US3900296A - Composite magnesium-titanium conductor - Google Patents

Composite magnesium-titanium conductor Download PDF

Info

Publication number
US3900296A
US3900296A US493810A US49381074A US3900296A US 3900296 A US3900296 A US 3900296A US 493810 A US493810 A US 493810A US 49381074 A US49381074 A US 49381074A US 3900296 A US3900296 A US 3900296A
Authority
US
United States
Prior art keywords
composite
magnesium
titanium
lithium
per cent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US493810A
Inventor
Henry A Kuchek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Chemical Co
Original Assignee
Dow Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US00402563A external-priority patent/US3849879A/en
Application filed by Dow Chemical Co filed Critical Dow Chemical Co
Priority to US493810A priority Critical patent/US3900296A/en
Application granted granted Critical
Publication of US3900296A publication Critical patent/US3900296A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12729Group IIA metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component

Definitions

  • This invention pertains to an electrical conductor and more in particular to a titanium clad magnesium conductor.
  • a novel electrical conductor suitable for use in corrosive environments and a method of forming such conductor have surprisingly been developed.
  • the method comprises at least partially filling a hollow titanium body with a molten magnesium base alloy containing at least about 0.05 weight per cent lithium by first introducing the molten alloy into the titanium body and then solidifying the molten alloy.
  • the magnesium alloy contacts the inner surface of the titanium body sufficiently to maintain electrical contact between the core and cladding during use.
  • titanium includes pure titanium and titanium base alloys.
  • the magnesium alloy cored-titanium cladded composite is especially suited for use as an electrical conductor in corrosive environments such as those containing a high concentration of an alkali as sodium hydroxide.
  • the titanium cladded-magnesium alloy composite of the present invention is formed by first melting either alloyed or preferably pure magnesium metal and further alloying the molten metal with about 0.05 to about weight per cent and preferably from about 0.1 to
  • a hollow titanium body such as a rectangular or circular cylinder pipe or tube, is at least partially and preferably substantially entirely filled with the molten magnesiumlithium alloy. Such filling can be carried out by, for example, pouring the molten metal into the titanium tube.
  • a titanium tube having one end thereof sealed by, for example, welding and immersing at least the open end of the tube in the molten magnesium-lithium alloy.
  • gases within the tube react with the molten magnesium to thereby cause filling of the tube with the molten metal.
  • the surface of the titanium in contact with the molten magnesium is generally cleaned to remove at least any excess grease and oil present. Preferably substantially all of the organic contaminants are removed by well known means prior to filling or casting the titanium tube with the molten magnesium.
  • the inner surface of the tube can be further cleaned by known mechanical or chemical means to remove surface oxide before casting.
  • the use of an effective amount of lithium in a magnesium alloy enhances the electrical contact between the titanium overcoating or cladding and the magnesium alloy to thereby form a composite having both satisfactory physical properties and electrical conductivity for use as an electrical conductor in, for example, chlorine and sodium hydroxide producing electrolytic cells.
  • the composite of the present invention is also suitable for use as a substrate for a dimensionally stable electrode in, for example, chloralkali electrolytic cells.
  • the metals described herein are preferably the pure metals containing the impurities normally associated with the commercially obtainable metals.
  • the magnesium-lithium core alloy has a composition consisting essentially of at least about weight per cent and preferably at least about 99 weight per cent magnesium together with lithium within the above de-. scribed composition ranges.
  • EXAMPLES l-l 3 Magnesium with a minimum purity of 99.80 weight per cent was melted in an appropriate container and heated to 1300F. A standard flux cover was used to minimize oxidation of the magnesium. Sufficient metallic lithium was added to and mixed with the molten magnesium to form magnesium base alloys containing 0.05, 0.1, 0.5 or 5 weight per cent lithium. The Mg-Li alloys were maintained at a temperature of 1300F.
  • the alloy filled tubes were slowly removed from the molten alloy bath to solidify the Mg-Li alloy within the titanium tubes to thereby form titanium clad-Mg-Li alloy composites.
  • the voltage dropacross a 6 inch length of the composite was determined at room temperature by electrically connecting a 15 ampere source to each composite and measuring the voltage drop by standard means.
  • Table I contains data obtained during the above de scribed tests. This data confirms that the titanium clad- Mg -Li alloy composite has a low voltage decrease over a unit length and is suitable as an electrical conductor.
  • Composites with a titanium alloy cladding and a magnesium-1O weight per cent lithium alloy core with acceptable properties are produced in accord with the procedure of Examples 1-13. In a manner as described for Examples 1:13 composites with acceptable proper- ,ties? are produced using molten metal temperatures of 125W. and 1400 7 What is claimed is: l.
  • a composite comprising an in situ cast core consisting essentially of about 0.05 to about 10 weight per cent lithium and the balance magnesium with a titanium cladding.
  • a composite comprising an in situ cast core consisting essentially of about 0.05 to about 10 weight per cent lithium and the balance magnesium with a cladding consisting essentially of titanium, the composite adapted for use as an electrical conductor in corrosive alkali containing environments.
  • magnesium base alloy contains at least about 99 weight percent magnesium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Extraction Processes (AREA)

Abstract

Magnesium base alloy containing at least about 0.05 weight per cent lithium with a titanium overcoating suitable for use as an electrical conductor.

Description

United States Patent Kuchek Aug. 19, 1975 COMPOSITE MAGNESIUM-TITANIUM 3,189,441 6/1965 Frost 1 75/166 R 3,189,442 6/1965 Fl'OSt 75/168 R 3,320,661 5/1967 Manko 29/197 [75] Inventor; Henry A. Kuchek, Auburn, Mlch. 3,333,956 8/1967 Foerster 75/168 R 3,671,415 6/1972 King 204/286 X [73] Ass1gnee: The Dow Chemical Company, 4 4 B 2 Midland Mich 3,80 ,739 /1974 ergeron 04/266 [22], Filed Aug 1 197 4 FOREIGN PATENTS OR APPLICATIONS 448,830 5/1944 Canada 174/126 CP pp Q: 493,810 1,045,966 10/1966 United Kingdom 174/126 01 Related U.S. Application Data Division of Ser. No. 402,563, Oct. 1, 1973, Pat. No. 3,849,879.
References Cited UNITED STATES PATENTS 9/1964 Foerster 75/168 R Primary ExaminerW. Stallard Assistant Examiner-Arthur J. Steiner Attorney, Agent, or FirmRobert W. Selby 57 ABSTRACT Magnesium base alloy containing at least about 0.05 weight per cent lithium with a titanium overcoating suitable for use as an electrical conductor.
11 Claims, No Drawings COMPOSITE MAGNESIUM-TITANIUM CONDUCTOR' Cross-Reference to Related Application This is a division of application Ser. No. 402,563 filed Oct. 1, 1973, now U.S. Pat. No. 3,849,879.
BACKGROUND OF THE INVENTION This invention pertains to an electrical conductor and more in particular to a titanium clad magnesium conductor.
It is oftentimes desirable to have an electrical conductor resistant to a corrosive environment Electrical conductors with a casing of iron, titanium or tantalum and a core of aluminum,- copper, sodium, tin or zinc, and methods of making such conductors are described in U.S. Pat. Nos. 3,671,415 and 3,717,929, and British Patents l,045,966 and 1,227,506. It is desired to pro- 'vide an electrical conductor resistant to the detrimental corrosive effects of, for example, caustic environments.
SUMMARY OF THE INVENTION A novel electrical conductor suitable for use in corrosive environments and a method of forming such conductor have surprisingly been developed. The method comprises at least partially filling a hollow titanium body with a molten magnesium base alloy containing at least about 0.05 weight per cent lithium by first introducing the molten alloy into the titanium body and then solidifying the molten alloy. The magnesium alloy contacts the inner surface of the titanium body sufficiently to maintain electrical contact between the core and cladding during use. Herein, the term titanium includes pure titanium and titanium base alloys.
The magnesium alloy cored-titanium cladded composite is especially suited for use as an electrical conductor in corrosive environments such as those containing a high concentration of an alkali as sodium hydroxide.
DESCRIPTION OF THE PREFERRED EMBODIMENTS The titanium cladded-magnesium alloy composite of the present invention is formed by first melting either alloyed or preferably pure magnesium metal and further alloying the molten metal with about 0.05 to about weight per cent and preferably from about 0.1 to
about 5 weight per cent and even more preferably from about 0.1 to about 0.5 weight per cent lithium or melting a pre-alloyed magnesium-lithium alloy and heating the molten metal to a temperature less than that at which substantial loss of magnesium and/or lithium occurs. Preferably the metal is heated to within a temperature range of from about 1250F. to about 1400F. and preferably about 1275F. to about 1325F. A hollow titanium body, such as a rectangular or circular cylinder pipe or tube, is at least partially and preferably substantially entirely filled with the molten magnesiumlithium alloy. Such filling can be carried out by, for example, pouring the molten metal into the titanium tube. However, it is preferred to employ a titanium tube having one end thereof sealed by, for example, welding and immersing at least the open end of the tube in the molten magnesium-lithium alloy. By means as generally described in U.S. Pat. No. 3,364,976, gases within the tube react with the molten magnesium to thereby cause filling of the tube with the molten metal.
The surface of the titanium in contact with the molten magnesium is generally cleaned to remove at least any excess grease and oil present. Preferably substantially all of the organic contaminants are removed by well known means prior to filling or casting the titanium tube with the molten magnesium. The inner surface of the tube can be further cleaned by known mechanical or chemical means to remove surface oxide before casting.
It has been surprisingly found that the use of an effective amount of lithium in a magnesium alloy enhances the electrical contact between the titanium overcoating or cladding and the magnesium alloy to thereby form a composite having both satisfactory physical properties and electrical conductivity for use as an electrical conductor in, for example, chlorine and sodium hydroxide producing electrolytic cells. The composite of the present invention is also suitable for use as a substrate for a dimensionally stable electrode in, for example, chloralkali electrolytic cells.
The metals described herein are preferably the pure metals containing the impurities normally associated with the commercially obtainable metals. Preferably the magnesium-lithium core alloy has a composition consisting essentially of at least about weight per cent and preferably at least about 99 weight per cent magnesium together with lithium within the above de-. scribed composition ranges.
The following examples further illustrate the invention.
EXAMPLES l-l 3 Magnesium with a minimum purity of 99.80 weight per cent was melted in an appropriate container and heated to 1300F. A standard flux cover was used to minimize oxidation of the magnesium. Sufficient metallic lithium was added to and mixed with the molten magnesium to form magnesium base alloys containing 0.05, 0.1, 0.5 or 5 weight per cent lithium. The Mg-Li alloys were maintained at a temperature of 1300F.
Commercially pure titanium tubes with an outside diameter of one-half inch, a wall thickness of 0.02 inch and one end welded closed were cleaned by washing with acetone. The cleaned tubes were then immersed (open end downwardly positioned) in a bath of the molten Mg-Li alloy for 5, 10 or 30 minute periods to substantially entirely fill the tubes with the Mg-Li alloy.
The alloy filled tubes were slowly removed from the molten alloy bath to solidify the Mg-Li alloy within the titanium tubes to thereby form titanium clad-Mg-Li alloy composites.
The voltage dropacross a 6 inch length of the composite was determined at room temperature by electrically connecting a 15 ampere source to each composite and measuring the voltage drop by standard means. Table I contains data obtained during the above de scribed tests. This data confirms that the titanium clad- Mg -Li alloy composite has a low voltage decrease over a unit length and is suitable as an electrical conductor.
TABLE 1 Time tube in molten metal (minutes) Example Li(Wt.%) Voltage drop in 6 inch length (millivolts) EXAMPLES 14 AND 15 COMPARATIVE EXAMPLES A AND B Two titanium tubes were filled with 99.8 weight per cent pure magnesium substantially as described for Examples 1-13. The voltage drop across a 6 inch length of the solidified titanium-Mg composite was determined (as in Examples 1-13) to be 18 and 1.1 millivolts. Examples A and B confirm that consistently low voltage drops were not obtained with composites using pure magnesium as a core material.
Composites with a titanium alloy cladding and a magnesium-1O weight per cent lithium alloy core with acceptable properties are produced in accord with the procedure of Examples 1-13. In a manner as described for Examples 1:13 composites with acceptable proper- ,ties? are produced using molten metal temperatures of 125W. and 1400 7 What is claimed is: l. A composite comprising an in situ cast core consisting essentially of about 0.05 to about 10 weight per cent lithium and the balance magnesium with a titanium cladding.
2. A composite comprising an in situ cast core consisting essentially of about 0.05 to about 10 weight per cent lithium and the balance magnesium with a cladding consisting essentially of titanium, the composite adapted for use as an electrical conductor in corrosive alkali containing environments.
3. The composite of claim 1 wherein the core contains about 0.1 to about 5 weight per cent lithium.
4. The composite of claim 2 wherein the core contains about 0.1 to about 5 weight per cent lithium.
5. The composite of claim 1 wherein the core contains about 0.1 to about 0.5 weight percent lithium.
6. The composite of claim 5 wherein the magnesium base alloy contains at least about 99 weight percent magnesium.
7. The composite of claim 5 wherein the titanium cladding is cylindrical in shape.
8. The composite of claim 1 wherein the magnesium base alloy contains at least about weight percent magnesium.
9. The composite of claim 2 wherein the core contains about 0.1 to about 0.5 weight percent lithium.
10. The composite of claim 9 wherein the magnesium base alloy contains at least about 99 weight percent magnesium.
11. The composite of claim 3 wherein the cladding is cylindrical in shape.
titanium

Claims (11)

1. A COMPOSITE COMPRISING AN IN SITU CAST CORE CONSISTING ESSENTIALLY OF ABOUT 0.05 TO ABOUT 10 WEIGHT PER CENT LITHIUM AND THE BALANCE MAGNESIUM WITH A TITANIUM CLADDING.
2. A composite comprising an in situ cast core consisting essentially of about 0.05 to about 10 weight per cent lithium and the balance magnesium with a cladding consisting essentially of titanium, the composite adapted for use as an electrical conductor in corrosive alkali containing environments.
3. The composite of claim 1 wherein the core contains about 0.1 to about 5 weight per cent lithium.
4. The composite of claim 2 wherein the core contains about 0.1 to about 5 weight per cent lithium.
5. The composite of claim 1 wherein the core contains about 0.1 to about 0.5 weight percent lithium.
6. The composite of claim 5 wherein the magnesium base alloy contains at least about 99 weight percent magnesium.
7. The composite of claim 5 wherein the titanium cladding is cylindrical in shape.
8. The composite of claim 1 wherein the magnesium base alloy contains at least about 90 weight percent magnesium.
9. The composite of claim 2 wherein the core contains about 0.1 to about 0.5 weight percent lithium.
10. The composite of claim 9 wherein the magnesium base alloy contains at least about 99 weight percent magnesium.
11. The composite of claim 3 wherein the titanium cladding is cylindrical in shape.
US493810A 1973-10-01 1974-08-01 Composite magnesium-titanium conductor Expired - Lifetime US3900296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US493810A US3900296A (en) 1973-10-01 1974-08-01 Composite magnesium-titanium conductor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US00402563A US3849879A (en) 1973-10-01 1973-10-01 Method of making a composite magnesium-titanium conductor
US493810A US3900296A (en) 1973-10-01 1974-08-01 Composite magnesium-titanium conductor

Publications (1)

Publication Number Publication Date
US3900296A true US3900296A (en) 1975-08-19

Family

ID=27017932

Family Applications (1)

Application Number Title Priority Date Filing Date
US493810A Expired - Lifetime US3900296A (en) 1973-10-01 1974-08-01 Composite magnesium-titanium conductor

Country Status (1)

Country Link
US (1) US3900296A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4110739A (en) * 1976-08-02 1978-08-29 Kidd John A Means for detecting leakage in the inner lining of tanks and piping
US4760365A (en) * 1986-12-29 1988-07-26 General Dynamics Corp./Space Systems Division Metallic insulation for superconducting coils
US6143428A (en) * 1997-01-28 2000-11-07 Daimlerchrysler Ag Anti-corrosion coating for magnesium materials
CN109585703A (en) * 2017-09-28 2019-04-05 苏州柯莱美高分子材料科技有限公司 A kind of lithium battery magnesium lithium alloy composite plastic film and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3147156A (en) * 1960-05-13 1964-09-01 Dow Chemical Co Method of extrusion and extrusion billet therefor
US3189441A (en) * 1963-05-27 1965-06-15 Paul D Frost Magnesium-lithium-thorium alloys
US3189442A (en) * 1963-05-27 1965-06-15 Paul D Frost Magnesium-lithium-yttrium alloys
US3320661A (en) * 1966-05-19 1967-05-23 Alpha Metals Method of forming and attaching an aluminum conductor
US3333956A (en) * 1964-09-08 1967-08-01 Dow Chemical Co Magnesium-base alloy
US3671415A (en) * 1969-09-02 1972-06-20 Ici Ltd Continuous lead-in core for an electrode assembly
US3804739A (en) * 1973-03-05 1974-04-16 Dow Chemical Co Electrolytic cell including arrays of tubular anode and diaphragm covered tubular cathode members

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3147156A (en) * 1960-05-13 1964-09-01 Dow Chemical Co Method of extrusion and extrusion billet therefor
US3189441A (en) * 1963-05-27 1965-06-15 Paul D Frost Magnesium-lithium-thorium alloys
US3189442A (en) * 1963-05-27 1965-06-15 Paul D Frost Magnesium-lithium-yttrium alloys
US3333956A (en) * 1964-09-08 1967-08-01 Dow Chemical Co Magnesium-base alloy
US3320661A (en) * 1966-05-19 1967-05-23 Alpha Metals Method of forming and attaching an aluminum conductor
US3671415A (en) * 1969-09-02 1972-06-20 Ici Ltd Continuous lead-in core for an electrode assembly
US3804739A (en) * 1973-03-05 1974-04-16 Dow Chemical Co Electrolytic cell including arrays of tubular anode and diaphragm covered tubular cathode members

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4110739A (en) * 1976-08-02 1978-08-29 Kidd John A Means for detecting leakage in the inner lining of tanks and piping
US4760365A (en) * 1986-12-29 1988-07-26 General Dynamics Corp./Space Systems Division Metallic insulation for superconducting coils
US6143428A (en) * 1997-01-28 2000-11-07 Daimlerchrysler Ag Anti-corrosion coating for magnesium materials
CN109585703A (en) * 2017-09-28 2019-04-05 苏州柯莱美高分子材料科技有限公司 A kind of lithium battery magnesium lithium alloy composite plastic film and preparation method thereof

Similar Documents

Publication Publication Date Title
US3852175A (en) Electrodes having silicon base members
US4430174A (en) Method for refinement of impure aluminum
US3900296A (en) Composite magnesium-titanium conductor
JPS63134686A (en) Method for refining lithium-containing aluminum scrap
US3849879A (en) Method of making a composite magnesium-titanium conductor
US4174410A (en) Coating and bonding of metals
US2768893A (en) Brazing alloys
US3854940A (en) Electroconductive, corrosion resistant high silicon alloy
US2049291A (en) Method of making copper-titanium alloys
US2771359A (en) Rare earth master alloys
US2337714A (en) Welding rod or electrode
US3976477A (en) High conductivity high temperature copper alloy
US3249429A (en) Tantalum brazing alloy
US1955726A (en) Method of melting copper to produce dense castings low in oxygen
US1241899A (en) Welding-electrode and process of welding.
US2723448A (en) Brazing process
Raynor Beryllium, Beryllium alloys and the theoretical principles affecting alloy formation with beryllium
GB1597270A (en) Lead alloys
US3514272A (en) Process for vanadiding metals
US2157149A (en) Copper base alloy
US1980378A (en) Method of making beryllium and light alloys thereof
US3676114A (en) Improvement in the process relating to alloys containing platinum group metals
US3721618A (en) Aluminum sacrifical anode
US3438771A (en) Extruded article of magnesium-base alloy
US1691207A (en) Process of refining metals and alloys