US3898986A - Biotransformable intrauterine device - Google Patents
Biotransformable intrauterine device Download PDFInfo
- Publication number
- US3898986A US3898986A US319014A US31901472A US3898986A US 3898986 A US3898986 A US 3898986A US 319014 A US319014 A US 319014A US 31901472 A US31901472 A US 31901472A US 3898986 A US3898986 A US 3898986A
- Authority
- US
- United States
- Prior art keywords
- drug
- uterine
- uterine cavity
- cavity
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003814 drug Substances 0.000 claims abstract description 432
- 229940079593 drugs Drugs 0.000 claims abstract description 430
- 210000004291 Uterus Anatomy 0.000 claims abstract description 156
- 230000036983 biotransformation Effects 0.000 claims abstract description 96
- 239000000463 material Substances 0.000 claims description 158
- -1 Polyethylene Polymers 0.000 claims description 124
- 239000003795 chemical substances by application Substances 0.000 claims description 106
- 230000014759 maintenance of location Effects 0.000 claims description 100
- 239000000203 mixture Substances 0.000 claims description 98
- 238000003780 insertion Methods 0.000 claims description 96
- 239000012530 fluid Substances 0.000 claims description 70
- 230000002452 interceptive Effects 0.000 claims description 70
- 230000003628 erosive Effects 0.000 claims description 64
- 230000003204 osmotic Effects 0.000 claims description 46
- 230000002035 prolonged Effects 0.000 claims description 32
- 238000009792 diffusion process Methods 0.000 claims description 30
- 206010008531 Chills Diseases 0.000 claims description 24
- 230000001276 controlling effect Effects 0.000 claims description 24
- 229920001577 copolymer Polymers 0.000 claims description 20
- 150000002148 esters Chemical class 0.000 claims description 20
- 239000012466 permeate Substances 0.000 claims description 12
- 229920000573 polyethylene Polymers 0.000 claims description 8
- 230000004044 response Effects 0.000 claims description 8
- 239000004698 Polyethylene (PE) Substances 0.000 claims description 6
- 230000001939 inductive effect Effects 0.000 claims description 6
- AMQJEAYHLZJPGS-UHFFFAOYSA-N n-pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 claims description 6
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 claims description 4
- 229960005309 Estradiol Drugs 0.000 claims description 4
- 230000001976 improved Effects 0.000 abstract description 12
- 108010010803 Gelatin Proteins 0.000 description 38
- 229920000159 gelatin Polymers 0.000 description 38
- 235000019322 gelatine Nutrition 0.000 description 38
- 235000011852 gelatine desserts Nutrition 0.000 description 38
- 239000008273 gelatin Substances 0.000 description 36
- 229920000642 polymer Polymers 0.000 description 36
- 239000000243 solution Substances 0.000 description 36
- CSCPPACGZOOCGX-UHFFFAOYSA-N acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 30
- 239000007788 liquid Substances 0.000 description 28
- 239000000047 product Substances 0.000 description 26
- YMWUJEATGCHHMB-UHFFFAOYSA-N methylene dichloride Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 24
- 150000003180 prostaglandins Chemical class 0.000 description 22
- 229920002472 Starch Polymers 0.000 description 20
- 239000002253 acid Substances 0.000 description 20
- 239000008107 starch Substances 0.000 description 20
- 235000019698 starch Nutrition 0.000 description 20
- 230000035935 pregnancy Effects 0.000 description 18
- 230000000694 effects Effects 0.000 description 16
- 229920002451 polyvinyl alcohol Polymers 0.000 description 16
- 210000004379 Membranes Anatomy 0.000 description 14
- 229940082622 Prostaglandin cardiac therapy preparations Drugs 0.000 description 14
- 229940077717 Prostaglandin drugs for peptic ulcer and gastro-oesophageal reflux disease (GORD) Drugs 0.000 description 14
- 230000002209 hydrophobic Effects 0.000 description 14
- 239000012528 membrane Substances 0.000 description 14
- 229940094443 oxytocics Prostaglandins Drugs 0.000 description 14
- 210000003679 Cervix Uteri Anatomy 0.000 description 12
- 230000003509 anti-fertility Effects 0.000 description 12
- 239000000969 carrier Substances 0.000 description 12
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 239000002245 particle Substances 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 210000004696 Endometrium Anatomy 0.000 description 10
- 235000010443 alginic acid Nutrition 0.000 description 10
- 229920000615 alginic acid Polymers 0.000 description 10
- 125000004432 carbon atoms Chemical group C* 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- 239000003431 cross linking reagent Substances 0.000 description 10
- 239000006185 dispersion Substances 0.000 description 10
- 125000004435 hydrogen atoms Chemical group [H]* 0.000 description 10
- 238000000338 in vitro Methods 0.000 description 10
- 150000002500 ions Chemical class 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 230000035699 permeability Effects 0.000 description 10
- 230000001072 progestational Effects 0.000 description 10
- 102000004169 proteins and genes Human genes 0.000 description 10
- 108090000623 proteins and genes Proteins 0.000 description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- 229920000742 Cotton Polymers 0.000 description 8
- 210000001161 Embryo, Mammalian Anatomy 0.000 description 8
- 102000004877 Insulin Human genes 0.000 description 8
- 108090001061 Insulin Proteins 0.000 description 8
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L MgCl2 Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 8
- 101710008205 OXT Proteins 0.000 description 8
- 102100017240 OXT Human genes 0.000 description 8
- XNOPRXBHLZRZKH-DSZYJQQASA-N Oxytocin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@H](N)C(=O)N1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)NCC(N)=O)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 XNOPRXBHLZRZKH-DSZYJQQASA-N 0.000 description 8
- 229960001723 Oxytocin Drugs 0.000 description 8
- 239000004372 Polyvinyl alcohol Substances 0.000 description 8
- RJKFOVLPORLFTN-STHVQZNPSA-N Progesterone Natural products O=C(C)[C@@H]1[C@@]2(C)[C@H]([C@H]3[C@@H]([C@]4(C)C(=CC(=O)CC4)CC3)CC2)CC1 RJKFOVLPORLFTN-STHVQZNPSA-N 0.000 description 8
- RJKFOVLPORLFTN-LEKSSAKUSA-N Syngestrets Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 8
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 8
- 229940072056 alginate Drugs 0.000 description 8
- 238000010276 construction Methods 0.000 description 8
- 238000004132 cross linking Methods 0.000 description 8
- VOLSCWDWGMWXGO-UHFFFAOYSA-N cyclobuten-1-yl acetate Chemical compound CC(=O)OC1=CCC1 VOLSCWDWGMWXGO-UHFFFAOYSA-N 0.000 description 8
- 238000004090 dissolution Methods 0.000 description 8
- WSFSSNUMVMOOMR-UHFFFAOYSA-N formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 8
- 239000000416 hydrocolloid Substances 0.000 description 8
- 101700057139 oxyT Proteins 0.000 description 8
- 229920000867 polyelectrolyte Polymers 0.000 description 8
- 239000000186 progesterone Substances 0.000 description 8
- 229960003387 progesterone Drugs 0.000 description 8
- 150000003254 radicals Chemical class 0.000 description 8
- 210000001519 tissues Anatomy 0.000 description 8
- 229920002301 Cellulose acetate Polymers 0.000 description 6
- 229940089114 Drug Delivery Device Drugs 0.000 description 6
- 241000196324 Embryophyta Species 0.000 description 6
- 239000004677 Nylon Substances 0.000 description 6
- 206010049975 Uterine contractions during pregnancy Diseases 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- 150000007513 acids Chemical class 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 6
- 239000007795 chemical reaction product Substances 0.000 description 6
- 229920001436 collagen Polymers 0.000 description 6
- 239000012153 distilled water Substances 0.000 description 6
- 238000001647 drug administration Methods 0.000 description 6
- 239000005038 ethylene vinyl acetate Substances 0.000 description 6
- 230000000147 hypnotic Effects 0.000 description 6
- 238000005342 ion exchange Methods 0.000 description 6
- CERQOIWHTDAKMF-UHFFFAOYSA-N methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 6
- 229920001778 nylon Polymers 0.000 description 6
- MUBZPKHOEPUJKR-UHFFFAOYSA-N oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 6
- 229920000728 polyester Polymers 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- 230000002028 premature Effects 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000000583 progesterone congener Substances 0.000 description 6
- 230000000717 retained Effects 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 238000005063 solubilization Methods 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 230000001225 therapeutic Effects 0.000 description 6
- 230000001131 transforming Effects 0.000 description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 6
- 229910052725 zinc Inorganic materials 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N 1-Hexanol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 4
- WTDRDQBEARUVNC-LURJTMIESA-N 3-hydroxy-L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-LURJTMIESA-N 0.000 description 4
- 229920001817 Agar Polymers 0.000 description 4
- TZCXTZWJZNENPQ-UHFFFAOYSA-L Barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- OROGSEYTTFOCAN-DNJOTXNNSA-N Codeine Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC OROGSEYTTFOCAN-DNJOTXNNSA-N 0.000 description 4
- 102000008186 Collagen Human genes 0.000 description 4
- 108010035532 Collagen Proteins 0.000 description 4
- MTHSVFCYNBDYFN-UHFFFAOYSA-N Diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 4
- 229940106582 ESTROGENIC SUBSTANCES Drugs 0.000 description 4
- KWGRBVOPPLSCSI-WPRPVWTQSA-N Ephedrine Chemical compound CN[C@@H](C)[C@H](O)C1=CC=CC=C1 KWGRBVOPPLSCSI-WPRPVWTQSA-N 0.000 description 4
- JKKFKPJIXZFSSB-CBZIJGRNSA-N Estrone sulfate Chemical compound OS(=O)(=O)OC1=CC=C2[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1 JKKFKPJIXZFSSB-CBZIJGRNSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- 210000003754 Fetus Anatomy 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N HCl Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 229940005535 HYPNOTICS AND SEDATIVES Drugs 0.000 description 4
- FUZZWVXGSFPDMH-UHFFFAOYSA-N Hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- GUBGYTABKSRVRQ-YOLKTULGSA-N Maltose Natural products O([C@@H]1[C@H](O)[C@@H](O)[C@H](O)O[C@H]1CO)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 GUBGYTABKSRVRQ-YOLKTULGSA-N 0.000 description 4
- 241000124008 Mammalia Species 0.000 description 4
- 208000007106 Menorrhagia Diseases 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinylpyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 4
- 241000288906 Primates Species 0.000 description 4
- LOUPRKONTZGTKE-LHHVKLHASA-N Quinidine Chemical compound C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@H]2[C@@H](O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-LHHVKLHASA-N 0.000 description 4
- LOUPRKONTZGTKE-WZBLMQSHSA-N Quinine Chemical compound C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-WZBLMQSHSA-N 0.000 description 4
- 210000000614 Ribs Anatomy 0.000 description 4
- 229940005550 Sodium alginate Drugs 0.000 description 4
- VWDWKYIASSYTQR-UHFFFAOYSA-N Sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- JIAARYAFYJHUJI-UHFFFAOYSA-L Zinc chloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 4
- IKHGUXGNUITLKF-UHFFFAOYSA-N acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-M acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 4
- 230000002378 acidificating Effects 0.000 description 4
- 235000010419 agar Nutrition 0.000 description 4
- 229960005188 collagen Drugs 0.000 description 4
- 239000003433 contraceptive agent Substances 0.000 description 4
- 230000001419 dependent Effects 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 239000003937 drug carrier Substances 0.000 description 4
- 235000013601 eggs Nutrition 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 239000000806 elastomer Substances 0.000 description 4
- 230000002255 enzymatic Effects 0.000 description 4
- 239000000262 estrogen Substances 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 239000003925 fat Substances 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 150000004676 glycans Polymers 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- AEMRFAOFKBGASW-UHFFFAOYSA-N glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 4
- NTYJJOPFIAHURM-UHFFFAOYSA-N histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 4
- 239000000017 hydrogel Substances 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 229920001477 hydrophilic polymer Polymers 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 239000003326 hypnotic agent Substances 0.000 description 4
- 239000005554 hypnotics and sedatives Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000000670 limiting Effects 0.000 description 4
- 238000011068 load Methods 0.000 description 4
- 229910001629 magnesium chloride Inorganic materials 0.000 description 4
- 235000011147 magnesium chloride Nutrition 0.000 description 4
- 239000011976 maleic acid Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- CSNNHWWHGAXBCP-UHFFFAOYSA-L mgso4 Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- 229920001194 natural rubber Polymers 0.000 description 4
- 231100000344 non-irritating Toxicity 0.000 description 4
- 230000003000 nontoxic Effects 0.000 description 4
- 231100000252 nontoxic Toxicity 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 4
- 229920001282 polysaccharide Polymers 0.000 description 4
- 239000005017 polysaccharide Substances 0.000 description 4
- 150000004804 polysaccharides Polymers 0.000 description 4
- 229920001296 polysiloxane Polymers 0.000 description 4
- 230000003389 potentiating Effects 0.000 description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 4
- 238000005086 pumping Methods 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- 238000006722 reduction reaction Methods 0.000 description 4
- 230000001624 sedative Effects 0.000 description 4
- 239000000932 sedative agent Substances 0.000 description 4
- 229920002545 silicone oil Polymers 0.000 description 4
- 229920002379 silicone rubber Polymers 0.000 description 4
- MSXHSNHNTORCAW-UHFFFAOYSA-M sodium 3,4,5,6-tetrahydroxyoxane-2-carboxylate Chemical compound [Na+].OC1OC(C([O-])=O)C(O)C(O)C1O MSXHSNHNTORCAW-UHFFFAOYSA-M 0.000 description 4
- 235000010413 sodium alginate Nutrition 0.000 description 4
- 239000000661 sodium alginate Substances 0.000 description 4
- 150000003431 steroids Chemical class 0.000 description 4
- 229920001059 synthetic polymer Polymers 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 239000011592 zinc chloride Substances 0.000 description 4
- 235000005074 zinc chloride Nutrition 0.000 description 4
- AELCINSCMGFISI-DTWKUNHWSA-N (1R,2S)-2-phenylcyclopropan-1-amine Chemical compound N[C@@H]1C[C@H]1C1=CC=CC=C1 AELCINSCMGFISI-DTWKUNHWSA-N 0.000 description 2
- DHPRQBPJLMKORJ-XRNKAMNCSA-N (4S,4aS,5aS,6S,12aR)-7-chloro-4-(dimethylamino)-1,6,10,11,12a-pentahydroxy-6-methyl-3,12-dioxo-4,4a,5,5a-tetrahydrotetracene-2-carboxamide Chemical compound C1=CC(Cl)=C2[C@](O)(C)[C@H]3C[C@H]4[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]4(O)C(=O)C3=C(O)C2=C1O DHPRQBPJLMKORJ-XRNKAMNCSA-N 0.000 description 2
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 2
- KWTSXDURSIMDCE-QMMMGPOBSA-N (S)-amphetamine Chemical compound C[C@H](N)CC1=CC=CC=C1 KWTSXDURSIMDCE-QMMMGPOBSA-N 0.000 description 2
- GQNTZAWVZSKJKE-UHFFFAOYSA-N 1,1,3,3-tetrakis(methoxymethyl)urea Chemical compound COCN(COC)C(=O)N(COC)COC GQNTZAWVZSKJKE-UHFFFAOYSA-N 0.000 description 2
- QAGFPFWZCJWYRP-UHFFFAOYSA-N 1,1-bis(hydroxymethyl)urea Chemical compound NC(=O)N(CO)CO QAGFPFWZCJWYRP-UHFFFAOYSA-N 0.000 description 2
- QLUXVUVEVXYICG-UHFFFAOYSA-N 1,1-dichloroethene;prop-2-enenitrile Chemical compound C=CC#N.ClC(Cl)=C QLUXVUVEVXYICG-UHFFFAOYSA-N 0.000 description 2
- RGUQWGXAYZNLMI-UHFFFAOYSA-N 1,1-dioxo-6-(trifluoromethyl)-4H-1$l^{6},2,4-benzothiadiazine-7-sulfonamide Chemical compound C1=C(C(F)(F)F)C(S(=O)(=O)N)=CC2=C1NC=NS2(=O)=O RGUQWGXAYZNLMI-UHFFFAOYSA-N 0.000 description 2
- SNIOPGDIGTZGOP-UHFFFAOYSA-N 1,2,3-propanetrioltrinitrate Chemical compound [O-][N+](=O)OCC(O[N+]([O-])=O)CO[N+]([O-])=O SNIOPGDIGTZGOP-UHFFFAOYSA-N 0.000 description 2
- QUBQYFYWUJJAAK-UHFFFAOYSA-N 1,3-bis(hydroxymethyl)urea Chemical compound OCNC(=O)NCO QUBQYFYWUJJAAK-UHFFFAOYSA-N 0.000 description 2
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-Benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- ZEAJJDLTAMTHRC-UHFFFAOYSA-N 1-naphthalen-1-yloxyethanol Chemical compound C1=CC=C2C(OC(O)C)=CC=CC2=C1 ZEAJJDLTAMTHRC-UHFFFAOYSA-N 0.000 description 2
- MMNDQFKJRJWVNE-UHFFFAOYSA-N 2,2-diethyl-3-methylbutanamide Chemical compound CCC(CC)(C(C)C)C(N)=O MMNDQFKJRJWVNE-UHFFFAOYSA-N 0.000 description 2
- UYXHCVFXDBNRQW-UHFFFAOYSA-N 2-(pentylamino)ethyl 4-aminobenzoate Chemical compound CCCCCNCCOC(=O)C1=CC=C(N)C=C1 UYXHCVFXDBNRQW-UHFFFAOYSA-N 0.000 description 2
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 description 2
- WOBHKFSMXKNTIM-UHFFFAOYSA-N 2-hydroxyethyl 2-methylacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 2
- RKWGIWYCVPQPMF-UHFFFAOYSA-N 4-chloro-N-[(propylamino)carbonyl]benzenesulfonamide Chemical compound CCCNC(=O)NS(=O)(=O)C1=CC=C(Cl)C=C1 RKWGIWYCVPQPMF-UHFFFAOYSA-N 0.000 description 2
- KQPKPCNLIDLUMF-MRVPVSSYSA-N 5-[(2R)-pentan-2-yl]-5-prop-2-enyl-1,3-diazinane-2,4,6-trione Chemical compound CCC[C@@H](C)C1(CC=C)C(=O)NC(=O)NC1=O KQPKPCNLIDLUMF-MRVPVSSYSA-N 0.000 description 2
- GKFPPCXIBHQRQT-UHFFFAOYSA-N 6-(2-carboxy-4,5-dihydroxy-6-methoxyoxan-3-yl)oxy-4,5-dihydroxy-3-methoxyoxane-2-carboxylic acid Chemical compound OC1C(O)C(OC)OC(C(O)=O)C1OC1C(O)C(O)C(OC)C(C(O)=O)O1 GKFPPCXIBHQRQT-UHFFFAOYSA-N 0.000 description 2
- WYWHKKSPHMUBEB-UHFFFAOYSA-N 6-Mercaptoguanine Natural products N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 2
- DOBIZWYVJFIYOV-UHFFFAOYSA-N 7-hydroxynaphthalene-1,3-disulfonic acid Chemical compound C1=C(S(O)(=O)=O)C=C(S(O)(=O)=O)C2=CC(O)=CC=C21 DOBIZWYVJFIYOV-UHFFFAOYSA-N 0.000 description 2
- 229930008281 A03AD01 - Papaverine Natural products 0.000 description 2
- 229930006677 A03BA01 - Atropine Natural products 0.000 description 2
- 229930000680 A04AD01 - Scopolamine Natural products 0.000 description 2
- 229940035676 ANALGESICS Drugs 0.000 description 2
- 229940033495 ANTIMALARIALS Drugs 0.000 description 2
- 244000215068 Acacia senegal Species 0.000 description 2
- 229960001466 Acetohexamide Drugs 0.000 description 2
- VGZSUPCWNCWDAN-UHFFFAOYSA-N Acetohexamide Chemical compound C1=CC(C(=O)C)=CC=C1S(=O)(=O)NC(=O)NC1CCCCC1 VGZSUPCWNCWDAN-UHFFFAOYSA-N 0.000 description 2
- 210000001691 Amnion Anatomy 0.000 description 2
- 229940025084 Amphetamine Drugs 0.000 description 2
- HSNWZBCBUUSSQD-UHFFFAOYSA-N Amyl nitrate Chemical compound CCCCCO[N+]([O-])=O HSNWZBCBUUSSQD-UHFFFAOYSA-N 0.000 description 2
- 240000005415 Anogeissus latifolia Species 0.000 description 2
- 235000011514 Anogeissus latifolia Nutrition 0.000 description 2
- 229940064005 Antibiotic throat preparations Drugs 0.000 description 2
- 229940083879 Antibiotics FOR TREATMENT OF HEMORRHOIDS AND ANAL FISSURES FOR TOPICAL USE Drugs 0.000 description 2
- 229940042052 Antibiotics for systemic use Drugs 0.000 description 2
- 229940042786 Antitubercular Antibiotics Drugs 0.000 description 2
- UIQMVEYFGZJHCZ-SSTWWWIQSA-N Antorphin Chemical compound C([C@@H](N(CC1)CC=C)[C@@H]2C=C[C@@H]3O)C4=CC=C(O)C5=C4[C@@]21[C@H]3O5 UIQMVEYFGZJHCZ-SSTWWWIQSA-N 0.000 description 2
- 241000416162 Astragalus gummifer Species 0.000 description 2
- RKUNBYITZUJHSG-SPUOUPEWSA-N Atropine Chemical compound O([C@H]1C[C@H]2CC[C@@H](C1)N2C)C(=O)C(CO)C1=CC=CC=C1 RKUNBYITZUJHSG-SPUOUPEWSA-N 0.000 description 2
- 229960000396 Atropine Drugs 0.000 description 2
- 241000271566 Aves Species 0.000 description 2
- AVWWVJUMXRXPNF-UHFFFAOYSA-N Bephenium hydroxynaphthoate Chemical compound C=1C=CC=CC=1C[N+](C)(C)CCOC1=CC=CC=C1 AVWWVJUMXRXPNF-UHFFFAOYSA-N 0.000 description 2
- 229950008090 Bephenium hydroxynaphthoate Drugs 0.000 description 2
- YSXKPIUOCJLQIE-UHFFFAOYSA-N Biperiden Chemical compound C1C(C=C2)CC2C1C(C=1C=CC=CC=1)(O)CCN1CCCCC1 YSXKPIUOCJLQIE-UHFFFAOYSA-N 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- LEBVLXFERQHONN-UHFFFAOYSA-N Bupivacaine Chemical compound CCCCN1CCCCC1C(=O)NC1=C(C)C=CC=C1C LEBVLXFERQHONN-UHFFFAOYSA-N 0.000 description 2
- MTAZNLWOLGHBHU-UHFFFAOYSA-N Butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 2
- 229930008564 C01BA04 - Sparteine Natural products 0.000 description 2
- LZCOQTDXKCNBEE-IKIFYQGPSA-N CHEMBL376897 Chemical compound C1([C@@H](CO)C(=O)O[C@H]2C[C@@H]3[N+]([C@H](C2)[C@@H]2[C@H]3O2)(C)C)=CC=CC=C1 LZCOQTDXKCNBEE-IKIFYQGPSA-N 0.000 description 2
- 240000002804 Calluna vulgaris Species 0.000 description 2
- 235000007575 Calluna vulgaris Nutrition 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate dianion Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 241000700198 Cavia Species 0.000 description 2
- 210000003169 Central Nervous System Anatomy 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 229920002101 Chitin Polymers 0.000 description 2
- DJHJJVWPFGHIPH-OODMECLYSA-N Chitin Chemical compound O[C@@H]1C(NC(=O)C)[C@H](O)OC(CO)[C@H]1COC[C@H]1C(NC(C)=O)[C@@H](O)[C@H](COC[C@H]2C([C@@H](O)[C@H](O)C(CO)O2)NC(C)=O)C(CO)O1 DJHJJVWPFGHIPH-OODMECLYSA-N 0.000 description 2
- 229960005091 Chloramphenicol Drugs 0.000 description 2
- WIIZWVCIJKGZOK-RKDXNWHRSA-N Chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 2
- ANTSCNMPPGJYLG-UHFFFAOYSA-N Chlordiazepoxide Chemical compound O=N=1CC(NC)=NC2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 ANTSCNMPPGJYLG-UHFFFAOYSA-N 0.000 description 2
- 229960004782 Chlordiazepoxide Drugs 0.000 description 2
- HAWPXGHAZFHHAD-UHFFFAOYSA-N Chlormethine Chemical compound ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 2
- ZPEIMTDSQAKGNT-UHFFFAOYSA-N Chlorpromazine Chemical compound C1=C(Cl)C=C2N(CCCN(C)C)C3=CC=CC=C3SC2=C1 ZPEIMTDSQAKGNT-UHFFFAOYSA-N 0.000 description 2
- 229960001761 Chlorpropamide Drugs 0.000 description 2
- 229920001287 Chondroitin sulfate Polymers 0.000 description 2
- KXKPYJOVDUMHGS-OSRGNVMNSA-N Chondroitin sulfate Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](OS(O)(=O)=O)[C@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](C(O)=O)O1 KXKPYJOVDUMHGS-OSRGNVMNSA-N 0.000 description 2
- 235000001258 Cinchona calisaya Nutrition 0.000 description 2
- 241000434299 Cinchona officinalis Species 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N Cortisol Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- MFYSYFVPBJMHGN-ZPOLXVRWSA-N Cortisone Chemical compound O=C1CC[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 MFYSYFVPBJMHGN-ZPOLXVRWSA-N 0.000 description 2
- MLUCVPSAIODCQM-NSCUHMNNSA-N Crotonaldehyde Chemical compound C\C=C\C=O MLUCVPSAIODCQM-NSCUHMNNSA-N 0.000 description 2
- 240000005497 Cyamopsis tetragonoloba Species 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N D-Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 229940030606 DIURETICS Drugs 0.000 description 2
- 229960000860 Dapsone Drugs 0.000 description 2
- ISMCNVNDWFIXLM-WCGOZPBSSA-N Deserpidine Chemical compound O([C@H]1[C@@H]([C@H]([C@H]2C[C@@H]3C4=C([C]5C=CC=CC5=N4)CCN3C[C@H]2C1)C(=O)OC)OC)C(=O)C1=CC(OC)=C(OC)C(OC)=C1 ISMCNVNDWFIXLM-WCGOZPBSSA-N 0.000 description 2
- 229960001993 Deserpidine Drugs 0.000 description 2
- CVBMAZKKCSYWQR-BPJCFPRXSA-N Deserpidine Natural products O=C(OC)[C@@H]1[C@H](OC)[C@H](OC(=O)c2cc(OC)c(OC)c(OC)c2)C[C@H]2[C@@H]1C[C@H]1N(C2)CCc2c3c([nH]c12)cccc3 CVBMAZKKCSYWQR-BPJCFPRXSA-N 0.000 description 2
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Di(p-aminophenyl)sulphone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 2
- ZNZYKNKBJPZETN-WELNAUFTSA-N Dialdehyde 11678 Chemical compound N1C2=CC=CC=C2C2=C1[C@H](C[C@H](/C(=C/O)C(=O)OC)[C@@H](C=C)C=O)NCC2 ZNZYKNKBJPZETN-WELNAUFTSA-N 0.000 description 2
- 229960003887 Dichlorophen Drugs 0.000 description 2
- MDNWOSOZYLHTCG-UHFFFAOYSA-N Dichlorophene Chemical compound OC1=CC=C(Cl)C=C1CC1=CC(Cl)=CC=C1O MDNWOSOZYLHTCG-UHFFFAOYSA-N 0.000 description 2
- IZEKFCXSFNUWAM-UHFFFAOYSA-N Dipyridamole Chemical compound C=12N=C(N(CCO)CCO)N=C(N3CCCCC3)C2=NC(N(CCO)CCO)=NC=1N1CCCCC1 IZEKFCXSFNUWAM-UHFFFAOYSA-N 0.000 description 2
- 229960002768 Dipyridamole Drugs 0.000 description 2
- 102000016942 Elastin Human genes 0.000 description 2
- 108010014258 Elastin Proteins 0.000 description 2
- CXOFVDLJLONNDW-UHFFFAOYSA-N Epinat Chemical compound N1C(=O)NC(=O)C1(C=1C=CC=CC=1)C1=CC=CC=C1 CXOFVDLJLONNDW-UHFFFAOYSA-N 0.000 description 2
- UCTWMZQNUQWSLP-VIFPVBQESA-N Epinephrine Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 2
- 241000283086 Equidae Species 0.000 description 2
- WVVSZNPYNCNODU-CJBNDPTMSA-N Ergometrine Natural products C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N[C@@H](CO)C)C2)=C3C2=CNC3=C1 WVVSZNPYNCNODU-CJBNDPTMSA-N 0.000 description 2
- 229940011336 Ergonovine Drugs 0.000 description 2
- 229940083253 Ergot alkaloid peripheral vasodilators Drugs 0.000 description 2
- 229960001348 Estriol Drugs 0.000 description 2
- PROQIPRRNZUXQM-ZXXIGWHRSA-N Estriol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H]([C@H](O)C4)O)[C@@H]4[C@@H]3CCC2=C1 PROQIPRRNZUXQM-ZXXIGWHRSA-N 0.000 description 2
- 229940011871 Estrogens Drugs 0.000 description 2
- 229960003399 Estrone Drugs 0.000 description 2
- HAPOVYFOVVWLRS-UHFFFAOYSA-N Ethosuximide Chemical compound CCC1(C)CC(=O)NC1=O HAPOVYFOVVWLRS-UHFFFAOYSA-N 0.000 description 2
- 229960002767 Ethosuximide Drugs 0.000 description 2
- SZQIFWWUIBRPBZ-UHFFFAOYSA-N Ethotoin Chemical compound O=C1N(CC)C(=O)NC1C1=CC=CC=C1 SZQIFWWUIBRPBZ-UHFFFAOYSA-N 0.000 description 2
- 229960003533 Ethotoin Drugs 0.000 description 2
- BFPYWIDHMRZLRN-SLHNCBLASA-N Etivex Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 BFPYWIDHMRZLRN-SLHNCBLASA-N 0.000 description 2
- 229950003499 FIBRIN Drugs 0.000 description 2
- IUJDSEJGGMCXSG-UHFFFAOYSA-N Farmotal Chemical compound CCCC(C)C1(CC)C(=O)NC(=S)NC1=O IUJDSEJGGMCXSG-UHFFFAOYSA-N 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- 108010073385 Fibrin Proteins 0.000 description 2
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 2
- 102000009123 Fibrin Human genes 0.000 description 2
- 229960003028 Flumethiazide Drugs 0.000 description 2
- 229960002690 Fluphenazine Drugs 0.000 description 2
- PLDUPXSUYLZYBN-UHFFFAOYSA-N Fluphenazine dihydrochloride Chemical compound C1CN(CCO)CCN1CCCN1C2=CC(C(F)(F)F)=CC=C2SC2=CC=CC=C21 PLDUPXSUYLZYBN-UHFFFAOYSA-N 0.000 description 2
- HYBBIBNJHNGZAN-UHFFFAOYSA-N Furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 2
- 241000206672 Gelidium Species 0.000 description 2
- 210000004907 Glands Anatomy 0.000 description 2
- KNCYXPMJDCCGSJ-UHFFFAOYSA-N Glutarimide Chemical class O=C1CCCC(=O)N1 KNCYXPMJDCCGSJ-UHFFFAOYSA-N 0.000 description 2
- 229920000084 Gum arabic Polymers 0.000 description 2
- 239000001922 Gum ghatti Substances 0.000 description 2
- 229920000569 Gum karaya Polymers 0.000 description 2
- 229940093922 Gynecological Antibiotics Drugs 0.000 description 2
- 240000008528 Hevea brasiliensis Species 0.000 description 2
- VKYKSIONXSXAKP-UHFFFAOYSA-N Hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 2
- DNXHEGUUPJUMQT-CBZIJGRNSA-N Hiestrone Chemical compound OC1=CC=C2[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1 DNXHEGUUPJUMQT-CBZIJGRNSA-N 0.000 description 2
- 229940088597 Hormone Drugs 0.000 description 2
- STECJAGHUSJQJN-GAUPFVANSA-N Hyoscine Natural products C1([C@H](CO)C(=O)OC2C[C@@H]3N([C@H](C2)[C@@H]2[C@H]3O2)C)=CC=CC=C1 STECJAGHUSJQJN-GAUPFVANSA-N 0.000 description 2
- BCGWQEUPMDMJNV-UHFFFAOYSA-N Imipramine Chemical compound C1CC2=CC=CC=C2N(CCCN(C)C)C2=CC=CC=C21 BCGWQEUPMDMJNV-UHFFFAOYSA-N 0.000 description 2
- XKFPYPQQHFEXRZ-UHFFFAOYSA-N Isocarboxazid Chemical compound O1C(C)=CC(C(=O)NNCC=2C=CC=CC=2)=N1 XKFPYPQQHFEXRZ-UHFFFAOYSA-N 0.000 description 2
- 102000005237 Isophane Insulin Human genes 0.000 description 2
- 108010081368 Isophane Insulin Proteins 0.000 description 2
- 229950002240 Isophane insulin Drugs 0.000 description 2
- 102000011782 Keratins Human genes 0.000 description 2
- 108010076876 Keratins Proteins 0.000 description 2
- GUBGYTABKSRVRQ-UUNJERMWSA-N Lactose Natural products O([C@@H]1[C@H](O)[C@H](O)[C@H](O)O[C@@H]1CO)[C@H]1[C@@H](O)[C@@H](O)[C@H](O)[C@H](CO)O1 GUBGYTABKSRVRQ-UUNJERMWSA-N 0.000 description 2
- 229960005015 Local anesthetics Drugs 0.000 description 2
- 229940083877 Local anesthetics for treatment of hemorrhoids and anal fissures for topical use Drugs 0.000 description 2
- 229920000161 Locust bean gum Polymers 0.000 description 2
- WVVSZNPYNCNODU-XTQGRXLLSA-N Lysergic acid propanolamide Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N[C@H](CO)C)C2)=C3C2=CNC3=C1 WVVSZNPYNCNODU-XTQGRXLLSA-N 0.000 description 2
- 229940035363 MUSCLE RELAXANTS Drugs 0.000 description 2
- DGMJZELBSFOPHH-KVTDHHQDSA-N Mannitol hexanitrate Chemical compound [O-][N+](=O)OC[C@@H](O[N+]([O-])=O)[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)CO[N+]([O-])=O DGMJZELBSFOPHH-KVTDHHQDSA-N 0.000 description 2
- 229960004961 Mechlorethamine Drugs 0.000 description 2
- JDSHMPZPIAZGSV-UHFFFAOYSA-N Melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- 229940041655 Meperidine Drugs 0.000 description 2
- JWDYCNIAQWPBHD-UHFFFAOYSA-N Mephenesin Chemical compound CC1=CC=CC=C1OCC(O)CO JWDYCNIAQWPBHD-UHFFFAOYSA-N 0.000 description 2
- NPPQSCRMBWNHMW-UHFFFAOYSA-N Meprobamate Chemical compound NC(=O)OCC(C)(CCC)COC(N)=O NPPQSCRMBWNHMW-UHFFFAOYSA-N 0.000 description 2
- 229960004815 Meprobamate Drugs 0.000 description 2
- FQPSGWSUVKBHSU-UHFFFAOYSA-N Methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 2
- 229960004011 Methenamine Drugs 0.000 description 2
- 229960002554 Methscopolamine Drugs 0.000 description 2
- 229920001730 Moisture cure polyurethane Polymers 0.000 description 2
- BQJCRHHNABKAKU-KBQPJGBKSA-N Morphine Chemical compound O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O BQJCRHHNABKAKU-KBQPJGBKSA-N 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 102000008934 Muscle Proteins Human genes 0.000 description 2
- 108010074084 Muscle Proteins Proteins 0.000 description 2
- 229940083876 Muscle relaxants FOR TREATMENT OF HEMORRHOIDS AND ANAL FISSURES FOR TOPICAL USE Drugs 0.000 description 2
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N N,N'-Methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 2
- JLRGJRBPOGGCBT-UHFFFAOYSA-N N-(p-Tolylsulfonyl)-N'-butylcarbamide Chemical compound CCCCNC(=O)NS(=O)(=O)C1=CC=C(C)C=C1 JLRGJRBPOGGCBT-UHFFFAOYSA-N 0.000 description 2
- 229960003057 Nialamide Drugs 0.000 description 2
- NOIIUHRQUVNIDD-UHFFFAOYSA-N Nialamide Chemical compound C=1C=CC=CC=1CNC(=O)CCNNC(=O)C1=CC=NC=C1 NOIIUHRQUVNIDD-UHFFFAOYSA-N 0.000 description 2
- 229940014995 Nitroglycerin Drugs 0.000 description 2
- 239000000006 Nitroglycerin Substances 0.000 description 2
- 210000004940 Nucleus Anatomy 0.000 description 2
- 241000283898 Ovis Species 0.000 description 2
- UKLQXHUGTKWPSR-UHFFFAOYSA-M Oxyphenonium bromide Chemical compound [Br-].C=1C=CC=CC=1C(O)(C(=O)OCC[N+](C)(CC)CC)C1CCCCC1 UKLQXHUGTKWPSR-UHFFFAOYSA-M 0.000 description 2
- 229960000625 Oxytetracycline Drugs 0.000 description 2
- IWVCMVBTMGNXQD-PXOLEDIWSA-N Oxytetracycline Chemical compound C1=CC=C2[C@](O)(C)[C@H]3[C@H](O)[C@H]4[C@H](N(C)C)C(O)=C(C(N)=O)C(=O)[C@@]4(O)C(O)=C3C(=O)C2=C1O IWVCMVBTMGNXQD-PXOLEDIWSA-N 0.000 description 2
- 239000004100 Oxytetracycline Substances 0.000 description 2
- XQYZDYMELSJDRZ-UHFFFAOYSA-N Papaverine Chemical compound C1=C(OC)C(OC)=CC=C1CC1=NC=CC2=CC(OC)=C(OC)C=C12 XQYZDYMELSJDRZ-UHFFFAOYSA-N 0.000 description 2
- SQYNKIJPMDEDEG-UHFFFAOYSA-N Paraldehyde Chemical compound CC1OC(C)OC(C)O1 SQYNKIJPMDEDEG-UHFFFAOYSA-N 0.000 description 2
- 229940049954 Penicillin Drugs 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- 229960002275 Pentobarbital Sodium Drugs 0.000 description 2
- XADCESSVHJOZHK-UHFFFAOYSA-N Petidina Chemical compound C=1C=CC=CC=1C1(C(=O)OCC)CCN(C)CC1 XADCESSVHJOZHK-UHFFFAOYSA-N 0.000 description 2
- 229960000964 Phenelzine Drugs 0.000 description 2
- RMUCZJUITONUFY-UHFFFAOYSA-N Phenelzine Chemical compound NNCCC1=CC=CC=C1 RMUCZJUITONUFY-UHFFFAOYSA-N 0.000 description 2
- AJOQSQHYDOFIOX-UHFFFAOYSA-N Pheneturide Chemical compound NC(=O)NC(=O)C(CC)C1=CC=CC=C1 AJOQSQHYDOFIOX-UHFFFAOYSA-N 0.000 description 2
- 229960002695 Phenobarbital Drugs 0.000 description 2
- DDBREPKUVSBGFI-UHFFFAOYSA-N Phenobarbital Chemical compound C=1C=CC=CC=1C1(CC)C(=O)NC(=O)NC1=O DDBREPKUVSBGFI-UHFFFAOYSA-N 0.000 description 2
- 229960002036 Phenytoin Drugs 0.000 description 2
- YQKAVWCGQQXBGW-UHFFFAOYSA-N Piperocaine Chemical compound CC1CCCCN1CCCOC(=O)C1=CC=CC=C1 YQKAVWCGQQXBGW-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 2
- OTYBMLCTZGSZBG-UHFFFAOYSA-L Potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 2
- OIGNJSKKLXVSLS-VWUMJDOOSA-N Prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 2
- DQMZLTXERSFNPB-UHFFFAOYSA-N Primidone Chemical compound C=1C=CC=CC=1C1(CC)C(=O)NCNC1=O DQMZLTXERSFNPB-UHFFFAOYSA-N 0.000 description 2
- REQCZEXYDRLIBE-UHFFFAOYSA-N Procainamide Chemical compound CCN(CC)CCNC(=O)C1=CC=C(N)C=C1 REQCZEXYDRLIBE-UHFFFAOYSA-N 0.000 description 2
- MFDFERRIHVXMIY-UHFFFAOYSA-N Procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 2
- CPTBDICYNRMXFX-UHFFFAOYSA-N Procarbazine Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1 CPTBDICYNRMXFX-UHFFFAOYSA-N 0.000 description 2
- ZGUGWUXLJSTTMA-UHFFFAOYSA-N Promazinum Chemical compound C1=CC=C2N(CCCN(C)C)C3=CC=CC=C3SC2=C1 ZGUGWUXLJSTTMA-UHFFFAOYSA-N 0.000 description 2
- WKSAUQYGYAYLPV-UHFFFAOYSA-N Pyrimethamine Chemical compound CCC1=NC(N)=NC(N)=C1C1=CC=C(Cl)C=C1 WKSAUQYGYAYLPV-UHFFFAOYSA-N 0.000 description 2
- 229960000948 Quinine Drugs 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- BJOIZNZVOZKDIG-MDEJGZGSSA-N Reserpine Chemical compound O([C@H]1[C@@H]([C@H]([C@H]2C[C@@H]3C4=C([C]5C=CC(OC)=CC5=N4)CCN3C[C@H]2C1)C(=O)OC)OC)C(=O)C1=CC(OC)=C(OC)C(OC)=C1 BJOIZNZVOZKDIG-MDEJGZGSSA-N 0.000 description 2
- QEVHRUUCFGRFIF-SFWBKIHZSA-N Reserpine Natural products O=C(OC)[C@@H]1[C@H](OC)[C@H](OC(=O)c2cc(OC)c(OC)c(OC)c2)C[C@H]2[C@@H]1C[C@H]1N(C2)CCc2c3c([nH]c12)cc(OC)cc3 QEVHRUUCFGRFIF-SFWBKIHZSA-N 0.000 description 2
- 229920002781 Resilin Polymers 0.000 description 2
- 229940030484 SEX HORMONES AND MODULATORS OF THE GENITAL SYSTEM ESTROGENS Drugs 0.000 description 2
- SKZKKFZAGNVIMN-UHFFFAOYSA-N Salicilamide Chemical compound NC(=O)C1=CC=CC=C1O SKZKKFZAGNVIMN-UHFFFAOYSA-N 0.000 description 2
- STECJAGHUSJQJN-FWXGHANASA-N Scopolamine Chemical compound C1([C@@H](CO)C(=O)O[C@H]2C[C@@H]3N([C@H](C2)[C@@H]2[C@H]3O2)C)=CC=CC=C1 STECJAGHUSJQJN-FWXGHANASA-N 0.000 description 2
- HKZLPVFGJNLROG-UHFFFAOYSA-M Silver chloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 2
- 229940083542 Sodium Drugs 0.000 description 2
- 229940091252 Sodium supplements Drugs 0.000 description 2
- SLRCCWJSBJZJBV-AJNGGQMLSA-N Sparteine Chemical compound C1N2CCCC[C@H]2[C@@H]2CN3CCCC[C@H]3[C@H]1C2 SLRCCWJSBJZJBV-AJNGGQMLSA-N 0.000 description 2
- 229940090121 Sulfonylureas for blood glucose lowering Drugs 0.000 description 2
- 239000000150 Sympathomimetic Substances 0.000 description 2
- 229960002180 Tetracycline Drugs 0.000 description 2
- OFVLGDICTFRJMM-WESIUVDSSA-N Tetracycline Chemical compound C1=CC=C2[C@](O)(C)[C@H]3C[C@H]4[C@H](N(C)C)C(O)=C(C(N)=O)C(=O)[C@@]4(O)C(O)=C3C(=O)C2=C1O OFVLGDICTFRJMM-WESIUVDSSA-N 0.000 description 2
- 239000004098 Tetracycline Substances 0.000 description 2
- 229960005454 Thioguanine Drugs 0.000 description 2
- 229960003279 Thiopental Drugs 0.000 description 2
- 229960002277 Tolazamide Drugs 0.000 description 2
- OUDSBRTVNLOZBN-UHFFFAOYSA-N Tolazamide Chemical compound C1=CC(C)=CC=C1S(=O)(=O)NC(=O)NN1CCCCCC1 OUDSBRTVNLOZBN-UHFFFAOYSA-N 0.000 description 2
- 229940024982 Topical Antifungal Antibiotics Drugs 0.000 description 2
- 229940116362 Tragacanth Drugs 0.000 description 2
- 229920001615 Tragacanth Polymers 0.000 description 2
- GFNANZIMVAIWHM-OBYCQNJPSA-N Triamcinolone Chemical compound O=C1C=C[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@]([C@H](O)C4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 GFNANZIMVAIWHM-OBYCQNJPSA-N 0.000 description 2
- HWHLPVGTWGOCJO-UHFFFAOYSA-N Trihexyphenidyl Chemical group C1CCCCC1C(C=1C=CC=CC=1)(O)CCN1CCCCC1 HWHLPVGTWGOCJO-UHFFFAOYSA-N 0.000 description 2
- IDPUKCWIGUEADI-UHFFFAOYSA-N Uramustine Chemical compound ClCCN(CCCl)C1=CNC(=O)NC1=O IDPUKCWIGUEADI-UHFFFAOYSA-N 0.000 description 2
- 229940029983 VITAMINS Drugs 0.000 description 2
- 206010061402 Vaginal disease Diseases 0.000 description 2
- 206010046910 Vaginal haemorrhage Diseases 0.000 description 2
- 206010046914 Vaginal infection Diseases 0.000 description 2
- 229940021016 Vitamin IV solution additives Drugs 0.000 description 2
- NNJVILVZKWQKPM-UHFFFAOYSA-N Xylocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K [O-]P([O-])([O-])=O Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- USDJGQLNFPZEON-UHFFFAOYSA-N [[4,6-bis(hydroxymethylamino)-1,3,5-triazin-2-yl]amino]methanol Chemical compound OCNC1=NC(NCO)=NC(NCO)=N1 USDJGQLNFPZEON-UHFFFAOYSA-N 0.000 description 2
- 235000010489 acacia gum Nutrition 0.000 description 2
- 239000000205 acacia gum Substances 0.000 description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 description 2
- 229960001138 acetylsalicylic acid Drugs 0.000 description 2
- HGINCPLSRVDWNT-UHFFFAOYSA-N acrylaldehyde Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 125000005250 alkyl acrylate group Chemical group 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminum Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229960002734 amfetamine Drugs 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 239000000908 ammonium hydroxide Substances 0.000 description 2
- 230000000202 analgesic Effects 0.000 description 2
- 229920001448 anionic polyelectrolyte Polymers 0.000 description 2
- 230000003042 antagnostic Effects 0.000 description 2
- 239000000730 antalgic agent Substances 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000001396 anti-anti-diuretic Effects 0.000 description 2
- 230000001773 anti-convulsant Effects 0.000 description 2
- 230000003110 anti-inflammatory Effects 0.000 description 2
- 230000000078 anti-malarial Effects 0.000 description 2
- 230000001754 anti-pyretic Effects 0.000 description 2
- 230000002921 anti-spasmodic Effects 0.000 description 2
- 239000001961 anticonvulsive agent Substances 0.000 description 2
- 239000003472 antidiabetic agent Substances 0.000 description 2
- 239000003430 antimalarial agent Substances 0.000 description 2
- 229940051869 antimigraine Ergot alkaloids Drugs 0.000 description 2
- 239000003096 antiparasitic agent Substances 0.000 description 2
- 239000000939 antiparkinson agent Substances 0.000 description 2
- 239000002221 antipyretic Substances 0.000 description 2
- 239000003699 antiulcer agent Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atoms Chemical group 0.000 description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N benzene Substances C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 2
- WRUAHXANJKHFIL-UHFFFAOYSA-N benzene-1,3-disulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC(S(O)(=O)=O)=C1 WRUAHXANJKHFIL-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-M benzoate Chemical compound [O-]C(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-M 0.000 description 2
- 150000001557 benzodiazepines Chemical class 0.000 description 2
- 229960000626 benzylpenicillin Drugs 0.000 description 2
- 229960000254 bephenium Drugs 0.000 description 2
- 229940058933 biguanide antimalarials Drugs 0.000 description 2
- 229940090145 biguanide blood glucose lower drugs Drugs 0.000 description 2
- 150000004283 biguanides Chemical class 0.000 description 2
- 230000003115 biocidal Effects 0.000 description 2
- 239000000560 biocompatible material Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229960003003 biperiden Drugs 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 230000036760 body temperature Effects 0.000 description 2
- 235000013877 carbamide Nutrition 0.000 description 2
- 150000001718 carbodiimides Chemical class 0.000 description 2
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 2
- 239000002327 cardiovascular agent Substances 0.000 description 2
- 235000010418 carrageenan Nutrition 0.000 description 2
- 229920001525 carrageenan Polymers 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000003518 caustics Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- HLRNWZLPRFTCIO-IPZCTEOASA-N chloroethene;diethyl (E)-but-2-enedioate Chemical compound ClC=C.CCOC(=O)\C=C\C(=O)OCC HLRNWZLPRFTCIO-IPZCTEOASA-N 0.000 description 2
- 229940059329 chondroitin sulfate Drugs 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229960004126 codeine Drugs 0.000 description 2
- 239000007859 condensation product Substances 0.000 description 2
- 230000002254 contraceptive Effects 0.000 description 2
- 239000000599 controlled substance Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000002596 correlated Effects 0.000 description 2
- 229960004544 cortisone Drugs 0.000 description 2
- 230000003413 degradative Effects 0.000 description 2
- 150000001991 dicarboxylic acids Chemical class 0.000 description 2
- BWGNESOTFCXPMA-UHFFFAOYSA-N dihydrogen disulfide Chemical class SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- JZZIHCLFHIXETF-UHFFFAOYSA-N dimethylsilicon Chemical compound C[Si]C JZZIHCLFHIXETF-UHFFFAOYSA-N 0.000 description 2
- 239000002934 diuretic Substances 0.000 description 2
- 229920002549 elastin Polymers 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 229940046080 endocrine therapy drugs Estrogens Drugs 0.000 description 2
- 229960002179 ephedrine Drugs 0.000 description 2
- BRLQWZUYTZBJKN-UHFFFAOYSA-N epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 2
- 229960005139 epinephrine Drugs 0.000 description 2
- 150000002118 epoxides Chemical class 0.000 description 2
- 229960001405 ergometrine Drugs 0.000 description 2
- 229960003133 ergot alkaloids Drugs 0.000 description 2
- 239000003797 essential amino acid Substances 0.000 description 2
- 235000020776 essential amino acid Nutrition 0.000 description 2
- 230000001076 estrogenic Effects 0.000 description 2
- 125000005670 ethenylalkyl group Chemical group 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 229960002568 ethinylestradiol Drugs 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N ethylene glycol monomethyl ether Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 2
- 239000011152 fibreglass Substances 0.000 description 2
- 229920002457 flexible plastic Polymers 0.000 description 2
- 230000037406 food intake Effects 0.000 description 2
- DXRFSTNITSDOKK-UHFFFAOYSA-N formaldehyde;sulfurous acid Chemical compound O=C.OS(O)=O DXRFSTNITSDOKK-UHFFFAOYSA-N 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N fumaric acid Chemical compound OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 102000018146 globin family Human genes 0.000 description 2
- 108060003196 globin family Proteins 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 229960003711 glyceryl trinitrate Drugs 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 235000019314 gum ghatti Nutrition 0.000 description 2
- 125000005842 heteroatoms Chemical group 0.000 description 2
- 239000004312 hexamethylene tetramine Substances 0.000 description 2
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 2
- 229960001340 histamine Drugs 0.000 description 2
- 230000003054 hormonal Effects 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 229960000890 hydrocortisone Drugs 0.000 description 2
- 230000003301 hydrolyzing Effects 0.000 description 2
- 229920001600 hydrophobic polymer Polymers 0.000 description 2
- 150000001261 hydroxy acids Chemical class 0.000 description 2
- 229960004801 imipramine Drugs 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000004026 insulin derivative Substances 0.000 description 2
- 229940079866 intestinal antibiotics Drugs 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 229960002672 isocarboxazid Drugs 0.000 description 2
- 229940006445 isophane insulin Drugs 0.000 description 2
- 235000010494 karaya gum Nutrition 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 238000002386 leaching Methods 0.000 description 2
- 229960004194 lidocaine Drugs 0.000 description 2
- 239000011344 liquid material Substances 0.000 description 2
- 239000003589 local anesthetic agent Substances 0.000 description 2
- 229940064003 local anesthetic throat preparations Drugs 0.000 description 2
- 235000010420 locust bean gum Nutrition 0.000 description 2
- 239000000711 locust bean gum Substances 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- 235000019341 magnesium sulphate Nutrition 0.000 description 2
- 229950003934 mannite hexanitrate Drugs 0.000 description 2
- 230000003821 menstrual periods Effects 0.000 description 2
- 229960003861 mephenesin Drugs 0.000 description 2
- 230000002503 metabolic Effects 0.000 description 2
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000693 micelle Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000006011 modification reaction Methods 0.000 description 2
- 229930014694 morphine Natural products 0.000 description 2
- 229960005181 morphine Drugs 0.000 description 2
- 239000003158 myorelaxant agent Substances 0.000 description 2
- 229950009121 naepaine Drugs 0.000 description 2
- 229960000938 nalorphine Drugs 0.000 description 2
- 230000001613 neoplastic Effects 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 229940005935 ophthalmologic Antibiotics Drugs 0.000 description 2
- 210000000056 organs Anatomy 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- 229950005308 oxymethurea Drugs 0.000 description 2
- 229960002740 oxyphenonium Drugs 0.000 description 2
- 235000019366 oxytetracycline Nutrition 0.000 description 2
- 229960001789 papaverine Drugs 0.000 description 2
- 229960003868 paraldehyde Drugs 0.000 description 2
- 235000010987 pectin Nutrition 0.000 description 2
- 229920001277 pectin Polymers 0.000 description 2
- 239000001814 pectin Substances 0.000 description 2
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 2
- 229960000482 pethidine Drugs 0.000 description 2
- 229960003877 pheneturide Drugs 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 239000002504 physiological saline solution Substances 0.000 description 2
- CNMOHEDUVVUVPP-UHFFFAOYSA-N piperidine-2,3-dione Chemical class O=C1CCCNC1=O CNMOHEDUVVUVPP-UHFFFAOYSA-N 0.000 description 2
- 229960001045 piperocaine Drugs 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920002006 poly(N-vinylimidazole) polymer Polymers 0.000 description 2
- 229920001490 poly(butyl methacrylate) polymer Polymers 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229910052939 potassium sulfate Inorganic materials 0.000 description 2
- 235000011151 potassium sulphates Nutrition 0.000 description 2
- 229960005205 prednisolone Drugs 0.000 description 2
- 229960002393 primidone Drugs 0.000 description 2
- 229960000244 procainamide Drugs 0.000 description 2
- 229960004919 procaine Drugs 0.000 description 2
- 229960000624 procarbazine Drugs 0.000 description 2
- 229960003598 promazine Drugs 0.000 description 2
- 230000001737 promoting Effects 0.000 description 2
- 108010000947 protamine zinc Proteins 0.000 description 2
- 230000003236 psychic Effects 0.000 description 2
- 229960000611 pyrimethamine Drugs 0.000 description 2
- 229960001404 quinidine Drugs 0.000 description 2
- 229960003147 reserpine Drugs 0.000 description 2
- 108010019116 resilin Proteins 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229960000581 salicylamide Drugs 0.000 description 2
- 229960002646 scopolamine Drugs 0.000 description 2
- 229960002060 secobarbital Drugs 0.000 description 2
- 231100000197 serious side effect Toxicity 0.000 description 2
- 231100000486 side effect Toxicity 0.000 description 2
- KEAYESYHFKHZAL-UHFFFAOYSA-N sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000004317 sodium nitrate Substances 0.000 description 2
- 235000010344 sodium nitrate Nutrition 0.000 description 2
- QPBKUJIATWTGHV-UHFFFAOYSA-M sodium;2-carbamoylphenolate Chemical compound [Na+].NC(=O)C1=CC=CC=C1[O-] QPBKUJIATWTGHV-UHFFFAOYSA-M 0.000 description 2
- QGMRQYFBGABWDR-OGFXRTJISA-M sodium;5-ethyl-5-[(2R)-pentan-2-yl]pyrimidin-3-ide-2,4,6-trione Chemical compound [Na+].CCC[C@@H](C)C1(CC)C(=O)NC(=O)[N-]C1=O QGMRQYFBGABWDR-OGFXRTJISA-M 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 229960001945 sparteine Drugs 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000008223 sterile water Substances 0.000 description 2
- 229940086735 succinate Drugs 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 230000003319 supportive Effects 0.000 description 2
- 230000001975 sympathomimetic Effects 0.000 description 2
- 229920003051 synthetic elastomer Polymers 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000005061 synthetic rubber Substances 0.000 description 2
- 238000007910 systemic administration Methods 0.000 description 2
- 235000019364 tetracycline Nutrition 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- 229960005371 tolbutamide Drugs 0.000 description 2
- 235000010487 tragacanth Nutrition 0.000 description 2
- 239000000196 tragacanth Substances 0.000 description 2
- 230000002936 tranquilizing Effects 0.000 description 2
- 239000003204 tranquilizing agent Substances 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 229960003741 tranylcypromine Drugs 0.000 description 2
- 229960005294 triamcinolone Drugs 0.000 description 2
- 229960001055 uracil mustard Drugs 0.000 description 2
- 201000008738 uterine disease Diseases 0.000 description 2
- 239000006216 vaginal suppository Substances 0.000 description 2
- 201000008100 vaginitis Diseases 0.000 description 2
- 229940070710 valerate Drugs 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- 229940117958 vinyl acetate Drugs 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 229930003231 vitamins Natural products 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N β-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F6/00—Contraceptive devices; Pessaries; Applicators therefor
- A61F6/06—Contraceptive devices; Pessaries; Applicators therefor for use by females
- A61F6/14—Contraceptive devices; Pessaries; Applicators therefor for use by females intra-uterine type
- A61F6/142—Wirelike structures, e.g. loops, rings, spirals
- A61F6/144—Wirelike structures, e.g. loops, rings, spirals with T-configuration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0034—Urogenital system, e.g. vagina, uterus, cervix, penis, scrotum, urethra, bladder; Personal lubricants
- A61K9/0039—Devices retained in the uterus for a prolonged period, e.g. intrauterine devices for contraception
Abstract
An improved intrauterine device which delivers a predetermined therapeutically effective dosage of drug locally to the uterus over a defined period of time is disclosed. The device is initially of a uterine-retentive shape. The device is characterized by undergoing a structural biotransformation in the uterus such that at the completion of the defined period of drug delivery it has achieved a non-uterine-retentive configuration.
Description
United States Patent 1191 Zaffaroni 1 BIOTRANS FORMABLE INTRAUTERINE DEVICE [75] Inventor: Alejandro Zaffaroni, Atherton,
Calif.
[73] Assignee: Alza Corporation, Palo Alto, Calif.
[22] Filed: Dec. 27, 1972 [21] Appl. No.: 319,014
52 vs. C! 128/130; 128/260 51 1m.c1 A6lf 5/46; A61m 31/00 [58] Field of Search 128/127, 128, 129, 130, 128/131, 333.5, 260-, 424/19, 21, 22, 33, 37,
[56] References Cited UNITED STATES PATENTS 3,143,472 8/1964 Lappes 424/33 3,533,406 10/1970 Tatum..... 3,625,214 12/1971 Higuchi 128/260 14 1 Aug. 12, 1975 3,636,956 1/1972 Schneider 128/335.5
3,640,741 2/1972 Etes 434/32 3,659,596 5/1972 Robinson.... 128/130 3,699,951 10/1972 Zaffaroni.... 128/130 3,710,795 1/1973 Higuchi 128/130 Primary Examiner-Richard A. Gaudet Assistant Examiner-J. C. McGowan Attorney, Agent, or Firm-Paul L. Sabatine; Edward L. Mandell; William H. Benz 5 7] ABSTRACT 16 Claims, 7 Drawing Figures PATENTEDAUBIZIBYS 3 898 986 FIG.|
FIG.2
' 'PATEm nAumms SHEET FIG.6
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to an improved drug dispensing intrauterine device. In a preferred embodiment this invention concerns an improved intrauterine device for dispensing locally to the uterus an interceptive agent for terminating pregnancy.
2. The Prior Art Presently, a critical need exists for an acceptable means for the direct continuous delivery of drugs directly (locally) to the uterus. Inthe prior art, it is most common to administer drugs to the uterus systemically, such as by injection, by ingestion or by intravenous infusion. With systemic administration, the amount of drugs needed to achieve the desired uterine purpose is so large that serious undesirable side effects often occur in many body organs.
Vaginal suppositories are another prior art drug form which has been used to administer drugs to the uterus, since some of the vaginally-administered drug which is absorbed through the vaginal walls passes via the circulatory system to the uterus. This method of delivery is essentially systemic and thus leads to the same serious side effects.
In my earlier US. Pat. applications Nos. 185,208 and 281,455, now US. Pat. 3,845,76l,filed on Sept. 30, 1971 and Aug. 17, I972, respectively, and entitled Novel Drug Delivery Device and Intrauterine Contraceptive AntiFertility Delivery Device, I disclose intrauterine devices which contain drugs and which administer a controlled flow of these drugs locally to the uterus. Such devices deliver drugs locally to the uterus only for a finite period of time and then must be removed either because the need for medication has passed or because the supply of drug in the device is exhausted and a new device is required. With conventional devices this removal is a major problem. The
uterus is lined with an extremely delicate vessel-and glandrich tissue, the endometrium, which surrounds and intimately contacts any object placed within it. Any probing for or the twisting and manipulating of an intrauterine device to effect its removal will almost certainly gouge and disrupt (or very likely damage) the endometrium and the vessels and glands it contains. Also, the geometry of the uterine cavity and cervix poses further complications as the cervix, through which any device must be removed, is relatively inaccessible and substantially smaller in diameter than the uterus. For these reasons, the removal of intrauterine devices is now almost always carried out by skilled medical personnel.
Attempts to make intrauterine devices in a shape or size which is easier to remove often introduces further complications since easy removal is, almost by definition, antagonistic to an acceptable degree of uterine re tention. A high degree of uterine retention is critical to the success of a drug dispensing intrauterine device. Premature expulsion of the device by the uterus is highly undesirable as it results in the premature termination of drug administration. To give the desired ther apy, the device must be retained in the uterus for the entire period planned. A device which is easily inserted and removed is also easily expelled. Conversely, a device having good retention characteristics is difficult to insert or remove without damage.
Insertion has-been facilitated in the prior art by forming a uterine-retentive shaped device from metal or plastic having an elastic memory, deforming the device by placing it in a narrow straight flexible insertion tube, guiding one end of the tube to and through the cervix, and extruding the device out of the insertion tube into the uterus where, as a result of its elastic memory, it assumes its uterine retentive shape. While this method promotes an otherwise difficult insertion, it is not effective to effect removal, as the manipulation needed to introduce an intrauterine device into an insertion" tube for removal is at least as harmful to the uterine tissues as the removal itself would be.
OBJECTS or THE INVENTION Accordingly, it is a primary object of this invention to provide an improved drug dispensing intrauterine device.
A more particular object of this invention is to provide an improved drug dispensing intrauterine device which does not pose the problems associated with removal from the uterus after completion of the therapeutic program.
Yet another object of this invention is to provide a drug-dispensing intrauterine device which delivers drugs to the uterus with increased therapeutic efficiency.
STATEMENT OF THE INVENTION To accomplish these and other objectives, the present invention provides an intrauterine device which releases a therapeutically effective flow of drug to the uterus over a defined dosage period. The device of this invention is fabricated to undergo a structural biotransformation during its period in the uterus, from an initial uterine-retentive configuration to a configuration at the completion of the defined dosage period which is not uterine-retentive and which permits the device to be facilely manually removed or to be spontaneously eliminated from the uterus.
While the invention encompasses delivery of drugs, broadly, over a wide range of time period, in a preferred embodiment, the devices of this invention are employed to release an interceptive agent for pregnancy termination locally to the uterus over a therapeutically effective defined period of time on the order of from about 8 hours to about 72 hours. At the completion of this period of time, the device has undergone biotransformation and is easily removed or spontaneously eliminated from the uterus.
DETAILED DESCRIPTION OF THE INVENTION BRIEF DESCRIPTION OF THE DRAWINGS The invention will be described with reference to the drawings wherein:
FIG. I is a cross-sectional elevational view of a uterus containing a drug-dispensing intrauterine device of this invention;
FIG. 2 is an enlarged cutaway section of the device shown in FIG. 1;
FIG. 3 is a cross-sectional elevational view of a uterus containing another embodiment of the device of this invention;
FIG. 4 is an enlarged cutaway section of the device depicted in FIG. 3;
FIG. 5 is an enlarged partially cut away elevational view of an embodiment of the device of this invention;
DEFINITION OF TERMS Devices of this invention initially upon insertion in the uterus are of a uterine-retentive configuration. The term uterine-retentive" as used in the specification and claims is defined as the property or characteristic of a-shape to not be susceptible to expulsion by the uterus, even when the uterus is undergoing uterine contraction and the like.
Devices of this invention undergo a structural biotransformation. The term structural biotransformation" as used herein is defined as a change which takes place in the structural solid frame'of an intrauterine device in response to the environment of the uterus wherein the frame innocuously disintegrates, breaks down. or collapses from an initial unit structure or entity to asecond structure, or structures, or particles, having a different form than the initial unit structure. Structural biotransformation can proceed through physical or chemical degradative processes, for example, deflation; a loss of rigor of a structual member; or dissolution or erosion of a structural member by solubilization, oxidation or reduction. enzymatic action, hydrolysis, ionization or ion exchange. Devices of this invention release drugs to the uterus. In a preferred em bodiment, they release interceptive agents. The term interceptive agents" as used herein refers to those agents or drugs which treat the tissue components of the uterus itself and/or the fertilized egg or embryo at various stages of its development to bring about or facilitate a termination of pregnancy such as by promoting expulsion or absorption of the embryo.
DETAILED DESCRIPTION OF THE DRAWINGS Referring to the drawings and particularly to FIGS. 1 and 2, in FIG. 1 a drug-releasing intrauterine device 10 is depictedlodged in uterus ll defined by walls 12 and I4 and fundus uteri I5 and terminated at cervix uteri l6. Walls 12 and 14 and fundus uteri are comprised of endometrium. a soft, tender; easily-disturbed tissue. Device comprises cross bar 17 and axial rod 19. As detailed in FIG. 2, drug dispenser 20 is attached byadhesive 21 to axial rod 19 at a position distal to cross bar 17. Drug dispenser 20 comprises a drugpermeable wall 22 surrounding a reservoir of drug carrier 24 and drug 25. Dispenser 20, as shown, passes drug by a diffusion control mechanism, that is, drug diffuses through wall 22 to be released and wall 22 is a rate release controlling material.Drug dispenser 20 is depicted in FIG. 2 with carrier 24 a liquid and with drug present in excess of its solubility limit in the liquid carrier. Such a diffusion drug dispenser is more fully described in my above-referenced copending patent applications Ser. Nos. 185,208 and 281,445, which are incorporated herein by reference. A diffusion dispenser of this type may be used to deliver a controlled flow of drug to the uterus for a prolonged period of time and is characterized by having drug present in an amount greater than its solubility limit in the liquid core and the core and wall materials selected such that the drug has a higher permeability in the core than in the wall. Such a dispenser can, if desired, give a constant (0 order time dependence) rate of drug release. A similar con struction for dispenser 20 which may also be used but is not shown employs a solid carrier as described in my copending application U.S. Ser. No. 42,786 filed June 2, 1970. and entitled Drug Delivery System, which application is also incorporated herein by reference.
Device 10; as initially inserted in the uterus, with its T shape, clearly has a uterine-retentive configuration. Device 10 typically would be inserted by placing axial rod 19 in an inserter, causing cross bar 17 to bend down and nest around the inserter as device 10 is pushed through cervix l6. Difficulty may sometimes be experienced in the removal of device 10 from the uterus in its initial form with the possibility of damage tothe endometrium. In accord with the present inven tion,- however, device 10 undergoes a structural biotransformation in response to the environment of the uterus. Cross barv l7 and center rod 19 of device 10 are fabricated'of a material, as will be set forth hereinafter, which is gradually soluble in uterine fluids and erodes slowly over a defined period of time. When bar 17 and rod 19 erode, they form innocuous products which are absorbed by or, which pass from the uterus. Dispenser 20 does not erode,;but is ofa shape which is not retentive in the uterus so that when structural biotransformation takesplace by bar 17 and rod 19 eroding, dispenser 20 is easily removed or is spontaneously discharged from-the uterus.
The material forconstructing bar 17 and rod 19 is selected to give a period of retention in the uterus prior to biotransformation which is correlated with the period of drug release. optimally, the two time periods should be similar. If biotransformation to a nonretentive shape occurs substantially before the drug in dispenser 20 is' 'exhausted, waste occurs. On the other hand, except in cases where it is desired to have an inert non-drug-releasing body present in the uterus, as isthe case with some intrauterine devices, it is generally most suitable to' discharge the remnants of device 10 from the uterus not substantially later than the end of the period ofdrug delivery so that a new device may be inserted to continue therapy.
Another variation-of the improved intrauterine devices of the presentinvention may be found in FIG. 3 taken in conjunction with FIG. 4. In FIG. 3 an intrauterine device 30 of this'invention is depicted in uterus 11 'havingkwalls 1'2- and-l4 and fundus uteri l5. Walls 12 and-14 define cervix uteri 16 as well. Uterus 11 is illustrated also'containing embryo 31 surrounded by amnion 32. Device 30 is shown in a typical uterineretentive configuration, a T, and comprises a center bar 19 having joined thereto a perpendicularly intersecting cross bar 17. As illustrated in detail in FIG. 4, Device 30 comprises an outer covering 42 surrounding an inner core 43. Covering 41 gradually releases drug to the uterus by=an erosion control mechanism, that is, particles or droplets of drug 42 are dispersed through a polymer which makes up the body of covering 41. This polym'er'is impermeable to the passage of drug and doe'snot permit the drug to escape to any appreciable extentby' diffusion; leaching, or like processes. The polymer is gradually soluble in the fluids of the uterine environme'nt'and gradually erodes, simultaneously uncovering and releasing entrapped drug 42. So long as the surface area of covering'4l remains essentially constant and the rate of erosion does too, the rate of drug release will remain essentially constant as well. A more complete description of controlled drug release through an erosion control mechanism may be found in copending United States patent applications Ser. No. 318.831 of Richard Baker and Jorge Heller filed of even date and entitled Novel Delivery Device. now abandoned. and Ser. No. 248.168 of Alan S. Miehaels. field Apr. 27. l972 and entitled Bioerodible Drug Delivery Device. which applications are incorporated herein by reference. Device 30. initiallynhas a uterineretentive configuration. It undergoes a biotransformation. for example. erosion or a loss of rigidity in the uterus. so as to transform device from an initially re tentive shape to either a non-retentive shape or to a plurality of fragments, which are nonretentive. This transformation occurs at about the time the delivery of drug 42 has been completed. in the. case of device 30, at or about the time that uterine fluid-impermeable covering 41 is eroded and the fluids contact core 43. Core 43 may be a rapidly erodible material such as poly(vinyl alcohol). gelatin or the like or a material which rapidly loses its rigor when hydrated by contact with uterine fluids. Since covering 41 .is liquid impermeable. no transformation of core 43 occurs until it has eroded. As soon as it has eroded. biotransformation rapidly follows. While device 30 of course is not so lim ited. in a preferred. application it can release to the uterus a pregnancy interrupting drug or interceptive agent so as tobring about the expulsionor reabsorption of fertilized egg or embryo 31 by the uterus. This appli cation of the device of the invention, as well as other applications. will be dealt with below.
Turning to FIG. 5, another representative device in accord with this invention, device 50., is illustrated. Device as shown is in a uterine-retentive shield or sca rab-like form. Device 50 comprises a plurality of flexible ribs 51 joined together with a semi-rigid web 52 which gives .thedevice itsform. Attached in the center of device 50 is osmotic drug dispenser 54. Osmotic dispenser 54 is made up ofa wall 55ofa material permea ble to uterine fluids. Wall 55 forms a compartment in which drug SSis contained. Drug 56' either alone or if required by means of admixture with a suitably osmotically effective compound causes uterine fluids to be drawn through wall .55. This flow of liquid causes drug 56 to be carried out of dispenser 54 via opening 57 and thus released to the uterus-Such drug dispensing de vices are described in more detail in copending US. Pat. application Ser. No. 259.469 of Theeuwes and Higuchi. entitled Dispensing Device. filed June 5, 1972, now US. Pat. No. 3.845.770. issued Nov. 5, 1974, which is herein incorporated by reference. When device 50 is placed in a uterus. drug 56 is released at a continuous rate over a defined prolonged period of time. The uterine environment functions to cause a biotransformation of device 50 so that. after a defined period. in accord with this invention, the device takes on a non-retentive form. In the case shown, this transfor mation takes the form of erosion of rigid web 52 so that only a flexible network of ribs 51 remain. This network is not strong enough to avoid collapsing and assuming a non-retentive form which may be easily and unobtrusively removed or expelled from the uterus.
Turning to FIG. 6, yet'another representive variation of the invention is set forth device 60. As detailed in the enlarged cross section of device 60 shown in FIG. 7. device 60 comprises a body of erodible impermeable polymer 71 having particles of drug 72 dispersed throughout.
When device 60-is initially inserted into a uterineenvironment. it has a retentive configuration. Polymer,7l. which might well be. the polymers described as suitable for coating 41 in FIGS. 3 and 4. gradually erodes inresponse to the uterine environment. As it does so. drug 72 is released. The products of, erosion are absorbable molecular particles. Eventually the biotransformation is completed and the device has wholly dissolved and been absorbed.
Suitable Shapes The present invention concerns gene'rally'the concept of an intrauterine device which undergoes biotransformation inuse from a uterineretentive shape to a non-retentive shape. The retentive and non-retentive shapes set forth in the figures are only representative and are not intended aslimitations on the invention. Any'retentive configuration may be used. Rather than to attempt to catalog the myriad retentive shapes known in the art. including bows. hearts.loops. comets.
spirals. and the like. the text IntrauterineContraceptive Devices (A Compilation of Devices) written by Shubeck et al and published in l97l by Massachusetts Institute of Technology which. as the title implies. does so. is herein incorporated by reference as illustrated suitable retentive devices. Non-retentive shapes can range from simple rods. shaped products and small fragments. to molecularly-sized particles. all of which are not retained by the uterus. i
Materials of Construction A variety of materials are employed in the devices of the invention. They may be classified as follows. First. the devices all contain at least one material which re' acts with the environment of the uterus to effect structural biotransformation. Second. the devices contain at' least one material which plays a part in releasing drugs from the device at a controlled rate over a defined period of time. Depending upon the mode of drug release. this can be the same material employed to effect the structural biotransformation. Third. in many cases the devices contain non-erodible non release rate control' ling materials as structural members and the like. Fi nally. the devices all contain and release a suitable active agent (drug). l i Turning first to biotran sformable materials: Biotrans formable materials suitable for fabricating the intrauterine devices are the materials that are non toxic and non-irritating to the endometrium of the uterus, and which upon biotransformatiorr produce end products that are also non-toxic. non-irritating and-safely and easily eliminated from the body. As already 'noted. biotransformation can proceed by a number of mecha' nisms. for example:
a. by a physical change such as deflation or a loss of temper; I b. by a loss of structural integrity such as a loss of rigor or rigidity of a component; or I I l c. by bioerosion of a structural member. said bioe'rosion being defined to include all mechanisms by which a unit structure disintegrates or breaks down from a unit structure orentity. to yield products of a molecular size which are thereafter absorbed by or passed from the uterus. Typical mechanisms include enzymatic action. oxidation or reduction. bydrolysis, ion exchange. dissolution by solubilization. and emulsion or micelle formation.
When biotransformation proceeds by deflation, suitable materials of construction include the distendable film-forming elastomers such as the natural and synthetic rubbers, butadiene-styrene block copolymers and the like which can form a deflata'ble structure. The deflation may proceed gradually as the inflating gas passes through the material or stepwise as a seal erodes to release the inflating gas.
When biotransformation proceeds through a loss of rigor or rigidity, a relatively rigid member becomes flexible and non-supportive. Such a biotransformation often proceeds through hydration of the relatively rigid member. Materials suitable for such a biotransformation include oriented poly(vinyl alcohol). dried gelatin, high hydrocarbon content poly(carboxylic acids) and hydrophilic lower alkyl acrylates and methacrylates such as hydroxyethylmethacrylate (Hyrlrun These materials are representative of flexibilizing' materials, that is materials which are initially rigid but which when exposed to the uterine environment gradually absorb uterine fluid, swell and lose their initial rigidity.
Biotransformation most commonly proceeds through bioerosion of a structural member formed of a bioerodible material. Exemplary materials to achieve such a mechanism include both natural and synthetic bioerodible materials such as (a) structural proteins and hydrocolloids of animal origin; (b) polysaccharides and other hydrocolloids of plant origin; and (c) synthetic polymers. Some of these matrix materials are suitable in their native form but others, particularly hydrocolloids, require insolubilization either by chemical modification, or physical modification, such as orientation, radiation cross-linking, etc. Exemplary of the structural proteins are: native and modified collagens, muscle proteins, elastin, keratin, resilin, fibrin, etc. Exemplary of polysaccharides and plant hydrocolloids are: algin, pectin, carrageenin, chitin, chondroitin sulfate, Agaragar, Guar, locust bean gum, gum arabic, gum Karaya, tragacanth, gum Ghatti, starch. oxystarch, starch phosphate, carboxymethyl starch, sulfaethyl starch, amino ethyl starch, amido ethyl starch, starch esters such as starch malcate, succinate, benzoate and acetate, and mixtures of starch and gelatin; cellulose and its derivatives such as modified cellulosics, such as partially by droxyethylated cotton obtained by the treatment of cotton withethylene oxide or partially carboxymethylated cotton obtained by the treatment of cotton with caustic and choroacetic acid. Exemplary of synthetic polymers are: poly(vinyl alcohol), poly(ethylene oxide), poly(acrylamide). poly (vinyl pyrrolidone), poly(ethyleneimine), poly(vinyl imidazole), poly(phosphate), synthetic poly(peptides), poly(vinyl alkyl ether), poly(acryl-and poly-methacrylamides), and copolymers of acrylamide and methacrylamide with up to 40% by weight of N-methylene bisacrylamide or N,N- dimethylol urea; poly(alkyl aldehydes), water soluble hydrophilic polymers of uncross-linked hydroxyalkyl acrylates and metacrylates, poly(alkylene carbonates), and the like. The list is illustrative.
Without intent to limit the scope of the present invention. the following materials are most useful as biotransformable materials in the intrauterine drug delivery devices, when the biotransformation proceeds through the preferred erosion mechanism of this invention.
l. Cross-Linked Gelatin Gelatin is obtained by the selective hydrolysis of collagen by means well known to those skilled in the art and comprises a complex mixture of water soluble proteins of high molecular weight. As used herein, the term cross-linked gelatin means the reaction product of gelatin or a gelatin derivative with a cross-linking agent reactive with either the hydroxyl, carboxyl or amino functional groups of the gelatin molecule and substantially unreactive with the peptide linkage of the gelatin molecule, the product of reaction having an average molecular weight of from 2,000 to 50,000 between cross-links, although higher values can be employed. Such a product is degradable in the environment of the uterus over a prolonged period of time.
Cross-linked gelatin materials are well inown to those skilled in the art and can be prepared by reacting the cross-linking agent with gelatin under suitable reaction conditions. The degree to which the gelatin is crosslinked is dependent upon the processing conditions employed to carry out the reaction and markedly affects its characteristics with regard to the time required in order for the material to biodegrade in the eye. The rate and, therefore, the degree of cross-linking of the gelatin is primarily determined by: (l) the effective concentration of reactive groups present; (2) reaction time; (3) temperature at which the reaction is carried out; and (4) pH of the reaction environment. The choice of the particular conditions will of course depend on the properties desired for the end product as hereinafter discussed.
Exemplary of suitable cross-linking agents are: aldehydes, such as monoaldehydes, e.g., C ,--C, alkanones, e.g., acetaldehyde, formaldehyde, acrolein, crotonaldehyde, Z-hydroxy adipaldehyde; dialdehydes. such as starch dialdehyde. paraldehyde, furfural and aldehyde bisulfite addition compounds such as formaldehyde bisulfite; aldehyde sugars, e.g., glucose, lactose, maltose, and the like; ketones such as acetone; methylolated compounds such as dimethylol urea. trimethylol melamine; blocked" methylolated compounds such as tetra(methoxymethyl) urea, melamine; and other reagents such as C C disubstituted carbodiimides; epoxides such as epichlorohydrin, Eponite lOO (Shell); para-benzene quinone; dicarboxylic acids, e.g., oxalic acid, disulfonic acids, e.g., m-benzene disulfonic acid; ions of polyvalent metals, e.g., chromium, iron, aluminum, zinc, copper; amines such as hexamethylene tetramine; and aqueous peroxydisulfate. See H. L. Needles, J. Polymer Science, Part A-l, 5 (l) l (1967).
Still another suitable method for cross-linking gelatin is that using irradiation; see for example Y. Tomoda and M. Tsuda, J. Poly. Sci., 54, 321 (l96l The reactive groups present in gelatin, i.e., hydroxyl, carboxyl and amino functions are present per 100 grams of high quality gelatin in the following approximate amounts: 100, and 50 meq of each of these groups, respectively. The number of reactive sites do not vary appreciably from one gelatin to another, i.e., Type A or B gelatins, unless major hydrolytic breakdown has occurred. These quantities may serve as a general guide in determining the amount of crosslinking agent to be used. For example, using formaldehyde as the cross-linking agent, concentrations thereof from 0.0l7o to 50% by weight, based on the weight of the gelatin in combination with reaction times of 0.l
hours to days and at temperatures of from 40C to C will yield suitable products, the exact combination of concentration, temperature and time depending on the desired dissolution rate. General information on cross-linked gelatin can be found in Advances in Protein Chemistry, Vol. V], Academic Press, 1951, Cross Linkages in Protein Chemistry. John Bjorksten.
2. Polyesters Polyesters of the general formula:
and mixtures thereof. wherein:
W is a radical of the formula CH or and;
Y has a value such that the molecular weight of the polymer is from about 4.000 to 100,000 may also be used.
These polymers are polymerization condensation products of monobasic hydroxy acids of the formula:
"(OH)COOH wherein n has a value of 1 or 2, especially lactic acid and glycolic acid. Also included are copolymers derived from mixtures of these acids. The preparation of polymers of formula 1 per se, forms no part of the present invention. Several procedures are available and reportedby Filachione. et a1, Industrial and Engineering C/IUHIISII'), Vol. 36, No. 3, pp. 223-228, (Mar. 1944) Tsuruta, et al., Macromol. Chem., Vol. 75, pp. 211-214 (1964), and in US. Pat. Nos. 2.703.316; 2,668,162; 3,297,033; and 2,676,945.
3. Cross-Linked Anionic Polyelectrolytes in his copending application Ser. No. 248,168 filed on Apr. 27, 1972, entitled Bioerodible Drug Delivery De vice, which application is herein expressly incorporated by reference.
4. Polyacids Polyacids characterized as being hydrophobic when unionized and as having a specified proportion of carboxylic hydrogens may also be employed as erodible biotransformable materials.
6. Suitable poly(carboxylic acids) are the hydrophobic polyacids which are represented by the general formula:
wherein: the R's are organic radicals independently selected to provide, on average, from 8 to 22 total carbon atoms for each carboxylic hydrogen. Variations of this ratio within this range can vary the erosion rates of these polymeric acids. Organic radicals represented by R, R R" may be selected from hydrocarbon radicals and hetero-atom containing radicals.
A preferred group of materials from which the bio transformable materials may be selected comprise hydrophobic polymers of an acid selected from acrylic acid, lower alkyl acrylic acids of from 4 to 6 carbon atoms per monomeric unit, and maleie acid either alone or copolymerized with up to about 2 moles per mole of acid of a copolymerizable olefinically unsatu rated group such as ethylene or lower 1 to 4 carbon) alkyl vinyl ethers wherein from about 20 to 90% of the acid groups have been esterified with an alkanol of from 1 to about 10 carbon atoms and wherein the ratio of total carbon atoms to acidic carboxylic hydrogens is in the range of from about 9:1 to about 20:1.
More specifically, good results are obtained with poly(carboxylic acids) which comprise the hydrophobic partially esterified copolymers of acrylic acid. methacrylic acid or maleic acid with from 0.2 to 1.5 moles, per mole of acid of ethylene or lower 1-4 carbon) alkyl vinyl ether having from about 35 to about of their total carboxylic groups esterified with lower alkanolof from about 3 to about 10 carbon atoms, said copolymers having a carbon to acidic carboxylic hydrogen ratio of from about 10:1 to about 15:1. These polyacids. their preparation and application to drug delivery devices are disclosed in substantial detail in commonly assigned copending application Ser. No. 318.831 of Jorge Heller and Richard Baker, entitled Novel Delivery Device, filed of even date with this present application and having Docket No. ARC 367. This application is expressly incorporated herein by reference. The foregoing materials are intended to be illustrative, others may be employed as biotransformable materials if desired.
Turning now to the materials which effect a controlled release of drugs from the devices of the invention, first the mechanisms of drug release should be considered. Any mechanism which will bring about a controlled release of drug and which may be adapted to a uterine-insertive size may be used. Three drug release mechanisms, described with reference to the Drawings, are eminently suited for employment in the present invention. These drug release mechanisms are:
1. Diffusion control release wherein drug is released by passing at a controlled rate through a membrane having a limited permeability to the drug;
2. Erosion control release wherein drug is released by gradual erosion of an entrapping encompassing matrix; and
3. Osmotic pumping release wherein drug is released by being gradually forced under osmotic pressure from a container.
When diffusion control release is employed. the device of the invention will include a release-ratecontrolling membrane through which the drug will pass by diffusion and optionally a liquid or solid core through which the drug is permeable at a higher rate than the rate of release through the rate-controlling membrane.
The materials suitable for fabricating the rate controlling membranes are generally those materials capable of forming walls, with or without pores. through which the drug can pass at a controlled rate by the process of diffusion. 9
Exemplary naturally occurring or synthetic materials suitable for fabricating a permeationcontrol wall are drug rate release controlling materials such as poly(methylmethracrylate), poly(butylmethacrylate), plasticized or unplasticizcd poly(vinylchloride), plasticized nylon, plasticized soft nylon, plasticized poly- (ethylene terephthalate), natural rubber, poly(isoprene), poly(isobutylene poly(butadiene poly(ethylene), poly(tetrafluoroethylene), poly(vinylidene chloride), poly(acrylonitrile), cross-linked poly (vinylpyrrolidone); poly(trifluorochlorethylene), poly (4 -isopropylidene diphenylene carbonate), and the like. Also, by way of non-limiting example, copolymers such as'ethylenevinylacetate, vinylidene chloride acrylonitrile, vinyl chloride diethyl fumarate and the like. Examples of other materials include silicone rubbers, especially the medical grade poly(dimethylsiloxanes), andsiliconecarbonate copolymers; hydrophilic polymers such as the hydrophilic hydrogels of esters of acrylic and methacrylic acid as described in US. Pat. Nos. 2,976,576 and 3,220,960 and Belgian Pat. No. 701,8l3, modified insoluble collagen, cross-linked poly(vinylalcohol), cross-linked partially hydrolyzed poly( vinylacetate), and surface treated silicone rubbers as described in US. Pat. No. 3,350,216. Other polymeric membranes that are biologically compatible and do not adversely affect the drugs can be used. 2
Materials suitable for use as the optional carriers in diffusion control systems include liquid or solid materials of natural or synthetic origin having a permeability to drug which is higher than the permeability of the rate controlling membranes.
Representative drug permeable liquid carriers include ethylene glycol, diethylene glycol, ethylene glycol monomethyl ether, mixed binary liquid systems such as ethyl alcoholzwater, fats and oils of plant, animal and marine origin, liquid fatty acids such as caproic acid, silicone oil, medical oil, and sterile water or saline.
Suitable drug-permeable solid carriers include solids having a higher drug permeability than the release rate controlling membranes, for example, the dimethylsilicon es, silicone carbonate polymers, 'hydrophilic hydrogels of esters of acrylic and methacrylic acid, and the like.
When an erosion control release mechanism is employed, particles, including grains or droplets, of drug are dispersed through a body of drugimpermeable erodible polymer. Suitable polymers for this purpose include essentially hydrophobic impermeable filmforming polymers. Two classes of polymers which are quite effective are the polyesters and hydrophobic polyacids described above as suitable for use as biotransformable materials. The polyacids are preferred materials for effecting erosion control of drug release.
When osmotic delivery is the mode of drugrelease, a wall of material selectively permeable to uterine fluids is employed; Typical materials for forming an osmotic wall include cellulose acetate, agar acetate, and cellulose acetate derivatives. hydroxylated ethylenevinyl acetate and derivatives of poly(styrene). With osmotic delivery, itis often required to employ an osmotically effective solute to draw uterine fluid through the wallinto the device. Typical solutes are sodium chloride. magnesium chloride and sulfate, potassium sulfate and the like. A fuller description of materials for and the operation of an osmotic delivery device are given in incorporated application Ser. No. 259,469 of Theeuwes and Higuchi.
The third major group of materials for use in the devices of this invention comprise inert structural materials. These components are optionally employed. These materials include any biocompatible material and may range from gold and stainless steel to poly(ethylene), poly(urathane), fiber glass, nylon, poly(isoprene) and cardboard.
The final materials of construction are drugs, which are incorporated in and released from the biotransformable intrauterine devices. The term drug broadly includes physiologically or pharmacologically active substances for producing effects in mammals, including humans and primates; avians, sport or farm animals such as horses, dogs, cats, cattle, sheep and the like; or laboratory animals such as mice, monkeys, rats, guinea pigs and the like.
While the devices of this invention operate with special effectiveness with drugs which have a localized effeet in or upon the uterus, systemically active drugs which act at a point remote from the uterus may be administered as well and are included within the term drugs. Thus, drugs that can be administered by the intrauterine device of the invention include, without limitation: drugs acting .on the central nervous system such as, hypnotics and sedatives such as pentobarbital sodium, phenobarbital, secobarbital, thiopental, etc.; heteroc'yclic hypnotics such as dioxopiperidines, and glutarimides; hypnotics and sedatives such as amides and ureas exemplified by diethylisovaleramide and a-bromoisovaleryl urea and the like; hypnotics and sedative alcohols such as carbomal, naphthoxyethanol, methylparaphenol and the like; and hypnotic and sedative urethans, disulfanes and the like; psychic energizers such as isocarboxazid, nialamide, phenelzine, imipramine, tranylcypromine, pargylene and the like; tranquilizers such as chloropromazine, promazine, fluphenazine .reserpine, 'deserpidine, meprobamate, benzodiazepines such as chlordiazepoxide and the like; anticonvulsants such as primidone, diphenylhydantoin, ethotoin, pheneturide, ethosuximide and the like; muscle relaxants' and' anti-parkinson agents such as mephenesin, methocarbo'mal, trihexylphenidyl, biperiden, lcvo-dopa, also known as L-dopa and L-B-3-4-dihydroxyphcnylalanine, and the like; analgesics such as morphine, codeine, 'meperidine, nalorphine and the like; anti-pyretics and anti-inflammatory'agents such as aspirin, salicylamide, sodium salicylamide and the like; local anesthetics suchas procaine, lidocaine, naepaine, piperocaine, tetracainc, di bucaine and the like; antispasmodics and anti-ulcer agents such as atropine, scopolamine, methscopolamine oxyphenonium, papaverine; anti-microbialssuch as penicillin, tetracycline, oxytetracycline, chlorotetracycline, chloramphenicol, sulfonarnides and the like; anti-malarials such as 4- aminoq'u'inolines," -8-aminoquinolines and pyrimethamine; hormonal agents such as prednisolone, cortisone. cortisol and triamcinolone'. sympathomimetic drugssueh as epinephrine. amphetamine. ephedrine. norephineprine and the like; cardiovascular drugs. for example. procainamide. amyl nitrate. nitroglycerin. dipyridamole. sodium nitrate. mannitol nitrate and the like; diuretics, for example. ehlorothiazide. flumethiazide and the like; antiparasitic agents such as bephenium hydroxynaphthoate and dichlorophen. dapsone and the like; neoplastic agents such as mechlorethamine. uracil mustard. S-fluorouracil. (1- thioguanine. procarbazine and the like; hypoglycemic drugs such as insulins. protamine zinc insulin suspen sion. globin zine insulin. isophane insulin suspension. and other art known extended insulin suspensions. sulfonylureas such as tolbutamide. acetohexamide. tolazamide. and chlorpropamide. the biguanides and the like; nutritional agents such as vitamins. essential amino acids. essential fats and the like; and other physiologically or pharmacologically active agents.
The devices of this invention deliver with special effeciency drugs for locally treating uterine or vaginal disorders. such as endometritus, vaginitis and irregular vaginal bleeding. Such drugs include.for example. antibiotics. hormones and the like. The devices also function with special efficiency delivering progestational substances that have anti-fertility properties and estrogenic substances that have anti-fertility properties. These substances can be of natural or synthetic origin. They generally possess a cyclopentanophenanthrene nucleus. The term progestational substance as used herein embraces progestogen which term is used in pharmaceutically acceptable steriod art to generically describe steroids possessing progestational activity. and the former also includes progestins, a term widely used for synthetic steroids that have progestational effects. The active anti-fertility progestational agents that can be used to produce the desired effects in mammals. including humans, and primates include without limitations: pregn-4ene3.20-dione. also known as progesterone; l9-nor-pregn-4-ene-3.ZO-dione; l7-hydroxyl9-nor-l 7oz-pregn-5( l )-3n3-20-yn-3-one;
dl-l lB-ethyll 7-ethinyl l 7- -ethinyl-l 7-B-hydroxygon- 4-ene-3-one; l7a-ethinyl-l 7-hydroxy-5( l0)-estren- 3-one; l7a-ethinyll 9norestosterone; 6-chlorol 7- hydroxypregna-4.o-diene 3.ZO-dione; l.7,B-hydroxy-6ozmethyl-1 7-( l-propynyl )androst-4 ene-3one; 9,8. l O- -pregna-4.6-diene-3.20-dione; l 7-hydroxy- 1 7ozpregn-4-en-20-yne3-one; 19-nor- 1 7a-pregn-4-3n-20- yen-33.1 7-dial; l7-hydroxy-pregn-4-ene-3.20-dione; l7a-hydroxy-progesterone; l7-hydroxy-6a-methylpregn-4-ene-3.20-dione; mixtures thereof. and the like.
The estrogenic anti-fertility agents useful herein also include the compounds known as estrogens and the metabolic products thereof that possess anti-fertility properties or that are converted to active anti-fertility. agents in the uterine environment. Exemplary estrogenic compounds include B-estradiol. B-estradiol 3- benzoate. l7-fl-cyclopentanepropionate estradiol. 1.3,- 4( lO)-estratriene-3.l7fi-diol dipropionate; estral.3.5( l0)-triene-3.l7-B-diol valerate, estrone. ethinyl estradiol. l7 -ethinyl estradiol-3 methyl ether. 17- ethinyl estradiol3-cyclopentoether. estriol. mixtures thereof, and the like. Y
In a most preferred application. devices of this inven tion contain and deliver intereeptive agents for pregnancy termination. Included within the group entitled intereeptive agents are all drugs which cause=the premature expulsion or absorption of a fetus by the uterus. lnterceptive agents include materials like sodium chloride and fattyacids which induce expulsion of a fetus by causing uterine tonicity and pH imbalance respectively. Other intereeptive agents include drugs for inducing uterine contractions such as the oxytocie agents. for example. oxytocin. ergot alkaloids such as ergonovine and methylergonomine. quinine. quinidine. histamine. sparteine. and the prostaglandins. The E and F series prostaglandins. especially prostaglandins E E and F are very suitably delivered by devices of this invention to interrupt pregnancy. A full description of useful prostaglandins and their application in intrauterine devices is given in the eopending U.S. patent application Ser. No. 318.890 filed of even date with this application by Peter Ramwell. entitled Intrauterine Drug Delivery Device. which application is herein incorporated by reference.
The amount of drug present in the device is depen dent upon dosage requirements and the length of time the device is to be in place in the uterus and may vary from a single dose of a very potent drug. which may be as little as a few micrograms. to an amount sufficient for several hundred or even a thousand doses of a less potent drug. such as up to several grams (for example. 5 grams). The devices of-this invention are intended to release drugs locally to the uterus over defined prolonged periods of time. that is. for periods of from about 3 hours to 30 days or longer. With the progesta tional and estrogenic substances. delivery times of from about 1 day to 30 days or a year or more are preferred. with dosage rates of from about 10 to 200mg per day being preferred. thus making it desirable to incorporate at least from about 10 mg to about 6 grams of these substances in a delivery device. When intereeptive agents are administered for pregnancy terminating purposes. it is preferred to administer the agents over a pe riod of from about 4 hours to about 24 hours. When prostaglandins are the intereeptive agents. they delivered at a rate of about ll microgram/minute to about 25 micrograms/minute. Thus. considering thedosage rate and period. the loading of prostaglandins as interceptive agents in the present devices may suitably vary from about 250 micrograms up to as much as about milligrams. Preferablythe loading of prostag ndin would be between about 1 milligram and abol 100 milligrams. Similar drug loadings could be determined for the many other drugs suitably delivered by these devices based on the dosage period and rate desired.
The intrauterine devices gradually undergo biotransformation in the uterus and release their drug. The rate of biotransformation will depend in part on the recipients temperature (generally from about 35to 43C). uterine pH (generally pH 7-8) and the amount of uterine fluids presently available to Contact the device.
The rate of biotransformation and drug release of materials employed in the invention can be determined experimentally in vitro by testing them under simulated environmental conditions. For example. the rate of biotransformation of a material in uterine fluids may be measured by placing a small weighed sample of the material in physiological saline solution a solution of pH about 7.4 (simulated uterine fluids) at body temperature (37C), agitating for a timed interval. and periodically measuring the amount of material eroded into the solution. Similarly. a rate of biotransformation through softening of a material may be derived in vitro by placing the material in simulated uterine fluid and measuring its flexibility. To accurately predict in vivo results. it is necessary to multiply the in vitro rates by an experimentally determined constant which takes into account differences in stirring rate and fluid volumes between the living body and the in vitro test apparatus. This constant may be derived in the cases just set forth by placing a plurality of small weighted samples of material in a plurality of uteri and sequentially. over a period of time, removing and weighing or flex-testing the samples. The rates thus determined, divided by the rates observed in vitro with the same material. equal the necessary constant.
For a more complete understanding of the nature of this invention. reference should be made to the following examples which are given merely as further illustrations of the invention, and are not to be construed in a limiting sense.
EXAMPLE I A biotransformable intrauterine device which achieves biotransformation through erosion is prepared.
I. An erodible hydrophobic polycarboxylic acid is prepared as follows:
l2.6 grams (0.10 equivalents) of ethylene-maleic anhydride copolymer (Monsanto EMA. Grade 31 is stirred with 0.04 moles of n-pentyl alcohol at l()l C for 7 hours. The solution is cooled to room temperature and methylene chloride is gradually added to the cloud point. Then more methylene chloride is added to precipitate the product (total vol. 3!). The precipitate is thoroughly leached with the methylene chloride. The solvent is decanted and the product dissolved in 75 ml warm acetone. Methylene chloride is added to the cloud point. Then more methylene chloride is added to precipitate the product (total vol. 2!). The precipitate is then thoroughly leached with the methylene chloride. The solvent is decanted and the product dissolved in 75 ml acetone. The solution is transferred to a poly(propylene) container and the solvent is removed under vacuum at 50C to yield the polymer product. The infrared spectrum of the polymer shows broad bands at 1,680 and 1,780cm. indicative of ester carboxyl. Titration with base shows that the pentyl half ester of the maleic acid copolymer has been formed, and thus the ratio of total carbons to ionizable hydrogens on average is 1 1:1.
2 A B-estradiol-containing material is prepared as follows: 4
5.4 grams of the half esterpolymer of part A is dissolved in IS ml of acetone. with stirring at C. 0.6 grams of crystalline B-estradiol are dispersed in the solution with stirring. The resulting viscous dis persion is cast in a polyethylene mold into a rod of wet diameter of about 2.0 mm. The cast rod is allowed to dry thoroughly to yield a l mm diameter dry rod. The resulting rod is removed ,from the die. It weighs about mg percm and'contains about 3 mg of B-estradiol per cm.v 1
3. An intrauterine device is prepared and used as follows: v
A 2 cm long portion of the rod of part B is affixed with epoxy glue to a 2 cm long piece of nonerodible poly(ethylene) to form a T shaped device.
The cross bar is erodible. the center bar is nonerodible. The center bar of this device is inserted in a straight flexible plastic inserter. The cross bar arms are flexible and bend down so that the device is easily inserted into a humana uterus. The T shape is a uterineretentive configuration.
The bar of poly(carboxylic acid) is hydrophobic and impermeable to the absorption of uterine fluids or to the passage of drug. The bar of poly(carboxylic acid) gradually erodes and as it does so releases an average of about 30 micrograms of B-estradiol per hour for about 200 hours. After about [-200 hours. the erosion of the cross bar has progressed to a point that the cross bar breaks loose from the center bar. The center bar alone is not a uterine retentive form and is expelled from the uterus during or before the users next menstrual period.
EXAMPLES ll AND lll Example Alkanol 2 n-hutanol 3 n-hexanol The ratio of total ca'rbon atoms to ionizable carboxylic hydrogens in each of the resulting half esters is as follows:
Example Ratio:
Carbons lonizahle Hydrogens The material of Example ll erodes about twice as fast asthe material of Example I, while the material of Example lll erodes about one-half as fast as the material of Example l. A 4 cm piece of the material of Example ll is shaped into a 7' configuration which an 8 cm piece of the material of Example III is bent into an S shaped loop. Both shapes prove retentive when inserted into a human uterus. The first erodes to a series of small fragments over a period of about hours, releasing drug at an average rate of about micrograms/hour. The latter requires about 400 hours to erode. At the end of the erosion, the deviceshavebiotransformed to a nonretentive configuration.
EXAMPLE IV A biotransformable drug delivering intrauterine device having a drug release rate controlling wall permeable to the passage of drug and surrounding a reservoir comprised of a drug and a liquid core for releasing progesterone is manufactured as follows: a liquid dispersion drug carrier is prepared by intimately contacting and blending in a rotating mill 25% by weight of progesterone and l07z by weight of barium sulfate with a 'mixture comprising 3 partsby weight of Dow-Corning 382 elastomer resin. low molecular weight prepolymer liquid silicone and 1 part by weight of Dow-Corning 360 medical fluid silicone oil. The liquid dispersion is permeable to the drug and the drug is sparingly soluble therein. Next. the liquid dispersion is injected into a 2 cm length of ethylene vinyl acetate copolymcr tubing comprised of 9% by weight of vinyl acetate and having an inside diameter of 0.075 inches and an outside diameter of 0.1 10 inches. The ends of the tubing are heat sealed.
This 2 cm long tube is not a uterus-retentive configuration. The tube is fabricated into a retentive T shape in the following manner:
First, an erodible polyvalent metal ion cross-linked polyelectrolyte is prepared. Seventy grams of sodium alginate (Keltone, Kelco Co., KT-9529-2l is dissolved in 3.000 ml of distilled water to yield a slightly viscous solution. in a separate preparation, 100 grams of zinc chloride is dissolved in 4,000 ml of distilled water and the pH is adjusted to 3 with concentrated hydrochloric acid. The zinc chloride solution is transferred into a high speed blender. To this solution is added the sodium alginate solution. The mixture is stirred and allowed to stand overnight. The precipitate is then washed continuously with distilled water to a negative silver chloride test. The aqueous suspension of the sodium chloride-free zine alginate is isolated by lyophilization and vacuum-dried at 40C overnight. Into a blender containing 1.000 ml of 1.2% ammonium hydroxide solution is added 50 grams of zinc alginate previously prepared. Agitation is continued until the complete dissolution of the zinc alginate results. The resulting viscous dispersion is drawn on a glass plate with a wet thickness of ca. 200 mils. The cast plate is allowed to dry thoroughly. The resulting film is about 60 mils thick. It is removed from the plate and is cut into 0.5 cm wide strips. A 2 cm long strip of the alginate material is attached to the heat sealed tube previously pre pared with adhesive to yield a uterine-retentive T configuration. When the device is placed in a uterus, progesterone is released through the ethylene vinyl acetate tube by diffusion at a rate of about -30 micrograms per day. This release continues at this rate for a pro longed period of time. The metal ion cross-linked polyelectrolyte cross bar is gradually eroding in the uterus by a process of metal ion exchange. Monovalent metal ions from uterine fluids gradually displace the cross linking polyvalent ions resulting in solubilization of the polyelectrolyte. After about -40 days enough of the polyelectrolyte has solubilized to render the cross bar so flexible that it no longer functions to retain the device in the uterus. The device is then non-retentive and is expelled by the uterus.
EXAMPLES v vn Three biotransformable intrauterine devices adapted to release interceptive agents to terminate pregnancy.
are prepared as follows:
To three 10 gram portions of the nbutanol half ester material of Example II are added respectively: 1.0 gram of the prostaglandin known as PGF and 0.2 and 0.4 grams of PGE Each of these mixtures is dissolved in acetone. A multi-armed, T shaped intrauterine device, made with a nonbioerodible flexible polyethylene center bar and cross arms of the erodible pentyl half ester of Example I has the lower end of its center bar repeatedly dipped into the first of these solutions and dried. 100 mg of ester and prostaglandin is deposited. Second and third multi-armed T debices are dipped into the second and third solution. mg of each of these polymer and prostaglandin mixtures are deposited. It would be pos sible. of course, to deposit more, said 500 mg. or less, say 60 mg, of the mixtures.
The three devices are gently inserted into uteri of three first trimester pregnant women. The devices release respectively:
10 micrograms/minute of PGE 2 micrograms/minute of PGE and 4 micrograms/minute of PGE all for periods of about 24 hours. After another 24 48 hours. the erodible cross arms begin to drop off and the devices are expelled.
These releases of prostaglandins are sufficient to cause uterine contractions and are suitable for effect ing therapeutic pregnancy termination. Varying the concentration of prostaglandin from about 1 to about 20% basis polymer would give delivery rates of from about 1 microgram/minute to about 20 microgram/minute.
EXAMPLE IX An aqueous solution 20% of polyvinyl alcohol is prepared. This solution is formed into an oriented 30 gauge fiber suitable spinnerette and dried and drawn. A large number of these fibers are bundled together and placed in a heated die. There they are presented at 800 psi and 250C for 4 minutes to yield a 0.15 inch diameter rod of oriented polyvinyl alcohol. This rod, while deformable and shapable. is relatively rigid. A 7V2 inch length of this material is bent into a mold loopshaped in accordance with FIG. 7. Heat is applied and the rod assumes the molds uterine -retentive shape.
To the small end of this loop device is attached an osmotic drug dispenser. This dispenser consists of a 1 cc container constructed of the semi-permeable material, cellulose acetate. Located within the container is a solution of oxytocin and 0.5 gram of magnesium chloride. There is a single opening in the container. a 0.0l cm diameter hole. When such a dispenser is placed in an aqueous environment, it absorbs water and forces oxytocincontaining solution out of the 0.01 cm hole. The rate of pumping is substantially constant. The rate of oxytocin delivery tends to decrease with time as the inflowing water causes dilution. When such a dispenser is placed in a human uterus, an amount of oxytocin sufficient to induce uterin contractions is delivered for about 18-24 hours. The dispenser is retained in the uterus by the uterineretentive loop of polyvinyl alcohol to which it is affixed. At about the end of this defined period of drug administration, or within about 6 hours after the end of the drug administration, the oriented polyvinyl alcohol loop has absorbed enough water to loose its rigidity and, hence, its uterine retentive characteristics. The device may then be easily removed or may be spontaneously expelled from the uterus.
I claim as my invention:
1. A drug dispensing intrauterine device, shaped and adapted for insertion into the uterine cavity, with the device comprising in combination:
a. a drug b. a delivery means adapted for insertion into the uterine cavity and for dispensing a therapeutically effective amount of drug to the uterine cavity over adefined period of time, and
c. retention means for retaining the delivery means within the uterine cavity throughout the defined period of drug dispensing time. said retention means having an initial unit structural configuration shaped and adapted for insertion-and positioning in the uterine cavity including means for undergoing biotranformation in the uterine cavity to a different and non-uterine retentive configuration and shaped whereby at the completion of said defined period of drug dispensing time. said drug dispensing device is facilely removed or spontaneously eliminated from the uterine cavity.
-2. The device in accordance with claim 1 wherein said biotransformation comprises erosion.
. 3. A T-shaped drug dispensing intrauterine device comprising-in combination:
1a. A crossbar comprising the ,pentanol half ester of a ethylene maleic anhydride copolymer having B-estradiol dispersed therethrough, and b..depending from and affixed to the central portion of said crossbar a center bar of non-erodible polyethylene, said device initially beingof size suitable for insertion into the uterus and of a uterine retentive shape, said crossbar eroding in response to the environment of the uterus to gradually release drug at a controlled rate over a prolonged period of time and to vbiotransform the device into a non-uterineretentive shape.
4. An intrauterine device for dispensing an interceptive agent, said device shaped and adapted for insertion into'the uterine cavity comprising in combination:
an interceptive agent,
b.:delivery means containing interceptive agent for supplying a therapeutically effective amount of said interceptive agent to said uterine cavity over a defined period of time,
c. retention means for retaining said delivery means within said uterine cavity throughout said defined period of time, said retention means comprised of an initial uterine retentive configuration and shape and having means for undergoing biotransformation in said uterine cavity to a non-uterine retentive configuration and shaped whereby at the completion of said delivery means defined period of time for supplying interceptive agent at a controlled ratepsaid intrauterine device is facilely removed or spontaneously eliminated from said uterine cavity.
-5. The intrauterine device in accordance with claim 4 wherein said retention means biotransformation comprises erosion of said means.
6. The device in accordance with. claim 5 wherein said delivery means comprises a body or erodible material which upon erosion of said erodible material disperses drug having interceptive agent dispersed therethrough. I
7. The intrauterine device in accordance with claim 5 wherein saiddelivery means comprises an osmotic dispenser shaped and adapted for insertion into the uterine cavity, said osmotic dispenser having a wall permeable to the passage of uterine fluids and impermeable to an interceptive agent-containing composition, enclosed by said wall which interceptive agentcontaining-composition exhibits an osmotic pressure gradient against fluids wherebyuterine fluid permeates through'said wall and produces a solution of said interceptive agent-containing composition that is released from said dispenser through an opening at a controlled rate.
8. The device in accordance with claim 5 wherein said delivery means comprises a wall enclosing said interceptive agent and permeable to the passage of said interceptive agent by diffusion at a controlled rate, this passage of said interceptive agent through said wall controlling the rate of interceptive agent release from said device.
9. The device in accordande with claim 4 wherein said interceptive agent is a labor-inducing agent.
10. A drug dispensing intrauterine device adapted for insertion into the uterine cavity comprising in combination:
a. a drug,
b. a delivery means for supplying a therapeutically effective amount of drug to said uterine cavity over a defined period of time, said delivery means comprising a body of erodible material having drug dispersed therethrough which upon erosion of said erodible. material. releases dispersed drug at a controlled rate, and
c. retention means for retaining said delivery means within said uterine cavity throughout said defined period of time, said retention means undergoing biotransformation by erosion in said uterine cavity from auterine retentive shaped configuration to a non-uterine retentive configuration and shaped whereby at the completion of said defined period of time said drug dispensing device is facilely removed or spontaneously eliminated from said uterine cavity.
11. A drug dispensing intrauterine device for insertion into a uterine cavity with the device comprising in combination:
' a. a drug,
b. a drug delivery means adapted for insertion into the uterine cavityv and for dispensing a therapeutically effective amount of drug to the uterine cavity over a prolonged. period of time, said delivery means comprising an osmotic dispenser having a wall permeable to the passage of uterine fluids and a drug-containing composition enclosed by the wall which composition exhibits an. osmotic pressure gradient against said fluid whereby uterine fluid permeates through the wall and produces a solu tion of the drug-containing composition that is released from the drug delivery means through an opening at a controlled rate, and
c. retention means for retaining the delivery means within the uterine cavity throughout the prolonged period of drug dispensing time by the delivery means, said'retention means having an initial unit structural shape adapted for insertion and positioning in the uterine cavity, said retention means undergoing biotransformation in the uterine cavity to a different non-uterine retentive configuration and shaped whereby at the completion of the prolonged period'of time said drug dispensing device is facilely removed or spontaneously eliminated from the uterine cavity.
12. A drug dispensing intrauterine device for insertion into a uterine cavity with the device comprising in combination: t e
a. a drug,
b. a drug delivery means adapted for insertion into the uterine cavity and for dispensing a therapeutically effective amount of drug to the uterine cavity over a prolonged period of time. said delivery means comprising a wall enclosing said drug and permeable to the passage of said drugby difiusion at a controlled rate, this passage of said drug through said wall controlling the rate of drug rewith the retention means undergoing biotransformation in the cavity by a loss of rigor to a nonuterine retentive configuration whereby at the completion of the period of time. the device is facilely removed or spontaneously eliminated from said uterine cavity.
15. A drug dispensing intrauterine device adapted for insertion into a uterine cavity with the device comprising in combination:
a. a drug,
b. a drug delivery means comprising an osmotic dispenser having a wall permeable to the passage of uterine fluids and a drugcontaining composition enclosed by the wall which exhibits an osmotic pressure gradient against said fluids whereby fluid shaped whereby at the completion of the prolonged period of time said drug dispensing device is facilely removed or spontaneously eliminated from the uterine cavity.
permeates through the wall and produces a solu tion of the drug-containing composition that is re leased from the device through an opening at a controlled rate, and
retention means for retaining the delivery means within the cavity throughout the period of time, said retention means having an initial shape adapted for insertion and positioning in the cavity, with the retention means undergoing biotransformation in the cavity by a loss of rigor to a nonuterine retentive configuration whereby at the completion of the defined period of time the device is facilely removed or spontaneously eliminated from said uterine cavity.
16. A drug dispensing intrauterine deviceadapted for insertion into the uterine cavity comprising in combination:
a. a drug,
b. a drug delivery means for supplying a therapeutically effective amount of drug to said uterine cavity over a defined period of time, said means comprising a wall enclosing the drug and permeable to the passage of said drug by diffusion with the passage 13. A drug dispensing intrauterine device adapted for c. insertion into the uterine cavity comprising in combination:
a. a drug, b. a delivery means for supplying a therapeutically effective amount of drug to said uterine davity over 2 a defined period of time, and
c. retention means for retaining said delivery means within said uterine cavity throughout the period of time, the retention means having an initial shape adapted for insertion and positioning in the uterine cavity, with the retention means undergoing biotransformation by a loss of rigor of a structural member in the cavity to a non-uterine retentive configuration whereby at the completion of the period of time the device is facilely removed or spon- 3 taneously eliminated from said uterine cavity.
14. A drug dispensing intrauterine device adapted for insertion into a uterine cavity comprising in combination: of drug through the wall controlling the rate of a. a drug, 4() drug release from the device, and b. a drug delivery means adapted for insertion into c. retention means for retaining the delivery means the uterine cavity and for dispensing a therapeutically effective amount of drug to said cavity over a period of time, wherein said delivery means comwithin the cavity throughout the period of time, said retention means having an initial shape adapted for insertion and positioning in the cavity,
prises a body of erodible material having drug diswith the retention means undergoing biotransforpersed therethrough which upon erosion releases mation in the cavity by a loss of rigor to a nondispersed drug, and uterine retentive configuration whereby at the retention means for retaining the delivery means completion of the period of time said device is facwithin the cavity throughout the period of time, ilely removed or spontaneously eliminated from said retention means having an initial shape said cavity. adapted for insertion and positioning in the cavity,
Claims (16)
1. A drug dispensing intrauterine device, shaped and adapted for insertion into the uterine cavity, with the device comprising in combination: a. a drug b. a delivery means adapted for insertion into the uterine cavity and for dispensing a therapeutically effective amount of drug to the uterine cavity over a defined period of time, and c. retention means for retaining the delivery means within the uterine cavity throughout the defined period of drug dispensing time, said retention means having an initial unit structural configuration shaped and adapted for insertion and positioning in the uterine cavity including means for undergoing biotranformation in the uterine cavity to a different and nonuterine retentive configuration and shaped whereby at the completion of said defined period of drug dispensing time, said drug dispensing device is facilely removed or spontaneously eliminated from the uterine cavity.
2. The device in accordance with claim 1 wherein said biotransformation comprises erosion.
3. A T-shaped drug dispensing intrauterine device comprising in combination: a. A crossbar comprising the pentanol half ester of ethylene maleic anhydride copolymer having Beta -estradiol dispersed therethrough, and b. depending from and affixed to the central portion of said crossbar a center bar of non-erodible Polyethylene, said device initially being of size suitable for insertion into the uterus and of a uterine retentive shape, said crossbar eroding in response to the environment of the uterus to gradually release drug at a controlled rate over a prolonged period of time and to biotransform the device into a non-uterine-retentive shape.
4. An intrauterine device for dispensing an interceptive agent, said device shaped and adapted for insertion into the uterine cavity comprising in combination: a. an interceptive agent, b. delivery means containing interceptive agent for supplying a therapeutically effective amount of said interceptive agent to said uterine cavity over a defined period of time, c. retention means for retaining said delivery means within said uterine cavity throughout said defined period of time, said retention means comprised of an initial uterine retentive configuration and shape and having means for undergoing biotransformation in said uterine cavity to a non-uterine retentive configuration and shaped whereby at the completion of said delivery means defined period of time for supplying interceptive agent at a controlled rate, said intrauterine device is facilely removed or spontaneously eliminated from said uterine cavity.
5. The intrauterine device in accordance with claim 4 wherein said retention means biotransformation comprises erosion of said means.
6. The device in accordance with claim 5 wherein said delivery means comprises a body or erodible material which upon erosion of said erodible material disperses drug having interceptive agent dispersed therethrough.
7. The intrauterine device in accordance with claim 5 wherein said delivery means comprises an osmotic dispenser shaped and adapted for insertion into the uterine cavity, said osmotic dispenser having a wall permeable to the passage of uterine fluids and impermeable to an interceptive agent-containing composition, enclosed by said wall which interceptive agent-containing composition exhibits an osmotic pressure gradient against fluids whereby uterine fluid permeates through said wall and produces a solution of said interceptive agent-containing composition that is released from said dispenser through an opening at a controlled rate.
8. The device in accordance with claim 5 wherein said delivery means comprises a wall enclosing said interceptive agent and permeable to the passage of said interceptive agent by diffusion at a controlled rate, this passage of said interceptive agent through said wall controlling the rate of interceptive agent release from said device.
9. The device in accordande with claim 4 wherein said interceptive agent is a labor-inducing agent.
10. A drug dispensing intrauterine device adapted for insertion into the uterine cavity comprising in combination: a. a drug, b. a delivery means for supplying a therapeutically effective amount of drug to said uterine cavity over a defined period of time, said delivery means comprising a body of erodible material having drug dispersed therethrough which upon erosion of said erodible material releases dispersed drug at a controlled rate, and c. retention means for retaining said delivery means within said uterine cavity throughout said defined period of time, said retention means undergoing biotransformation by erosion in said uterine cavity from a uterine retentive shaped configuration to a non-uterine retentive configuration and shaped whereby at the completion of said defined period of time said drug dispensing device is facilely removed or spontaneously eliminated from said uterine cavity.
11. A drug dispensing intrauterine device for insertion into a uterine cavity with the device comprising in combination: a. a drug, b. a drug delivery means adapted for insertion into the uterine cavity and for dispensing a therapeutically effective amount of drug to the uterine cavity over a prolonged period of time, said delivery means comprising an oSmotic dispenser having a wall permeable to the passage of uterine fluids and a drug-containing composition enclosed by the wall which composition exhibits an osmotic pressure gradient against said fluid whereby uterine fluid permeates through the wall and produces a solution of the drug-containing composition that is released from the drug delivery means through an opening at a controlled rate, and c. retention means for retaining the delivery means within the uterine cavity throughout the prolonged period of drug dispensing time by the delivery means, said retention means having an initial unit structural shape adapted for insertion and positioning in the uterine cavity, said retention means undergoing biotransformation in the uterine cavity to a different non-uterine retentive configuration and shaped whereby at the completion of the prolonged period of time said drug dispensing device is facilely removed or spontaneously eliminated from the uterine cavity.
12. A drug dispensing intrauterine device for insertion into a uterine cavity with the device comprising in combination: a. a drug, b. a drug delivery means adapted for insertion into the uterine cavity and for dispensing a therapeutically effective amount of drug to the uterine cavity over a prolonged period of time, said delivery means comprising a wall enclosing said drug and permeable to the passage of said drug by diffusion at a controlled rate, this passage of said drug through said wall controlling the rate of drug release from said device, and c. retention means for retaining the delivery means within the uterine cavity throughout the prolonged period of drug dispensing time by the delivery means, said retention means having an initial unit structural shape adapted for insertion and positioning in the uterine cavity, said retention means undergoing biotransformation in the uterine cavity to a different non-uterine retentive configuration and shaped whereby at the completion of the prolonged period of time said drug dispensing device is facilely removed or spontaneously eliminated from the uterine cavity.
13. A drug dispensing intrauterine device adapted for insertion into the uterine cavity comprising in combination: a. a drug, b. a delivery means for supplying a therapeutically effective amount of drug to said uterine davity over a defined period of time, and c. retention means for retaining said delivery means within said uterine cavity throughout the period of time, the retention means having an initial shape adapted for insertion and positioning in the uterine cavity, with the retention means undergoing biotransformation by a loss of rigor of a structural member in the cavity to a non-uterine retentive configuration whereby at the completion of the period of time the device is facilely removed or spontaneously eliminated from said uterine cavity.
14. A drug dispensing intrauterine device adapted for insertion into a uterine cavity comprising in combination: a. a drug, b. a drug delivery means adapted for insertion into the uterine cavity and for dispensing a therapeutically effective amount of drug to said cavity over a period of time, wherein said delivery means comprises a body of erodible material having drug dispersed therethrough which upon erosion releases dispersed drug, and c. retention means for retaining the delivery means within the cavity throughout the period of time, said retention means having an initial shape adapted for insertion and positioning in the cavity, with the retention means undergoing biotransformation in the cavity by a loss of rigor to a non-uterine retentive configuration whereby at the completion of the period of time, the device is facilely removed or spontaneously eliminated from said uterine cavity.
15. A drug dispensing intrauterine device adapted for insertion into a uterine cavity with the device comprising in combination: a. a drug, b. a drug delivery means comprising an osmotic dispeNser having a wall permeable to the passage of uterine fluids and a drugcontaining composition enclosed by the wall which exhibits an osmotic pressure gradient against said fluids whereby fluid permeates through the wall and produces a solution of the drug-containing composition that is released from the device through an opening at a controlled rate, and c. retention means for retaining the delivery means within the cavity throughout the period of time, said retention means having an initial shape adapted for insertion and positioning in the cavity, with the retention means undergoing biotransformation in the cavity by a loss of rigor to a non-uterine retentive configuration whereby at the completion of the defined period of time the device is facilely removed or spontaneously eliminated from said uterine cavity.
16. A drug dispensing intrauterine device adapted for insertion into the uterine cavity comprising in combination: a. a drug, b. a drug delivery means for supplying a therapeutically effective amount of drug to said uterine cavity over a defined period of time, said means comprising a wall enclosing the drug and permeable to the passage of said drug by diffusion with the passage of drug through the wall controlling the rate of drug release from the device, and c. retention means for retaining the delivery means within the cavity throughout the period of time, said retention means having an initial shape adapted for insertion and positioning in the cavity, with the retention means undergoing biotransformation in the cavity by a loss of rigor to a non-uterine retentive configuration whereby at the completion of the period of time said device is facilely removed or spontaneously eliminated from said cavity.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US319014A US3898986A (en) | 1972-12-27 | 1972-12-27 | Biotransformable intrauterine device |
US05/583,829 US3971367A (en) | 1972-12-27 | 1975-06-04 | Intrauterine device having means for changing from uterine-retentive shape to nonuterine-retentive shape |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US319014A US3898986A (en) | 1972-12-27 | 1972-12-27 | Biotransformable intrauterine device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/583,829 Continuation-In-Part US3971367A (en) | 1972-12-27 | 1975-06-04 | Intrauterine device having means for changing from uterine-retentive shape to nonuterine-retentive shape |
Publications (1)
Publication Number | Publication Date |
---|---|
US3898986A true US3898986A (en) | 1975-08-12 |
Family
ID=23240516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US319014A Expired - Lifetime US3898986A (en) | 1972-12-27 | 1972-12-27 | Biotransformable intrauterine device |
Country Status (1)
Country | Link |
---|---|
US (1) | US3898986A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4054131A (en) * | 1976-08-10 | 1977-10-18 | International Pregnancy Advisory Services | Intrauterine contraceptive device |
US4145320A (en) * | 1974-10-15 | 1979-03-20 | Paolo Ferruti | Polymers containing polyunsaturated acid radicals, process for their preparation and use thereof |
US4180064A (en) * | 1972-12-27 | 1979-12-25 | Alza Corporation | System for delivering agent to environment of use over prolonged time |
USRE30312E (en) * | 1976-08-10 | 1980-06-24 | Intrauterine contraceptive device | |
US4228152A (en) * | 1974-10-15 | 1980-10-14 | Paolo Ferruti | Polymers containing prostaglandin radicals, process for their preparation and use thereof |
US4249531A (en) * | 1979-07-05 | 1981-02-10 | Alza Corporation | Bioerodible system for delivering drug manufactured from poly(carboxylic acid) |
EP0082894A1 (en) * | 1981-12-30 | 1983-07-06 | The Population Council, Inc. | Method of making intrauterine devices |
US4469671A (en) * | 1983-02-22 | 1984-09-04 | Eli Lilly And Company | Contraceptive device |
US5146931A (en) * | 1988-08-15 | 1992-09-15 | Kurz Karl Heinz | Device to be placed in the uterus |
US5495860A (en) * | 1993-07-09 | 1996-03-05 | Rhone-Poulenc Rhodia Ag | Structures formed from cellulose acetate, use thereof for the manufacture of filter tow, use of the filter tow for the manufacture of a tobacco smoke filter element, as well as a filter tow and a tobacco filter element |
EP1400258A1 (en) * | 2002-09-18 | 2004-03-24 | Schering Oy | Pharmaceutical composition delivery device and its manufacturing process |
US20070135796A1 (en) * | 2003-10-22 | 2007-06-14 | George Gorodeski | Method and apparatus for applying medication to internal tissue |
US20160151090A1 (en) * | 2011-12-22 | 2016-06-02 | Previvo Genetics, Llc | Recovery and processing of human embryos formed in vivo |
BE1024660B1 (en) * | 2017-03-02 | 2018-05-17 | Pat & Co Bvba | METHOD AND DEVICE FOR PRODUCING AN INTRA-UTERINE DEVICE |
USD829390S1 (en) * | 2016-12-23 | 2018-09-25 | Jurox Pty Ltd | Intravaginal device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3143472A (en) * | 1961-09-25 | 1964-08-04 | Lilly Co Eli | Enteric compositions |
US3533406A (en) * | 1968-09-18 | 1970-10-13 | Population Council Inc | Intrauterine contraceptive device |
US3625214A (en) * | 1970-05-18 | 1971-12-07 | Alza Corp | Drug-delivery device |
US3636956A (en) * | 1970-05-13 | 1972-01-25 | Ethicon Inc | Polylactide sutures |
US3640741A (en) * | 1970-02-24 | 1972-02-08 | Hollister Inc | Composition containing gel |
US3659596A (en) * | 1969-11-06 | 1972-05-02 | Ralph R Robinson | Intrauterine element |
US3699951A (en) * | 1970-01-19 | 1972-10-24 | Alza Corp | Device for suppressing fertility |
US3710795A (en) * | 1970-09-29 | 1973-01-16 | Alza Corp | Drug-delivery device with stretched, rate-controlling membrane |
-
1972
- 1972-12-27 US US319014A patent/US3898986A/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3143472A (en) * | 1961-09-25 | 1964-08-04 | Lilly Co Eli | Enteric compositions |
US3533406A (en) * | 1968-09-18 | 1970-10-13 | Population Council Inc | Intrauterine contraceptive device |
US3659596A (en) * | 1969-11-06 | 1972-05-02 | Ralph R Robinson | Intrauterine element |
US3699951A (en) * | 1970-01-19 | 1972-10-24 | Alza Corp | Device for suppressing fertility |
US3640741A (en) * | 1970-02-24 | 1972-02-08 | Hollister Inc | Composition containing gel |
US3636956A (en) * | 1970-05-13 | 1972-01-25 | Ethicon Inc | Polylactide sutures |
US3625214A (en) * | 1970-05-18 | 1971-12-07 | Alza Corp | Drug-delivery device |
US3710795A (en) * | 1970-09-29 | 1973-01-16 | Alza Corp | Drug-delivery device with stretched, rate-controlling membrane |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4180064A (en) * | 1972-12-27 | 1979-12-25 | Alza Corporation | System for delivering agent to environment of use over prolonged time |
US4145320A (en) * | 1974-10-15 | 1979-03-20 | Paolo Ferruti | Polymers containing polyunsaturated acid radicals, process for their preparation and use thereof |
US4228152A (en) * | 1974-10-15 | 1980-10-14 | Paolo Ferruti | Polymers containing prostaglandin radicals, process for their preparation and use thereof |
US4054131A (en) * | 1976-08-10 | 1977-10-18 | International Pregnancy Advisory Services | Intrauterine contraceptive device |
USRE30312E (en) * | 1976-08-10 | 1980-06-24 | Intrauterine contraceptive device | |
US4249531A (en) * | 1979-07-05 | 1981-02-10 | Alza Corporation | Bioerodible system for delivering drug manufactured from poly(carboxylic acid) |
EP0082894A1 (en) * | 1981-12-30 | 1983-07-06 | The Population Council, Inc. | Method of making intrauterine devices |
US4469671A (en) * | 1983-02-22 | 1984-09-04 | Eli Lilly And Company | Contraceptive device |
US5146931A (en) * | 1988-08-15 | 1992-09-15 | Kurz Karl Heinz | Device to be placed in the uterus |
US5495860A (en) * | 1993-07-09 | 1996-03-05 | Rhone-Poulenc Rhodia Ag | Structures formed from cellulose acetate, use thereof for the manufacture of filter tow, use of the filter tow for the manufacture of a tobacco smoke filter element, as well as a filter tow and a tobacco filter element |
EP1400258A1 (en) * | 2002-09-18 | 2004-03-24 | Schering Oy | Pharmaceutical composition delivery device and its manufacturing process |
US20060016451A1 (en) * | 2002-09-18 | 2006-01-26 | Esa Hallinen | Delivery sysem and a manufacturing process of a delivery system |
US7252839B2 (en) | 2002-09-18 | 2007-08-07 | Schering Oy | Delivery system and a manufacturing process of a delivery system |
US20070135796A1 (en) * | 2003-10-22 | 2007-06-14 | George Gorodeski | Method and apparatus for applying medication to internal tissue |
US20160151090A1 (en) * | 2011-12-22 | 2016-06-02 | Previvo Genetics, Llc | Recovery and processing of human embryos formed in vivo |
USD829390S1 (en) * | 2016-12-23 | 2018-09-25 | Jurox Pty Ltd | Intravaginal device |
BE1024660B1 (en) * | 2017-03-02 | 2018-05-17 | Pat & Co Bvba | METHOD AND DEVICE FOR PRODUCING AN INTRA-UTERINE DEVICE |
WO2018158134A3 (en) * | 2017-03-02 | 2019-06-20 | Pat&Co Bvba | Method and device for producing an intrauterine device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3971367A (en) | Intrauterine device having means for changing from uterine-retentive shape to nonuterine-retentive shape | |
US3888975A (en) | Erodible intrauterine device | |
US3993057A (en) | Intrauterine device that bioerodes in response to the environment of the uterus and method of using | |
US3898986A (en) | Biotransformable intrauterine device | |
US4016251A (en) | Vaginal drug dispensing device | |
US4069307A (en) | Drug-delivery device comprising certain polymeric materials for controlled release of drug | |
US3903880A (en) | Intrauterine device for managing the reproductive process | |
US4144317A (en) | Device consisting of copolymer having acetoxy groups for delivering drugs | |
US4052505A (en) | Ocular therapeutic system manufactured from copolymer | |
US3993073A (en) | Novel drug delivery device | |
US4093708A (en) | Osmotic releasing device having a plurality of release rate patterns | |
US3896819A (en) | IUD having a replenishing drug reservoir | |
US3948262A (en) | Novel drug delivery device | |
US3967618A (en) | Drug delivery device | |
US4014987A (en) | Device for delivery of useful agent | |
US3921636A (en) | Novel drug delivery device | |
US4249531A (en) | Bioerodible system for delivering drug manufactured from poly(carboxylic acid) | |
US4036227A (en) | Osmotic releasing device having a plurality of release rate patterns | |
US4034758A (en) | Osmotic therapeutic system for administering medicament | |
US4180064A (en) | System for delivering agent to environment of use over prolonged time | |
US3977404A (en) | Osmotic device having microporous reservoir | |
US3948254A (en) | Novel drug delivery device | |
US3993072A (en) | Microporous drug delivery device | |
US3964482A (en) | Drug delivery device | |
US3916899A (en) | Osmotic dispensing device with maximum and minimum sizes for the passageway |