US3899543A - Process for hydrogenating aromatic compounds containing sulfur impurities - Google Patents
Process for hydrogenating aromatic compounds containing sulfur impurities Download PDFInfo
- Publication number
- US3899543A US3899543A US393607A US39360773A US3899543A US 3899543 A US3899543 A US 3899543A US 393607 A US393607 A US 393607A US 39360773 A US39360773 A US 39360773A US 3899543 A US3899543 A US 3899543A
- Authority
- US
- United States
- Prior art keywords
- catalyst
- process according
- weight
- expressed
- alumina
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 title claims abstract description 24
- 229910052717 sulfur Inorganic materials 0.000 title claims abstract description 24
- 239000011593 sulfur Substances 0.000 title claims abstract description 24
- 150000001491 aromatic compounds Chemical class 0.000 title claims abstract description 14
- 239000012535 impurity Substances 0.000 title claims abstract description 9
- 239000003054 catalyst Substances 0.000 claims abstract description 102
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 29
- 238000005984 hydrogenation reaction Methods 0.000 claims abstract description 26
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims abstract description 25
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910052751 metal Inorganic materials 0.000 claims abstract description 21
- 239000002184 metal Substances 0.000 claims abstract description 21
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 11
- 239000011733 molybdenum Substances 0.000 claims abstract description 11
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 10
- 239000010941 cobalt Substances 0.000 claims abstract description 10
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 9
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 9
- 230000003009 desulfurizing effect Effects 0.000 claims abstract description 8
- 150000003568 thioethers Chemical class 0.000 claims abstract description 8
- 239000010937 tungsten Substances 0.000 claims abstract description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 21
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 11
- 229910052697 platinum Inorganic materials 0.000 claims description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- 239000001257 hydrogen Substances 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical class [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 229930195733 hydrocarbon Natural products 0.000 claims description 6
- 150000002430 hydrocarbons Chemical class 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- 239000011734 sodium Substances 0.000 claims description 5
- 239000004215 Carbon black (E152) Substances 0.000 claims description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 4
- 229910000428 cobalt oxide Inorganic materials 0.000 claims description 4
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910000476 molybdenum oxide Inorganic materials 0.000 claims description 4
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 4
- 230000001172 regenerating effect Effects 0.000 claims description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 3
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910001930 tungsten oxide Inorganic materials 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims 2
- 229910052593 corundum Inorganic materials 0.000 claims 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims 2
- 229910001845 yogo sapphire Inorganic materials 0.000 claims 2
- 229910052681 coesite Inorganic materials 0.000 claims 1
- 229910052906 cristobalite Inorganic materials 0.000 claims 1
- 235000012239 silicon dioxide Nutrition 0.000 claims 1
- 229910000029 sodium carbonate Inorganic materials 0.000 claims 1
- 235000017550 sodium carbonate Nutrition 0.000 claims 1
- 229910052682 stishovite Inorganic materials 0.000 claims 1
- 229910052905 tridymite Inorganic materials 0.000 claims 1
- 229910052759 nickel Inorganic materials 0.000 abstract description 10
- 239000000047 product Substances 0.000 description 12
- 230000008929 regeneration Effects 0.000 description 10
- 238000011069 regeneration method Methods 0.000 description 10
- 150000002739 metals Chemical class 0.000 description 7
- 239000000779 smoke Substances 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- 239000003208 petroleum Substances 0.000 description 6
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 5
- 150000003464 sulfur compounds Chemical class 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000004821 distillation Methods 0.000 description 4
- 238000005194 fractionation Methods 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 239000003350 kerosene Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000004517 catalytic hydrocracking Methods 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- YOBAEOGBNPPUQV-UHFFFAOYSA-N iron;trihydrate Chemical compound O.O.O.[Fe].[Fe] YOBAEOGBNPPUQV-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- UDHXJZHVNHGCEC-UHFFFAOYSA-N Chlorophacinone Chemical compound C1=CC(Cl)=CC=C1C(C=1C=CC=CC=1)C(=O)C1C(=O)C2=CC=CC=C2C1=O UDHXJZHVNHGCEC-UHFFFAOYSA-N 0.000 description 2
- 229910018663 Mn O Inorganic materials 0.000 description 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 2
- 150000004996 alkyl benzenes Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 2
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- MOWMLACGTDMJRV-UHFFFAOYSA-N nickel tungsten Chemical compound [Ni].[W] MOWMLACGTDMJRV-UHFFFAOYSA-N 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical class [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- NUMXHEUHHRTBQT-AATRIKPKSA-N 2,4-dimethoxy-1-[(e)-2-nitroethenyl]benzene Chemical compound COC1=CC=C(\C=C\[N+]([O-])=O)C(OC)=C1 NUMXHEUHHRTBQT-AATRIKPKSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 238000004131 Bayer process Methods 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 238000006887 Ullmann reaction Methods 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 1
- 235000018660 ammonium molybdate Nutrition 0.000 description 1
- 239000011609 ammonium molybdate Substances 0.000 description 1
- 229940010552 ammonium molybdate Drugs 0.000 description 1
- 229910001570 bauxite Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- WHDPTDWLEKQKKX-UHFFFAOYSA-N cobalt molybdenum Chemical compound [Co].[Co].[Mo] WHDPTDWLEKQKKX-UHFFFAOYSA-N 0.000 description 1
- JPNWDVUTVSTKMV-UHFFFAOYSA-N cobalt tungsten Chemical compound [Co].[W] JPNWDVUTVSTKMV-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- DDTIGTPWGISMKL-UHFFFAOYSA-N molybdenum nickel Chemical compound [Ni].[Mo] DDTIGTPWGISMKL-UHFFFAOYSA-N 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 125000005575 polycyclic aromatic hydrocarbon group Chemical group 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 150000003738 xylenes Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
- C10G45/04—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
- C10G45/06—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
- C10G45/08—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/18—Solvents
Definitions
- This invention concerns a process for hydrogenating aromatic compounds, particularly such aromatic compounds as benzene, alkylbenzenes, polycyclic aromatic hydrocarbons and their alkyl derivatives, alone or diluted in various petroleum cuts, in the presence of a composite catalyst system which has in particular the advantage of permitting the treatment of materials having high sulfur compound contents and of providing a product which is not only dearomatized but also desul furized.
- An important application of this invention consists of hydrogenating aromatic compounds present in certain petroleum cuts such as white spirit, commonly used in various industries such as those of paint, rubber, solvents for use in agriculture etc.
- Another application which is not less important, is the hydrogenation of the aromatic hydrocarbons present in the kerosene cuts, used as fuel, in view of improving their smoke point; this empirical index is in fact proportional to the ratio of hydrogen to carbon in the considered hydrocarbon or cut.
- This ratio H/C is directly responsible for the combustion heat which is higher as the ratio I-I/C is greater, i.e. when the aromatic hydrocarbons have been more completely hydrogenated.
- the processes performed in a single stage using catalysts comprising metals of the iron group (iron, cobalt, nickel) of the periodic classification of elements, associated with metals of group VI A.
- the catalysts are active in the sulfurized state.
- the catalysts used in this category of processes perform simultaneously the hydrodesulfurization of the feed charge and a certain hydrogenation of the aromatic compounds.
- the final contents of aromatic hydrocarbons are generally high 3 to 5% by volume as a minimum) and do not permit the production of sufficiently dearomatized sol-' vents.
- a certain amount of hydrocracking is always observed and requires subsequent fractionations which increase the cost of the process.
- the second category of processes performed in two stages makes use of catalysts comprising metals of group VIII acting in the metal state after reduction.
- the catalysts generally, used are either based on nickel, or on noble metals such, for example, as platinum.
- the catalysts are particularly sensitive to the presence of sulfur compounds and/or hydrogen sulfide. It is accordingly necessary to desulfurize the charges and to remove H 8 before the hydrogenation step so that a charge whose sulfur content is generally smaller than 50 ppm (parts per million of parts) is contacted by the hydrogenation catalyst.
- the process consists of treating, in the presence of hydrogen, at a temperature of from 200to 450C, preferably from 250 to 350C, under a. pressure of from 10 to 200 Kglcm preferably from i 20 to Kg/cm at least one aromatic hydrocarbon in a reaction system comprising in successiveorder: first of all a hydrodesulfurization catalyst adapted to retain the hydrogen sulfide formed during the hydrodesulfurization reaction and then a hydrogenation catalyst, without intermediary fractionation.
- the treated material may consist for example of benzene, alkylbenzenes,
- the treated feedstocks generally have boiling points within the range of from 50 to 350C and may be obtained by straight run distillation of petroluem or by any other operation of refining and/or transformation of petroleum cuts. They may contain for example from 1 to substantially of aromatic hydrocarbons.
- the catalyst used according to this invention for simultancously removing the sulfur compounds from the feedstock and retain the hydrogen sulfide formed during the dehydrodesulfurization reaction comprises essentially:
- At least one element active for hydrodesulfurization as known in the art, for example molybdenum and/or tungsten, with or without nickel and/or cobalt, and preferably cobalt-molybdenum, nickel molybdenum, cobalt-tungsten, nickel-tungsten etc. particularly in the form of oxides or.sulfides;
- bauxite is dissolved in a soda lye: the obtained sodium aluminatesolution is separated from an insoluble residue, called red mud. The red mud is then washed with waterfojr extracting soda and sodium aluminate therer m!
- iron source there can be used an iron salt, for ex ample a nitrate, acetate, carbonate, sulfate or chloride, although this is less preferable.
- the proportion of active elements, molybdenum, tungsten, cobalt and/or nickel oxides and/or sulfides in the catalyst is generally from 2 to 40%, expressed by weight of vthejcorresponding metal.
- a preferred catalyst contains from 5 to 35% by weight of molybdenum and- /or tungsten and from 1 to by weight of nickel and- /or.-cobalt calculated as metal.
- the catalyst has a specificsurface generally from 50 to 400 m /g, preferably from 100 to 300 m /g.
- the material containing iron oxide also contains alumina; it is the case of the red muds; however, these red muds generally do not permit, by themselves, to obtain a catalyst having the required specific surface, unless a certain proportion of conventional alumina such as, for example, an alumina gel, is added thereto.
- the so-composed catalyst is particularly interesting since it performs the hydrodesulfurization reaction over a relatively long period without formation of hydrogen sulfide in the gaseous and/or liquid effluents. in contrast to the use of conventional hydrodesulfurization catalysts, such as Co Mo, Ni M0 or Ni W supported on alumina, for example.
- This catalyst is also very-interesting in that it is easily regenerated by a mere treatment with steam, so that its use results in an economical and really continuous process.
- the compounds of metals which are precursors of species active for hydrodesulfurization may be introduced into the catalyst either by mixing with the mixture alumina iron oxide or red muds or by impregnating of the mixture alumina-l-iron oxide or red muds preliminarily brought to the desired shape, for example by extrusion.
- the catalyst carrier there will advantageously be used ratios of A1 0, to red muds, from 9 to 0.1 l by weight and preferably from 2.3 to 0.43 these values being not limitative.
- Another technique consists of mixing, as homogeneously as possible, the particles, extrudates for example, of a conventional hydrodesulfurization catalyst with particles, e.g. extrudates, of iron oxide and/or red muds.
- metals of group VIII of the periodic classification of elements such as Ni, Co, Pt, Rh, Ru, Pd etc. incorporated to (or deposited on) any carrier such for example as alumina, silica, alumina-silica etc.
- metals may be used alone or in association in the form of mixtures and/or alloys with one another or with an element from groups VI A or VII A such for example as: W, Mo, Re,
- the content of metal from group VIII is generally from 0.1 to 1.5% by weight of the catalyst.
- molybdenum, tungsten, nickel, cobalt or noble metal compounds which can be used for manufacturing the abovementioned catalysts need not to be listed here, since they are well-known in the art.
- the two catalysts in the process of the invention may be used in different manners.
- the two catalysts may be catalysts are placed in two successive reactors which are traversed in successive order by the totality of the reactants.
- the absorbing hydrodesulfurizing catalyst is placed in two reactors branched in parallel and used alternatively, one being in regenera-' tion, while the other is in operation, the hydrogenation catalyst being placed in a third reactor following the hydrodesulfurization reactor in operation.
- An important feature of the process described in the present invention is that, irrespective of the retained flow sheet and of the use of a single reactor or successive reactors, there is still obtained an integrated system which does not require any intermediate treatment of the effluents (such as for example cooling, separation, gas expansion Moreover, the operating conditions are such that practically no hydrocracking occurs and therefore, it is unnecessary to provide for a fractionation system of the liquid product.
- the regeneration of the absorbing hydrodesulfurizing catalyst may be easily carried out by passing steam through the catalyst bed, for example at a temperature from to 600C and preferably from 350 to 450C, these values being not limitative.
- This treatment may be applied only to the absorbing-hydrodesulfurizing catalyst or to both catalysts used according to the invention.
- the steam may be either pure or diluted with inert gas; for example gas produced by the combustion of hydrocarbons may be convenient.
- a steam content of at least 10% in the regeneration gas is preferred.
- This regeneration is appropriate as soon as there is observed the presence of a noticeable proportion of free H S in the effluent issuing from the first catalyst zone. During the regeneration, H S is liberated from the catalyst. The regeneration may be discontinued as soon as H S is no longer liberated in a noticeable amount.
- the regeneration period is generally from minutes to 48 hours according to the selected steam flow rate.
- This regeneration is advantageously followed by a scavenging with hydrogen so as to expel the residual hydrogen sulfide.
- the p.p.h. will be advantageously from 0.2 to 10 and preferably from 0.5 to 5; the optimal p.p.h. depends on the sulfur content of the feedstock and of the ratio alumina/iron oxide of the catalyst; for example, for feedstock containing from 300 to 600 ppm of sulfur, treated over a catalyst having a ratio alumina/red muds of l, the p.p.h. values may be chosen in the range of from 0.5 to 2.
- the selected p.p.h. over the hydrogenation catalyst depends on the desired aromatic hydrocarbons content of the hydrogenated product; it will generally be in the range of from 1 to and preferably from 5 to 15.
- the first catalyst is a hydrodesulfurization catalyst containing cobalt oxide and molybdenum oxide in a proportion of 4.7% by weight of C00 and 13.6% by weight of M00;, admixed with an alumina gel.
- the incorporation of the metal oxides is carried out in a conventional manner, for example by mixing, in the presence of a small amount of water, the alumina gel with the desired proportion of cobalt nitrate and ammonium paramolybdate; the resulting paste is extruded and then calcined in air at about 550C so as to obtain the corresponding oxides of cobalt and molybdenum.
- Another equivalent method for incorporating the metal oxides consists of impregnating the alumina, preliminarily brought to the desired shape, by means of aqueous solutions of catalyst metals and then calcining as above in air at about 550C.
- the second catalyst is a hydrogenation catalyst containing 0.3% by weight of platinum deposited on an alumina carrier.
- the deposit of platinum is carried out in a conventional manner by impregnating the carrier with an aqueous solution of hexachloroplatinic acid and then drying and calcining at about 550C.
- the third catalyst is an absorbing hydrodesulfurization catalyst containing 4.7% by weight of cobalt oxide and 13.6% by weight of molybdenum oxide introduced by mixing cobalt nitrate and ammonium molybdate with an alumina-red mudmixture having a ratio alumina/red mud equal to 0.67, i.e. containing 40% by weight of alumina and 60% by weight of red muds; the
- Shape extrudates of a 1.5 mm diameter Filling density: 0.61 g/cc Total pore volume: 0.7 cc/g Specific'surface: 214 m /h (B.E.T. method) Absorbing hydrodesulfurizing catalyst (A.HDS.CATA.)
- the feedstock subjected to hydrogenation consists of a petroleum cut from straight run distillation, of the white spirit type, having the following characteristics:
- Aromatic content 17.5% by volume
- the desired final product is a solvent which does not contain more than 3% by volume of aromatic compounds.
- H /feed stock 1.5 moles/mole 2.
- H /feed stock 1.5 moles/mole 2.
- H /feed stock 1.5 moles/mole 2.
- the same white-spirit is hydrogenated in a reactor containing two successive beds of catalyst: the first bed is formed from the hydrodesulfurization catalyst (HDS. CATA.) and the second bed from the platinum hydrogenation catalyst (H. CATA.
- the device although operating with a p.p.h. value of 8 over a platinum hydrogenation catalyst gives better results than the device of test 2 with a p.p.h. value of 4 (8/2) over the hydrogenation catalyst.
- EXAMPLE 3 In this example the feedstock subjected to the treatment is kerosene and it is intended to improve its smoke point; for this purpose there iscarried out a par- I tial hydrogenation of the aromatic hydrocarbons contained therein.
- the device used for carrying out this test is the following:' 1
- the hydrodesulfurization catalyst also acting as H 5 absorbent is placed into two parallel reactors, one of which is in a regeneration phase while the other is in operation; the hydrogenation reactor is placed at the outlet of the operating hydrodesulfurization 'reactor' without using any intermediary fractionation device.
- H.CATA are identical to those described in example l. v
- the conditions of pressure, temperature and ratio of the hydrogen to the feedstock are the same for both operating reactors:
- the first reactor containing the absorbing hydrodesulfurizing catalyst is then put in regeneration under a stream of steam as indicated in Example 2, while the second reactor containing the absorbing hydrodesulfurizing catalyst is put in operation until the smoke point limit is reached.
- EXAMPLE 4 alumina and red muds with a ratio of the aluminaa to the red muds equal to 0.67 by weight.
- the hydrogenation catalyst is the same as in the third test of example i.
- the operating conditions are in any respect identical to those of test No. 3 of example I.
- the obtained results are given in the following table:
- EXAMPLE 5 There is carried out again a test identical to test No. 3 of example i, but using an absorbinghydrodesulfurizing catalyst based on nickel-tungsten.
- the catalyst prepared as described in example l from nickel nitrate and ammonium tungstate, contains 4.7% by weight of nickel oxide and 2i .8% by weight of tungsten oxide on a carrier of alumina and red muds with a ratio of the alumina to the red muds of 0.67 by weight.
- H-C 8 l A process for hydrogenating a feedstock of aro- The results obtained are given in table Ill below: matic compounds containing sulfur impurities in which TABLE III Operating 50 l()() 151i 200 320 240 2m 2x0 sou time in hours Smoke point 30 30 29 m5 :7 In 24.5 235 23 in mm ii by volume of (1.5 (L5 1.7 2.2 4.l .3 8.2 10.3 ll residual aromatics yields 71 h. ⁇ '. 100 100.5
- a mixture of hydrogen with at least one aromatic compound containing sulfur impurity is contacted, at a temperature of from 200 to 450C, under a pressure of from 10 to 200 kg/cm"; in successive order with:
- At least one desulfurizing element selected from the oxides and/or sulfides of molybdenum, tungsten, nickel and cobalt;
- red mud contains, by weight, from 30 to 60% of iron, ex pressed as Fe O from 1 to 10% of titanium, expressed as TiO from 5 to 20% of silicon, expressed as SiO from 5 to to l5% of sodium, expressed as Na co and from 5 to 30% of aluminum, expressed as A1 0 6.
- the catalyst contains from 5 to 35% by weight of molybdenum and/or tungsten oxide/or sulfide and from i to 10% by weight of nickel and/or cobalt oxide or sulfide, expressed as metal.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR7231209A FR2197967B1 (enrdf_load_stackoverflow) | 1972-09-01 | 1972-09-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3899543A true US3899543A (en) | 1975-08-12 |
Family
ID=9103808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US393607A Expired - Lifetime US3899543A (en) | 1972-09-01 | 1973-08-31 | Process for hydrogenating aromatic compounds containing sulfur impurities |
Country Status (8)
Country | Link |
---|---|
US (1) | US3899543A (enrdf_load_stackoverflow) |
JP (1) | JPS4966704A (enrdf_load_stackoverflow) |
BE (1) | BE802861A (enrdf_load_stackoverflow) |
DE (1) | DE2340337A1 (enrdf_load_stackoverflow) |
FR (1) | FR2197967B1 (enrdf_load_stackoverflow) |
GB (1) | GB1418328A (enrdf_load_stackoverflow) |
IT (1) | IT998521B (enrdf_load_stackoverflow) |
NL (1) | NL7312090A (enrdf_load_stackoverflow) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4145276A (en) * | 1976-01-05 | 1979-03-20 | Institut Francais Du Petrole | Process for the 3-step catalytic treatment of highly unsaturated heavy fractions under hydrogen pressure |
US4608153A (en) * | 1984-07-30 | 1986-08-26 | Exxon Research And Engineering Co. | Process for the removal of polynuclear aromatic hydrocarbon compounds from admixtures of liquid hydrocarbon compounds |
US4664777A (en) * | 1984-07-30 | 1987-05-12 | Exxon Research And Engineering Company | Process for improving octane by the conversion of fused multi-ring aromatics and hydroaromatics to lower molecular weight compounds |
US4755280A (en) * | 1985-07-31 | 1988-07-05 | Exxon Research And Engineering Company | Process for improving the color and oxidation stability of hydrocarbon streams containing multi-ring aromatic and hydroaromatic hydrocarbons |
US4831208A (en) * | 1987-03-05 | 1989-05-16 | Uop | Chemical processing with an operational step sensitive to a feedstream component |
US4831207A (en) * | 1987-03-05 | 1989-05-16 | Uop | Chemical processing with an operational step sensitive to a feedstream component |
US4849093A (en) * | 1987-02-02 | 1989-07-18 | Union Oil Company Of California | Catalytic aromatic saturation of hydrocarbons |
US5110444A (en) * | 1990-08-03 | 1992-05-05 | Uop | Multi-stage hydrodesulfurization and hydrogenation process for distillate hydrocarbons |
US5114562A (en) * | 1990-08-03 | 1992-05-19 | Uop | Two-stage hydrodesulfurization and hydrogenation process for distillate hydrocarbons |
WO1996017039A1 (en) * | 1994-12-01 | 1996-06-06 | Mobil Oil Corporation | Integrated process for the production of reformate having reduced benzene content |
US5589600A (en) * | 1992-02-05 | 1996-12-31 | Basf Aktiengesellschaft | Preparation of cyclohexene by partial hydrogenation of benzene |
US6042716A (en) * | 1996-12-20 | 2000-03-28 | Institut Francais Du Petrole | Process for transforming a gas oil cut to produce a dearomatised and desulphurised fuel with a high cetane number |
US6210561B1 (en) * | 1996-08-15 | 2001-04-03 | Exxon Chemical Patents Inc. | Steam cracking of hydrotreated and hydrogenated hydrocarbon feeds |
US6315890B1 (en) * | 1998-05-05 | 2001-11-13 | Exxonmobil Chemical Patents Inc. | Naphtha cracking and hydroprocessing process for low emissions, high octane fuels |
WO2002021623A1 (en) * | 2000-09-01 | 2002-03-14 | International Fuel Cells, Llc | Method for desulfurizing gasoline or diesel fuel for use in a fuel cell power plant |
US6455750B1 (en) | 1998-05-05 | 2002-09-24 | Exxonmobil Chemical Patents Inc. | Process for selectively producing light olefins |
US6602403B1 (en) | 1998-05-05 | 2003-08-05 | Exxonmobil Chemical Patents Inc. | Process for selectively producing high octane naphtha |
US20040030208A1 (en) * | 2002-08-07 | 2004-02-12 | Himelfarb Paul Benjerman | Process for hydrogenation of aromatics in hydrocarbon feedstocks containing thiopheneic compounds |
US6803494B1 (en) | 1998-05-05 | 2004-10-12 | Exxonmobil Chemical Patents Inc. | Process for selectively producing propylene in a fluid catalytic cracking process |
US20050133411A1 (en) * | 2000-01-25 | 2005-06-23 | Per Zeuthen | Process for reducing content of sulphur compounds and poly-aromatic hydrocarbons in a hydrocarbon feed |
US20060205591A1 (en) * | 2005-03-11 | 2006-09-14 | Do-Hee Lee | Adsorbent for removing mercury using sulfided iron compounds containing oxygen and method of producing same |
CN100344367C (zh) * | 2003-12-30 | 2007-10-24 | 中国石油化工股份有限公司 | 一种脱硫吸附剂的再生方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3405190A (en) * | 1964-11-12 | 1968-10-08 | Stamicarbon | Process for preparing cyclohexane |
US3431198A (en) * | 1966-12-12 | 1969-03-04 | Sinclair Research Inc | Two-stage catalytic hydrogenation of a dewaxed raffinate |
US3459656A (en) * | 1966-08-16 | 1969-08-05 | Sinclair Research Inc | Making a white oil by two stages of catalytic hydrogenation |
US3477943A (en) * | 1967-04-25 | 1969-11-11 | Atlantic Richfield Co | Two-stage treatment of high sulfur content petroleum materials |
US3619414A (en) * | 1969-02-19 | 1971-11-09 | Sun Oil Co | Catalytic hydrofinishing of petroleum distillates in the lubricating oil boiling range |
US3691060A (en) * | 1970-02-19 | 1972-09-12 | Texas V Inwood | Hydrogenation of aromatic hydrocarbons |
US3702291A (en) * | 1971-07-07 | 1972-11-07 | Inst Francais Du Petrole | Process for selectively hydrogenating petroleum cuts of the gasoline range in several steps |
-
1972
- 1972-09-01 FR FR7231209A patent/FR2197967B1/fr not_active Expired
-
1973
- 1973-07-27 BE BE1005262A patent/BE802861A/xx not_active IP Right Cessation
- 1973-08-09 DE DE19732340337 patent/DE2340337A1/de active Pending
- 1973-08-23 JP JP48094805A patent/JPS4966704A/ja active Pending
- 1973-08-24 GB GB4023273A patent/GB1418328A/en not_active Expired
- 1973-08-31 US US393607A patent/US3899543A/en not_active Expired - Lifetime
- 1973-08-31 NL NL7312090A patent/NL7312090A/xx not_active Application Discontinuation
- 1973-08-31 IT IT28458/73A patent/IT998521B/it active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3405190A (en) * | 1964-11-12 | 1968-10-08 | Stamicarbon | Process for preparing cyclohexane |
US3459656A (en) * | 1966-08-16 | 1969-08-05 | Sinclair Research Inc | Making a white oil by two stages of catalytic hydrogenation |
US3431198A (en) * | 1966-12-12 | 1969-03-04 | Sinclair Research Inc | Two-stage catalytic hydrogenation of a dewaxed raffinate |
US3477943A (en) * | 1967-04-25 | 1969-11-11 | Atlantic Richfield Co | Two-stage treatment of high sulfur content petroleum materials |
US3619414A (en) * | 1969-02-19 | 1971-11-09 | Sun Oil Co | Catalytic hydrofinishing of petroleum distillates in the lubricating oil boiling range |
US3691060A (en) * | 1970-02-19 | 1972-09-12 | Texas V Inwood | Hydrogenation of aromatic hydrocarbons |
US3702291A (en) * | 1971-07-07 | 1972-11-07 | Inst Francais Du Petrole | Process for selectively hydrogenating petroleum cuts of the gasoline range in several steps |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4145276A (en) * | 1976-01-05 | 1979-03-20 | Institut Francais Du Petrole | Process for the 3-step catalytic treatment of highly unsaturated heavy fractions under hydrogen pressure |
US4608153A (en) * | 1984-07-30 | 1986-08-26 | Exxon Research And Engineering Co. | Process for the removal of polynuclear aromatic hydrocarbon compounds from admixtures of liquid hydrocarbon compounds |
US4664777A (en) * | 1984-07-30 | 1987-05-12 | Exxon Research And Engineering Company | Process for improving octane by the conversion of fused multi-ring aromatics and hydroaromatics to lower molecular weight compounds |
US4755280A (en) * | 1985-07-31 | 1988-07-05 | Exxon Research And Engineering Company | Process for improving the color and oxidation stability of hydrocarbon streams containing multi-ring aromatic and hydroaromatic hydrocarbons |
US4849093A (en) * | 1987-02-02 | 1989-07-18 | Union Oil Company Of California | Catalytic aromatic saturation of hydrocarbons |
US4831207A (en) * | 1987-03-05 | 1989-05-16 | Uop | Chemical processing with an operational step sensitive to a feedstream component |
US4831208A (en) * | 1987-03-05 | 1989-05-16 | Uop | Chemical processing with an operational step sensitive to a feedstream component |
US5110444A (en) * | 1990-08-03 | 1992-05-05 | Uop | Multi-stage hydrodesulfurization and hydrogenation process for distillate hydrocarbons |
US5114562A (en) * | 1990-08-03 | 1992-05-19 | Uop | Two-stage hydrodesulfurization and hydrogenation process for distillate hydrocarbons |
US5589600A (en) * | 1992-02-05 | 1996-12-31 | Basf Aktiengesellschaft | Preparation of cyclohexene by partial hydrogenation of benzene |
WO1996017039A1 (en) * | 1994-12-01 | 1996-06-06 | Mobil Oil Corporation | Integrated process for the production of reformate having reduced benzene content |
US6210561B1 (en) * | 1996-08-15 | 2001-04-03 | Exxon Chemical Patents Inc. | Steam cracking of hydrotreated and hydrogenated hydrocarbon feeds |
US6451198B2 (en) | 1996-12-20 | 2002-09-17 | Institut Francais Du Petrole | Process for transforming a gas oil cut to produce a dearomatized and desulphurized fuel with a high cetane number |
US6042716A (en) * | 1996-12-20 | 2000-03-28 | Institut Francais Du Petrole | Process for transforming a gas oil cut to produce a dearomatised and desulphurised fuel with a high cetane number |
US6221239B1 (en) * | 1996-12-20 | 2001-04-24 | Institut Francais Du Petrole | Process for transforming a gas oil cut to produce a dearomatised and desulphurised fuel with a high cetane number |
US6315890B1 (en) * | 1998-05-05 | 2001-11-13 | Exxonmobil Chemical Patents Inc. | Naphtha cracking and hydroprocessing process for low emissions, high octane fuels |
US6455750B1 (en) | 1998-05-05 | 2002-09-24 | Exxonmobil Chemical Patents Inc. | Process for selectively producing light olefins |
US6602403B1 (en) | 1998-05-05 | 2003-08-05 | Exxonmobil Chemical Patents Inc. | Process for selectively producing high octane naphtha |
US6803494B1 (en) | 1998-05-05 | 2004-10-12 | Exxonmobil Chemical Patents Inc. | Process for selectively producing propylene in a fluid catalytic cracking process |
US20050133411A1 (en) * | 2000-01-25 | 2005-06-23 | Per Zeuthen | Process for reducing content of sulphur compounds and poly-aromatic hydrocarbons in a hydrocarbon feed |
KR100793509B1 (ko) * | 2000-09-01 | 2008-01-14 | 유티씨 파워 코포레이션 | 연료 전지 발전기에 사용하기 위한 가솔린 또는 디젤연료를 탈황하기 위한 방법 |
WO2002021623A1 (en) * | 2000-09-01 | 2002-03-14 | International Fuel Cells, Llc | Method for desulfurizing gasoline or diesel fuel for use in a fuel cell power plant |
US6726836B1 (en) | 2000-09-01 | 2004-04-27 | Utc Fuel Cells, Llc | Method for desulfurizing gasoline or diesel fuel for use in a fuel cell power plant |
US20040030208A1 (en) * | 2002-08-07 | 2004-02-12 | Himelfarb Paul Benjerman | Process for hydrogenation of aromatics in hydrocarbon feedstocks containing thiopheneic compounds |
US20060167327A1 (en) * | 2002-08-07 | 2006-07-27 | Himelfarb Paul B | Process for hydrogenation of aromatics in hydrocarbon feedstocks containing thiopheneic compounds |
US7230148B2 (en) | 2002-08-07 | 2007-06-12 | Shell Oil Company | Process for hydrogenation of aromatics in hydrocarbon feedstocks containing thiopheneic compounds |
US7081555B2 (en) | 2002-08-07 | 2006-07-25 | Shell Oil Company | Process for hydrogenation of aromatics in hydrocarbon feedstocks containing thiopheneic compounds |
CN100344367C (zh) * | 2003-12-30 | 2007-10-24 | 中国石油化工股份有限公司 | 一种脱硫吸附剂的再生方法 |
US20060205591A1 (en) * | 2005-03-11 | 2006-09-14 | Do-Hee Lee | Adsorbent for removing mercury using sulfided iron compounds containing oxygen and method of producing same |
Also Published As
Publication number | Publication date |
---|---|
JPS4966704A (enrdf_load_stackoverflow) | 1974-06-28 |
NL7312090A (enrdf_load_stackoverflow) | 1974-03-05 |
DE2340337A1 (de) | 1974-03-07 |
IT998521B (it) | 1976-02-20 |
BE802861A (fr) | 1974-01-28 |
FR2197967A1 (enrdf_load_stackoverflow) | 1974-03-29 |
FR2197967B1 (enrdf_load_stackoverflow) | 1975-01-03 |
GB1418328A (en) | 1975-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3899543A (en) | Process for hydrogenating aromatic compounds containing sulfur impurities | |
US3280040A (en) | Method for making multi-component catalysts | |
US3891541A (en) | Process for demetalizing and desulfurizing residual oil with hydrogen and alumina-supported catalyst | |
US3530066A (en) | Catalytic hydrotreating process of petroleum hydrocarbons containing asphaltenes | |
US3254017A (en) | Process for hydrocracking heavy oils in two stages | |
EP0160475B1 (en) | Hydrotreating catalyst and process of manufacture | |
US2687370A (en) | Conversion of hydrocarbons with nickel oxide-molybdenum oxide catalyst | |
US3114701A (en) | Catalytic hydrodenitrification process | |
US2697683A (en) | Treatment of hydrocarbon oils | |
US3709814A (en) | Hydrofining-hydrocracking process using palladium-containing catalyst | |
US3983029A (en) | Hydrotreating catalyst and process | |
US2905625A (en) | Purification of hydrocarbon fractions | |
US2573726A (en) | Catalytic desulphurisation of naphthas | |
US3472759A (en) | Process for removal of sulfur and metals from petroleum materials | |
US4447556A (en) | Hydrocarbon conversion catalyst and use thereof | |
US3546094A (en) | Hydrotreating catalyst and process | |
US3425934A (en) | Catalytic refining with hydrogen | |
US2748062A (en) | Hydrocarbon conversion catalyst and process | |
US3598719A (en) | Hydrotreating catalyst and process | |
US3536604A (en) | Hydrocarbon conversion process | |
US3227646A (en) | Hydrodenitrification process and catalysts | |
US2732329A (en) | nisoi | |
US3016346A (en) | Hydrodesulfurization process and catalyst therefor | |
US3808122A (en) | Jet fuel by hydrocracking | |
US3669873A (en) | Hydrofining-hydrocracking process |