric Cloth.
The leading edge of the paper is fed into contact with the transfer roll at which time the paper is subjected to a vacuum which draws the paper into intimate clinging contact with the pile cloth. As the paper passes into contact with the carrier surface bearing the toner powder developed image, a negative 200 volts direct current potential is applied. The toner powder is thereby attracted and transferred imagewise to the paper sheet.
Due to the force exerted by the vacuum, the paper or other copy sheet is pushed against the loops of the pile fabric. Unlike the brush described in US. Pat. No. 3,691,993, the copy sheet is not moved by the loop piles but rather is moved or driven together with the transfer roll itself to which it is releasably adhered by the vacuum. The paper sheet, adhered to the transfer roll by the vacuum at its leading edge, then moves away from the nip between the carrier surface and the transfer roll toward the lower end of the conveyor. At the appropriate time, the transfer roll vacuum is released and-a force pressure applied which lifts the paper away from the transfer member and permits it to be picked up bythe conveyor and carried to the fuser. The force is preferably in the form of a positive pressure exerted by a gas, generally air, which is directed opposite to the force exerted by the vacuum holding the web on the transfer member surface. The magnitude of the force providing the positive pressure should be sufficient to lift the web off of the transfer member.
In addition to the preferred embodiment depicted in FIG. 2, other transfer rolls may be employed wherein the pile fabric provides a surface covering for an electrically conductive substrate. For example, a nonresilient, electrically conductive substrate such as a metal core may be covered with the pile fabric having a plurality of fibrous loops 53. The pile fabric may be in direct contact with the surface of the non-resilient conductive substrate or there may be a resilient, electrically conductive layer interposed between the pile fabric and the non-resilient substrate. An exemplary resilient conductive material is silicone rubber filled with conductive particles sufficient to provide the requisite conductivity.
What is claimed is:
l. A process comprising:
1. providing contact between a first surface of a web and a transfer member, said transfer member comprising an apertured, electrically conductive support member and a surface layer in the form of a pile fabric having a multiplicity of electrically conductive fibrous loops,
2. vacuum drawings said first surface of said web into intimate contact with said electrically conductive loops whereby said web is stationary relative to said transfer member,
3. contacting a second surface of said web opposing said first surface of said web with a carrier surface bearing particles disposed in a predetermined pattern thereon, said particles having electrical charges of one polarity associated therewith,
4. providing an electrical potential difference between said transfer member and said carrier surface whereby said web acquires an electrical charge of opposite polarity to said one polarity, and
5. separating said web from said carrier surface whereby said particles transfer to said second surface of said web with retention of said predetermined pattern.
2 The process of claim I wherein said web is paper.
3. The process of claim 1 wherein said potential difference is at least 400 volts.
4. A processing comprising:
1. providing contact between a first surface of a web and a transfer member, said transfer member comprising an apertured, electrically conductive support member and a surface layer in the form of-a pile fabric having a multiplicity of electrically conductive fibrous loops,
2. vacuum drawing said first surface of said web into intimate contact with said electrically conductive loops whereby said web is stationary relative to said transfer member,
3. contacting a second surface of said web opposing said first surface of said web with a carrier surface 7 bearing particles disposed in a predetermined pattern thereon, said particles having electrical charges of one polarity associated therewith,
4. providing an electrical potential difference between said transfer member and said carrier whereby said web acquires an electrical charge of opposite polarity to said one polarity, and
separating said web from said carrier surface determined pattern.

Claims (17)

1. A PROCESS COMPRISING:
1. PROVIDING CONTACT BETWEEN A FIRST SURFACE OF A WEB AND A TRANSFER MEMBER, SAID TRANSFER MEMBER COMPRISING AN APERTURED, ELECTRICALLY CONDUCTIVE SUPPORT MEMBER AND A SURFACE LAYER IN THE FORM OF A PILE FABRIC HAVING A MULTIPLICITY OF ELECTRICALLY CONDUCTIVE FIBROUS LOOPS,
2. VACUUM DRAWINGS SAID FIRST SURFACE OF SAID WEB INTO INTIMATE CONTACT WITH SAID ELECTRICALLY CONDUCTIVE LOOPS WHEREBY SAID WEB IS STATIONARY RELATIVE TO SAID TRANSFER MEMBER,
2. vacuum drawings said first surface of said web into intimate contact with said electrically conductive loops whereby said web is stationary relative to said transfer member,
2. vacuum drawing said first surface of said web into intimate contact with said electrically conductive loops whereby said web is stationary relative to said transfer member,
2. The process of claim 1 wherein said web is paper.
3. The process of claim 1 wherein said potential difference is at least 400 volts.
3. contacting a second surface of said web opposing said first surface of said web with a carrier surface bearing particles disposed in a predetermined pattern thereon, said particles having electrical charges of one polarity associated therewith,
3. contacting a second surface of said web opposing said first surface of said web with a carrier surface bearing particles disposed in a predetermined pattern thereon, said particles having electrical charges of one polarity associated therewith,
3. CONTACTING A SECOND SURFACE OF SAID WEB OPPOSING SAID FIRST SURFACE OF SAID WEB WITH A CARRIER SURFACE BEARING PARTICLES DISPOSED IN A PREDETERMINED PATTERN THEREON, SAID PARTICLES HAVING ELECTRICAL CHARGES OF ONE POLARITY ASSOCIATED THEREWITH,
4. PROVIDING AN ELECTRICAL POTENTIAL DIFFERENCE BETWEEN SAID TRANSFER MEMBER AND SAID CARRIER SURFACE WHEREBY SAID WEB ACQUIRES AN ELECTRICAL CHARGE OF OPPOSITE POLARITY TO SAID ONE POLARITY, AND
4. providing an electrical potential difference between said transfer member and said carrier surface whereby said web acquires an electrical charge of opposite polarity to said one polarity, and
4. providing an electrical potential difference between said transfer member and said carrier whereby said web acquires an electrical charge of opposite polarity to said one polarity, and
4. A processing comprising:
5. separating said web from said carrier surface whereby said particles transfer to said second surface of said web with retention of said predetermined pattern, and applying a positive gaseous pressure to said web sufficient to separate said web from said transfer member while maintaining said particles in said predetermined pattern.
5. separating said web from said carrier surface whereby said particles transfer to said second surface of said web with retention of said predetermined pattern.
5. SEPRATING SAID WEB FROM SAID CARRIER SURFACE WHEREBY SAID PARTICLES TRANSFER TO SAID SECOND SURFACE OF SAID WEB WITH RETENTION OF SAID PREDETERMINED P#ATTERN.
US368108A 1973-06-08 1973-06-08 Developed image transfer Expired - Lifetime US3900591A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US368108A US3900591A (en) 1973-06-08 1973-06-08 Developed image transfer
CA194,458A CA1011994A (en) 1973-06-08 1974-03-08 Transfer device
DE2414000A DE2414000A1 (en) 1973-06-08 1974-03-22 DEVICE AND METHOD FOR TRANSFERRING A PRESET PATTERN OF ELECTRICALLY CHARGED PARTICLES
JP49064871A JPS5033844A (en) 1973-06-08 1974-06-07
FR7419686A FR2232786B1 (en) 1973-06-08 1974-06-07
GB2551174A GB1448339A (en) 1973-06-08 1974-06-07 Transfer device
IT23745/74A IT1014873B (en) 1973-06-08 1974-06-07 TRANSFER DEVICE
US05/564,999 US3993021A (en) 1973-06-08 1975-04-04 Transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US368108A US3900591A (en) 1973-06-08 1973-06-08 Developed image transfer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/564,999 Division US3993021A (en) 1973-06-08 1975-04-04 Transfer device

Publications (1)

Publication Number Publication Date
US3900591A true US3900591A (en) 1975-08-19

Family

ID=23449876

Family Applications (1)

Application Number Title Priority Date Filing Date
US368108A Expired - Lifetime US3900591A (en) 1973-06-08 1973-06-08 Developed image transfer

Country Status (7)

Country Link
US (1) US3900591A (en)
JP (1) JPS5033844A (en)
CA (1) CA1011994A (en)
DE (1) DE2414000A1 (en)
FR (1) FR2232786B1 (en)
GB (1) GB1448339A (en)
IT (1) IT1014873B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993021A (en) * 1973-06-08 1976-11-23 Minnesota Mining And Manufacturing Company Transfer device
US4330349A (en) * 1980-10-02 1982-05-18 Xerox Corporation Method for preparing conductive fiber brushes
US4407580A (en) * 1980-04-30 1983-10-04 Tokyo Shibaura Denki Kabushiki Kaisha Transfer device
US4455078A (en) * 1980-10-14 1984-06-19 Tokyo Shibaura Denki Kabushiki Kaisha Charging device having a conductive particle impregnated strand lined contact member
US4941020A (en) * 1989-07-03 1990-07-10 Eastman Kodak Company Transfer apparatus having vacuum holes for holding a receiving sheet
US5006900A (en) * 1989-07-03 1991-04-09 Eastman Kodak Company Transfer apparatus having vacuum holes and method of making such apparatus
US5040029A (en) * 1989-11-01 1991-08-13 Eastman Kodak Company Multicolor image transfer method and apparatus
US5083169A (en) * 1988-04-06 1992-01-21 Ricoh Company, Ltd. Device for removing deposits from a photoconductive element of an image recorder which is movable between a cleaning and non-cleaning position
US5119550A (en) * 1989-07-03 1992-06-09 Eastman Kodak Company Method of making transfer apparatus having vacuum holes
US5155535A (en) * 1989-07-03 1992-10-13 Eastman Kodak Company Transfer apparatus having a transfer member with vacuum means
US20100289507A1 (en) * 2007-12-19 2010-11-18 Stantum Multicontact transparent tactile sensor based on a metalized surface deposition

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543580A (en) * 1978-09-22 1980-03-27 Matsushita Electric Ind Co Ltd Digital waveform regenerator
US4382673A (en) * 1980-03-25 1983-05-10 Tokyo Shibaura Denki Kabushiki Kaisha Transfer device
JPS58101204U (en) * 1981-12-25 1983-07-09 株式会社島津製作所 Function generator for material testing machine
FR2524367B1 (en) * 1982-04-01 1985-10-11 Commissariat Energie Atomique TELEMANIPULAR DEVICE FOR CUTTING SHEETS AND TUBES IN A DANGEROUS ATMOSPHERE
JPS59161194U (en) * 1983-04-15 1984-10-29 株式会社ケンウッド electronic musical instruments
JP2672528B2 (en) * 1987-10-20 1997-11-05 株式会社東芝 Transfer device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3382360A (en) * 1965-09-10 1968-05-07 Xerox Corp Xerographic charging system having means for providing an air cushion between the charging device and the xerographic drum
US3633543A (en) * 1969-12-05 1972-01-11 Xerox Corp Biased electrode transfer apparatus
US3647292A (en) * 1969-11-28 1972-03-07 Xerox Corp Transfer apparatus
US3687539A (en) * 1970-06-30 1972-08-29 Katsuragawa Denki Kk Electrophotographic apparatus
US3691993A (en) * 1970-11-23 1972-09-19 Ibm Apparatus for transferring developed image
US3751156A (en) * 1971-10-21 1973-08-07 Agfa Gevaert Ag Electrostatic copying apparatus with means for preventing contamination of transfer material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2164527A1 (en) * 1971-12-24 1973-06-28 Kalle Ag CHARGE TRANSFER DEVICE

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3382360A (en) * 1965-09-10 1968-05-07 Xerox Corp Xerographic charging system having means for providing an air cushion between the charging device and the xerographic drum
US3647292A (en) * 1969-11-28 1972-03-07 Xerox Corp Transfer apparatus
US3633543A (en) * 1969-12-05 1972-01-11 Xerox Corp Biased electrode transfer apparatus
US3687539A (en) * 1970-06-30 1972-08-29 Katsuragawa Denki Kk Electrophotographic apparatus
US3691993A (en) * 1970-11-23 1972-09-19 Ibm Apparatus for transferring developed image
US3751156A (en) * 1971-10-21 1973-08-07 Agfa Gevaert Ag Electrostatic copying apparatus with means for preventing contamination of transfer material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993021A (en) * 1973-06-08 1976-11-23 Minnesota Mining And Manufacturing Company Transfer device
US4407580A (en) * 1980-04-30 1983-10-04 Tokyo Shibaura Denki Kabushiki Kaisha Transfer device
US4330349A (en) * 1980-10-02 1982-05-18 Xerox Corporation Method for preparing conductive fiber brushes
US4455078A (en) * 1980-10-14 1984-06-19 Tokyo Shibaura Denki Kabushiki Kaisha Charging device having a conductive particle impregnated strand lined contact member
US5083169A (en) * 1988-04-06 1992-01-21 Ricoh Company, Ltd. Device for removing deposits from a photoconductive element of an image recorder which is movable between a cleaning and non-cleaning position
US4941020A (en) * 1989-07-03 1990-07-10 Eastman Kodak Company Transfer apparatus having vacuum holes for holding a receiving sheet
US5006900A (en) * 1989-07-03 1991-04-09 Eastman Kodak Company Transfer apparatus having vacuum holes and method of making such apparatus
US5119550A (en) * 1989-07-03 1992-06-09 Eastman Kodak Company Method of making transfer apparatus having vacuum holes
US5155535A (en) * 1989-07-03 1992-10-13 Eastman Kodak Company Transfer apparatus having a transfer member with vacuum means
US5040029A (en) * 1989-11-01 1991-08-13 Eastman Kodak Company Multicolor image transfer method and apparatus
US20100289507A1 (en) * 2007-12-19 2010-11-18 Stantum Multicontact transparent tactile sensor based on a metalized surface deposition

Also Published As

Publication number Publication date
GB1448339A (en) 1976-09-02
FR2232786A1 (en) 1975-01-03
DE2414000A1 (en) 1975-01-02
FR2232786B1 (en) 1979-08-03
JPS5033844A (en) 1975-04-01
CA1011994A (en) 1977-06-14
IT1014873B (en) 1977-04-30

Similar Documents

Publication Publication Date Title
US3900591A (en) Developed image transfer
US3993021A (en) Transfer device
US4325627A (en) Method and apparatus for liquid-developing latent electrostatic images
GB1016836A (en) Electrophotographic copying apparatus
KR920015162A (en) Electronic photo printing system
EP0558744A1 (en) Method and apparatus of forming a toner image on a receiving sheet using an intermediate image member.
US5233396A (en) Intermediate transfer member having a low surface energy compliant structure and method of using same
JPH09230717A (en) Intermediate transfer of small toner particle
US2894744A (en) Feed rollers for photo-conductive insulating material
US4080053A (en) Transfer apparatus and method
JPH0224679A (en) Electrostatic latent image developing apparatus
GB2129372A (en) Cleaning photoconductors
US5268725A (en) Sheet member carrier device with grounding means
US4518245A (en) Development system using a thin layer of marking particles
US4627717A (en) Cleaning apparatus for a xerographic reproducing apparatus
GB2313092A (en) Intermediate transfer process and roller
US5196888A (en) Method of feeding developer to developing zone in electrophotography
JPH0514906B2 (en)
US3613636A (en) Electrographic developer
JPS59191077A (en) Recording device
US3854813A (en) Electrostatic printing apparatus using charge induced toning
JPH0321907B2 (en)
US4324490A (en) Development system
US3998536A (en) Apparatus for electrostatic paper stripping
CA1150944A (en) Development system